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1. Introduction

The problem of self-localization involving low-cost radievices in WSN can
be viewed as an example of the internet of things (I0T). Traution in the last
50 years of the embedded systems and smart grids has cordritsugnable the
WSN integrates the emerging system of the 1oT. Recentlyareckd applications
to handle specific tasks require the support of networkiatufes to design cloud-
based architectures involving sensor nodes, computer®thied remote compo-
nent. Among the large range of applications, location sesvican be provided
by small devices carried by persons or deployed in a givea, arg. routing and
guerying purposes, environmental monitoring, home autiemaervices.

In this paper we investigate the problem of localization ireless sensor net-
works (WSN) as a particular application of principal comgonanalysis (PCA).
We assume that wireless sensor devices are able to obtaimedsignal strength
indicator (RSSI) measurements that can be related to axgngodel depending on
the inter-sensor distances. The multidimensional scatiagping method (MDS-
MAP) consists in applying PCA to a so-called similarity npatronstructed from
the squared inter-sensor distances. Then, the sensoisbps<an be recovered
(up to arigid transformation) from the principal comporseot the similarity ma-
trix [B], [El]. As opposed to time difference of arrival (TDQANd angle of arrival
(AOA) techniques, the MDS-MAP approach allows to recoverritwork config-
uration based on the sole RSSI, and can be used without artjoadtihardware
or/and synchronization specifically devote to self-lazaiion.

MDS-MAP has been extensively studied in the literature Geaiori 2.8 for an



overview). The algorithm is generally implemented in a caiged fashion. This
requires the presence of a fusion center which gather s8mseasurements, com-
putes the similarity matrix, performs the PCA, and evemyus¢nds the positions
to the respective sensors. In this paper, we provide a €idgributed algorithm
which do not require RSSI measurements to be shared. In@udiur algorithm
can be usedn-line. By on-line, we mean that the current estimates of the sen-
sors’ positions are updated each time new RSSI measuremenperformed, as
opposed to batch methods which assume that measuremeugtsdlactedprior to
the localization step. Therefore, although we assume tfirouwt the paper that the
sensors’ positions are fixed, our algorithm has the potetstibe generalized to
moving sensors, with aim to track positions while senscesaoving.

The paper is organized as follows. In Secfibn 2, we providendtwork and the
observation models. We also provide a brief overview ofddath self-localization
techniques for WSN. Sectidn 3 presents the centralizedoveof the MDS-MAP
algorithm. The proposed distributed MDS-MAP algorithm myded in Sec-
tion[4. An additional refinement phase is also proposed iri@e8 where our
MDS-MAP algorithm is coupled with a distributed maximurkediihood estima-
tor. In Sectior b, numerical experiments based on both sitedland real data are

provided. Sectiohl7 gives some concluding remarks.

2. The framework

2.1. Network model
ConsiderN agents €.g. sensor nodes or other electronic devices) seeking to
estimate their respective positions defined as, - - - , zy } where for anyi, z; €

RP with p = 2 or 3. We assume that agents have only access to noisy measisem
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of their relative RSSI values. More precisely, each agestbserves some RSSI
measurement$; ; associated with other agenfs# i. Here, P, ; is a random
function of the Euclidean distanek ; = ||z; — z;| between nodesand;. The
statistical model relating RSSI values to inter-sensotadises is provided in the
next paragraph.

The goal is to design a distributed and on-line algorithmrtalde each sensor
node to estimate its positiagy from noisy measurements of the distances. Before
going further in the description of the RSSI statistical mlod is worth noting that
the localization problem is in fact ill-posed. Since theyanput data are distances,
exact positions are identifiable only up to a rigid transfation. Indeed, quanti-
ties (d; j)vi,; are preserved when an isometry is applied to the agentstiqusi
i.e. rotation and translation. The problem is generally circanted by assum-
ing a minimum number ahnchorsor also namedandmarks(sensor nodes whose
GPS-positions are knowng.g. M = 3 or 4 whenp = 2, and considering these
prior knowledge to identify the indeterminacy. This poistfurther discussed in

Sectio 2.8.

2.2. Received signal model

We rely on the so-called log-normal shadowing model (LNSd/yiodel RSSI
measurements as a function of the inter-sensor distgﬁcu\@hefine the average
path lossPL(d) at a distancel expressed inlB asPL(d) = PLg + 10 log 4,
where the parameterg dy andPLy depend on the environment (see Secfibn 6).

Given that the distance between sensamsd; is d; ;, we define the RSSI between



i andy as a random variablg; ; satisfying
P, i = —PL(d; ;) + €i @

where(e; ; : i # j) are thermal noises assumed independent with zero mean and
variances?. Assume that a given agenis provided with7 independent copies

P, ;(1),..., P;(T) of the random variabl@, ; and letP;, ; = T-* 3. P, (1)

be the empirical average. An unbiased estimate of the sﬁuﬁx‘ancei?vj is given

b
y 10 —P; j—PLg
. . 5'
D(i,j) = ot ] @)

521n 10

whereC' = 102700m? | Indeed, it can be easily checked that the mean and variance

of the unbiased estimatdr] (2) are respectivé@lyD (i, j)] = d; ; andE[(D(i,j) —
d?;)?] = dj ;(C® —1). The construction of unbiased estimates of squared distanc

will be the basic ingredient of our distributed MDS-MAP atijlom.

2.3. Overview of some localization techniques

Several overview papers have been published in the laseans ylealing with
the classification of the localization techniques (Qae [4@]). In some situations,
localization is made easier by the presencamthornodes whose positions are
assumed perfectly known. Other methods, called ancher-fie not require the
presence of such landmarks.

Anchor-based methods:The classical techniques involve the resolution of a
single unknown position of a sensor node at a time by meansS&i Ralues fol-
lowing the LNSM coming from a fixed number of surrounding amchodes or

landmarks. Since the sensor node only uses the information known posi-



tions, its position can be expressed in absolute coordinage anchor positions
in GPS-coordinates. When considering a noisy scenari@rakeworks coupled
the classical method#ri{ateration, muItiIateration[@] ormin-m 1) with a least
squares problem. In particulau [Ail [9] arui [7] considedtiiop communications
between the sensor nodes. Other approaches focus on tketcstiadlistribution of
the received RSSI measurements coming from the landmahesgdal is to con-

sider a parametric model for the received signal and to apalyimum likelihood

estimator (MLE). Most works consider the LNSM ﬁee for innm] or ])

while others assume alternative statistical models (s&leojd13]).

Anchor-free methods: The configuration of the network can be recovered on
a relative coordinate system instead of the GPS absolutelicate system. When
distances between nodes are view as similarity metricspdlséioning problem
is referred to multidimensional scaling (MDS). The aim idfited an embedding
from the N nodes such that distances are preserved. In classical DlBiS]Epter
12] positions are obtained by principal component analfRBBA) of aN x N
matrix constructed from the Euclidean distances. If distanare issued to some
noise,e.g. estimated from RSSI measurements[ds a), [2] propose a MBB-M
algorithm based on the classical MDS problem. Indeed, théNWi8alization
problem is solved by enabling each sensor node to infer aletimated pairwise
distances. Alternative approaches within the localizationtext are based on opti-
mization techniques. In metric MDS, positions are obtaimgthe stress majoriza-
tion algorithm SMACOF (seeﬂ[l, Chapter 8] aru [14]). Alteimaly, semidefinite
programming (SDP) can be used ast [15].
The latter approaches have been also addressed in a dedribetting with-

out the presence of a central processing unit. A distribbiedh version of the



SMACOF algorithm based on a round-robin communication sehes proposed
in @]. Since ] considers the minimization of the nomweex stress function,
the same distributed approach (batch and incrementalg&epted inﬂ?] but us-
ing a quadratic criterion which includes the informatioarfr the anchor nodes to
overcome the non-convex issue. The Author@( [15] propadistebuted imple-
mentation of their SDP-based localization algorithmﬂ])[lhe network is divided
in several clusters of at least two anchor nodes and a langé&uof sensor nodes
and then the SDP problem is addressed locally at each clustere recently,
gossip-based algorithms have been proposemn ], [260lee the distributed
optimization problem via Kalman filtering and gradient destcapproaches. Other
works address the distributed WSN localization problemmgighe multidimen-
sional scaling (MDS) method based on PCA. The MDS-MAP preddsa [2] is
later improved in Bl]. InBl] each sensor node applies tHeSYMAP of [2]
to its local map and then the local maps are merged seqgugrtbatecover the
global map. Alternatively, inEZ] an&i

3] a sparsificatioratrix model on the

observations is introduced to decentralized the PCA step.

3. Centralized MDS-MAP

3.1. Centralized batch MDS

Define S as theN x N matrix of square relative distances., S(i,j) = dl%j.
Definez = % Zf\il z; as the center of mass (barycentej of the agents. Upon

noting thatd; ; = [|z; — Z||* + || z; — Z||* — 2(zi — %, z; — %), one has:

S=c1” +1cl —2z27 ()



wherel is the N x p matrix whose components are all equal to ane;s (||z; —
z||%,- -, |lzx — Z|*)T and theith line of matrix Z coincides with the row-vector
z; — z. Otherwise stated, thith line of Z coincides with thébarycentric coordi-
natesof nodei. DefineJ = 117 /N as the orthogonal projector onto the linear
span of the vectot = (1,...,1)”. DefineJ, = Iy — J as the projector onto
the space of vectors with zero sum, whére is the N x N identity matrix. It is

straightforward to verify thall | Z = Z. Thus, introducing the matrix
A 1
M2 —2J, 8T, (4)

equation[(B) implies thadl = ZZ"'. In particular,M is symmetric, non-negative
and has rank (at mosp) The agents’ coordinates can be recovered flam(up
to a rigid transformation) by recovering the principal €igeace ofM i.e. the
vector-space spanned by thil principal eigenvectors (s&Jj [1, Chapter 12]).
Denote by{)\k}{f:l the eigenvalues oM in decreasing order,e. \y > --- >
An. In the sequel, we shall always assume that> 0. Denote by{u;};_,
corresponding unit-nornV x 1 eigenvectors. SeZ = (v/Ajug, - \/T,,up
ClearlyM = ZZ" = ZZ andZ = RZ for some matrixR such thatRR’ =
Iy. Otherwise statedZ coincides with the barycentric coordinat&sup to an
orthogonal transformation. In particular, tih row of matrix Z is an estimate
of the position of theith sensor (up to the latter transformation common to all

sensors). In practice, matr&is usually not perfectly known and must be replaced

by an estimates. This yields the Algorithni 11 (seg[l, Chapter 12)).



Algorithm 1: Centralized batch MDS-MAP for localization
Input: Noisy estimates of the square distané&g, j) @) for all pairi, j.
1. Compute matrixS = (D(i, j))i j=1,.. N-
2.SetM = —1J,87,.
3. Find the eigenvectorﬁuk}” , and eigenvalue$; };_, of M.
Output: Z = (v Auy, - “ o/ Aptp)

3.2. Centralized on-line MDS

In the previous batch Algorithfd 1, measurements are made forthe estima-
tion of the coordinates. From now on, observations are mogdtinto the system'’s
memory: they are deleted after use. Thus, agents gathemumezents of their

relative distance with other agents and, simultaneoustynate their position.

3.2.1. Observation model: sparse measurements
We introduce a collection of independent r.y3 ;(n) : 4,5 =1,--- ,N, n €
N) such that eaclP,; ;(n) follows the LNSM described in Sectidn 2.2. At time
n, itis possible to define an unbiased estimAg(i, j) the squared distance as
j(m—PLg

D, (i,j) = & g in the sense that[D,,(i, j)] = d7 ;. We use the con-

vention thatD,, (i,7) = 0.

Definition 1 (Sparse measurementgt each time instant, we assume that with
probability ¢;;, an agenti is able to obtain an estimat§,, (i, j) of the square dis-
tance with an other agent= 7 and makes no observation otherwise. Thus, one can
represent the available observations as the prodgigti, j) = A, (i,7) D (i, 7)
where(A,,), is an i.i.d. sequence of random matrices whose compon&nts ;)
follow the Bernoulli distribution of parametey;;. Stated otherwise, nodeob-
serves théth row of matrixA,, o D,, at timen whereo stands for the Hadamard

product.



Lemma 1. Assumey;; > 0 for all pairs 7, j. SetW := [qigl]ﬁ\fj:l and letA,,, S,

be defined as above. The matrix
S, =WoA,oD, %)

is an unbiased estimate 6fi.e, E[S,] = S.

Proof. Each entry of matrixS,,, S, (i, j), is equal tol /q;; Ay (7, 7)Dy(i,7). As
the random variabled, (i, j) and D, (i, j) are independent, by the above defini-

tion of D,, andE[A,, (7, )] = ¢i;, thenE[S,,(i, )] = d7 ;. O

As a consequence of Lemrh 1, an unbiased estimald afefined in [(4) is

simply obtained byM,, = —1J | S,J .

3.2.2. Qja’s algorithm for the localization problem

When dealing with random matricéel ,, having a given expectatioM, the
principal eigenspace @¥1 can be recovered by the Oja’s algoritfm [24]. The latter
consists in recursively defining a sequeiiég of N x p matrices, which stand for
the estimate at time of the p principal unit-eigenvectors aiZ. The iterations as

firstly introduced in|1—2|4] are given by:
U,=Up 1+ (MnUn—l -U, (Ug_anUn—l)) > (6)

where~,, > 0 is a step size. Note that in practice, the algorithm is likelguffer
from numerical instabilities. IrlBS], a renormalizatiotes is introduced to avoid

unstabilities. As this approach seems difficult to geneeail a distributed context,
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it is more adequate in our context to introduce a reprojacttep in[(6) of the form
Un - HJC [Un—l + Tn (MnUn—l - Un(Ug_anUn—l))] 5

wherelly is a projector onto an arbitrarily large convex compactJsethosen
large enough to include all matrices whose columns havenamin. Typically, we
setK = [—a,alP x -+ X [—a, a]P wherea > 1.

In order to obtain an estimate of the sensors positions, seersded to estimate
the principal eigenvalues in addition to the eigenvectdsest u,, ;, denote thekth

column of matrixU,,. Define the quantity,, ;, recursively by:

/\n,k = >\n—1,k + n (uz;_Lanun—l,k - /\n—l,k) . (7)

The convergence properties of Oja’s algorithm are studiedetails in ] and
]. Finally, according to step 3 of the batch Algorithin e testimated barycen-

tric coordinates are obtained as:

En:< AadUnls- - An,pun,p). ©)

The combination of Equationkl(6)I(7) arid (8) provides anioe-for MDS-MAP
algorithm. However, the computation of matrid,, at each step as well as the

matrix products in[{(6) require a full amount of centralipati
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4. Distributed on-line MDS-MAP

4.1. Communication model

It is clear from the previous section that an unbiased estim&matrix M
is the first step needed to estimate the sought eigenspadbe bentralized set-
ting, this estimate was given by matri,, = —%JlSnJl. As made clear by
the observation model (in Definitidd 1), each nadebserves théth row of ma-
trix S,. As a consequence, nodenas access to thgh row-averageS, (i) =
% >_;Sn(i,j). This means that matri§,J, can be obtained with no need to
further exchange of information in the network. On the ottend,J | S,,J | re-
quires to compute the per-column averages of maitjx |, i.e. % Zj Sn(4,17)
for all <. This task is difficult in a distributed setting, as it woukhuire that all
nodes share all their observations at any time. A similatambs happens in Oja’s
algorithm when computing matrix productsg. M ,U,,_; in (@). To circumvent
the above difficulties, we introduce the following sparsgnabronous communi-
cation framework. In order to derive an unbiased estimafelofet us first remark

that for alli, 7, B B
P(i) +d(j)  dij+9
2 2

M(i, j) = 9)

where we set?(i) £ L 3", d% ands £

21 5= d(i). Note that the terma? ; and

1

N
d2(i) can be estimated b§,,(i,7) and’S,, (i) respectively. However, additional
communication is needed to estimatsince it corresponds to the average value

over all square distances. We define

Mn(%]) _ Sn(l) ‘|2' Sn(]) o Sn(i>j)2‘|’ 5n(l) (10)
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whered,, (i) is a quantity that we will define in the sequel, and which repng¢s
the estimate of at the agent.

We are now faced with two problems. First, we must constiygt) as an
unbiased estimate 6f Second, we need to avoid the computationl\/ﬁil(z‘, j) for
all pairsi, j, but only to some of them. In order to provide an answer toglpesb-

lems, we introduce the notion of asynchronous transmisseguience. Formally,

Definition 2 (Asynchronous Transmission Sequendegtq be a real number such
that0 < ¢ < 1. We say that the sequence of random vecigrs= (i, Qn,i :
i€ {l,---,N},n € N) is an Asynchronous Transmission Sequence (AT9Y) if:
all variables (¢y,, Qn.i)i,» are independentii) ¢, is uniformly distributed on the
set{l,--- , N}, iii) Vi # ¢, Qn; is a Bernoulli variable with parametey i.e.,

P[Q,; = 1] = g andiv) Q,,.,,, = 0.

Let (7,), denote an ATS defined as above. At timeve assume that a given
node., € {1,...,N} wakes up and transmits its local row-averagg(.,) to
other nodes. All nodessuch that®),, ; = 1 are supposed to receive the message.

For anyi, we set:
N q '

(11)

The following Lemma is a consequence of Definitidn 2 alondhwiiemmall

and equation’{(4).

o~

Lemma 2. Assume thatT,,),, is an ATS independent @$,,),,. Let(M,),, be the
sequence of matrices defined byl (10). Trﬁﬁm/,/?n] = M.

Proof. By Lemmall the expectation of terns, (i), S,(j) and S,,(i, ;) are re-

spectivelyd?(i), d*(j) andd? ;. Moreover, by Definitiofi 2 the expectation of the

13



random termd,,(4) is equal to
B[6,(0)] = B0 + o S EBala = 5 Y 20).

which coincides withy. Then, the expectation of each entry of the maf/b'r&n

in (I0) is equal to the correspondidg (i, j) defined in[(9). O

4.2. Preliminaries: constructing unbiased estimates

As we now obtain a distributed and unbiased estimatd/&fthe remaining
task is to adapt accordingly the Oja’s algoritHoh (6). In thésagraph, we provide
the main ideas behind the construction of our algorithm.

Assume that we are given a current estindtg_; at timen, under the form of
aN xp matrix. Assume also that for ea¢htheith row of U ,,_1 is a variable which
is physically handled by node We denote byJ,, (i) theith row of U,,_;.

Looking at [6) in more details, Oja’s algorithm requires évaluation of inter-
mediate values, as unbiased estimate83&/,,_, ande_lMUn_l.

We consider the previous AT&,),, involved in [10). We assume that the
active nodet,, (i.e., the one which transmit§',(,,)) is also able to transmit its
local estimatd/,,_; (¢,,) at same time. Thus, with probabilit&;, node,, sends its
former estimatd/,,_1(,) andS,,(v,) to all nodesi such that),,; = 1. Then, all

nodes compute:

—

Y (i) = Mo (i, VU1 (7) + %Un_l(%)ﬁn(i, 1) Qs (12)

As it will be made clear below, th& x p matrixY",, whoseith row coincides with

Y ,.(7) can be interpreted as an unbiased estima®/df,, ;.
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Now we introduce the distributed version of the second té?fﬁllM 2Un—1.
Consider a second AT@?,),, independent of7},),,. At time n, node.,, wakes up
uniformly random and broadcasts the prodUtt_1(:/,)” Y, (:},) to other nodes.
Receiving nodes are thogls for which @7, ; = 1. Then, all nodes are able to
compute the estimape x p matrix as follows:

An(i) = Una (7Y (i) + %Un_m' Y, ()@ (13)

n n, *

Lemma 3. Let(7},), and(7},),, be two independent ATS. For anydenote byF,,
the o-field generated byT})i<n, (T}.)k<n, (Ak)k<n @nd (Dy)r<,. Let(U,), be

a J,,-measurableV x p random matrix and leY,,, A,, be defined as above. Then,
E[Y ,|Fn_1] = MU, and E[A,(i)|F, 1] =UL MU, ;.

Under Lemmall12 and Definitién 2, the random sequeit€g§) and A,, (i) are
unbiased estimates df ; M (i, j)U »,—1(j) and UL MU, _, respectively given
Up_1.

Proof. For eachi, we obtain

E[Yn(zﬂffn—l] = M(ivi)Un—l(i) + g% ZM(Zvj)Un—l(])
J#i

=Y M(i, ) )Un 1),

J
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and
Bl Fa1] = U (B o ()F0ma] + 5 1 5 Una GBIV )
i
- Z Z U, 1()T M@, j)U,_1(5)

which corresponds with the square ma#i _, MU, ;. O

4.2.1. Main algorithm
We are now ready to state the main algorithm. The algorithmegses itera-

tively and for any node two variablesU,, (i) and,, (i), according to:

Un(z) = Un—l(i) + Tn (Yn(z) - Un—l(Z)An(Z)) (14)

}\n(l) = An—l(i) + 'Vn(dlag(An(l)) - An—l(z)) . (15)

For the same reasons as before, it is important in practizgrtmuce a projection
stepIly in (I4) to avoid numerical unstabilities. Finally, as [ih,(8pach sensor

obtains its estimate positia#,, (i) by:

En(z‘):< A (D) (3), -, An,p(i)un,p(i)> (16)

where we seU (1) = (up1(2), ..., Unp(7)).
The proposed algorithni (114)-(16) is summarized in AlgaonfB below. Note
that, at each iteration time, only two communications are performed by two

randomly selected nodes issued to the ATS'sand7)..
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Algorithm 2: Distributed on-line MDS-MAP for localization (doMDS)
Update: Ateachtimen =1,2,...
[Measures]: each sensor nodedo:
Makes sparse measurements of their RSSI to ol#@ij(:, j)); for somey
such thatA,, (i, j) = 1 (Definition[d). Set

-1 .o . .o
o [ g Dalig) if Ag(ig) =1
Snli:j) = { 0 otherwise

and set S, (i) = & >_; Sul(i, ).
[Communication step]:
A randomly selected nodg wakes up, then

i) The node.,, randomly selected broadcagts, 1(:,) andS,,(s,) to
nodesi such that),, ; = 1.

i) Each node computesY () by (12).

iii) A node:/, randomly selected broadcagts, ;(:},)"Y () to
nodesi such thaQ;, ; = 1.

iv) Each node updatedU,, (i) by (13)-(14) andin(z') by (18).

4.3. Convergence analysis

We make the following assumptions. The sequengg,, is positive and satis-
fies

d =400 and > 42 <co.
n n

Moreover we make the assumption that the sequé&hgeemains a.s. in a fixed
compact sef. It must be emphasized that this assumption is difficult &c&hn
practice. As mentioned above, stability can be enforced bsma of a projection

step ontak.

Proposition 1. For anyU € RN*?, seth(U) = MU — UUTMU. LetU,, be

defined byl(14). There exists a random sequépcich that, almost surely (a.s.),

17



3. ¥nén converges and
Up=Un-1+%mh(Un-1) + Ynbn (17)

The proof is provided in the Appendix. We are now in positionstate the

main convergence result.

Theorem 4. For anyk = 1,--- ,p, thekth columnu,, ;, of U,, converges to an
eigenvector of\f with unit-norm. Moreover, for each nodeX,, (i) converges to

the corresponding eigenvalue.

The proof is provided in the Appendix.

Note that Theorern]4 might seem incomplete in some respeetinoieed ex-
pects that the sequenté&, converges to the principal eigenspaceMt. Instead,
Theoren{# only guarantees that one recogermeeigenspace oM. Undesired
limit points can be theoretically avoided by introducing abitrary small Gaus-
sian noise inside the parenthesis of the left hand sidé_df (§ee Chapter 4 in

]1). These so-called avoidance of traps techniques axeVver out of the scope
of this paper, and numerical results indicate that the praieigenspace is indeed

recovered in practical situations.

5. Position refinement: distributed maximum likelihood estmator

In the context of WSN localization, a refinement phase is inegal added
(see Ba], |[:JV], ] or]). It is usually based on the sttitisl model relating the
observed RSSI values to the unknown positions, the latieglkestimated in the

maximum likelihood sense. The obijective is twofolds. Finsaximum likelihood
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estimation improves the estimation accuracy obtained &b S-MAP approach.
Second, as the MDS-MAP only identifies positions up to a rigasisformation, it
allows to eliminate the residual ambiguity by using anchodes, provided that
such anchors exist.

In this section, we provide a distributed algorithm in or¢ierdocally maxi-
mize the likelihood. It is worth noting that the likelihoodrfction is generally
non-convex. Thus, one cannot expect that a standard gtadieant provides the
maximum likelihood estimator regardless from the inigation. For this reason, a
preliminary phase such as the proposed doMDS algorithmsiengigl as an initial
coarse estimate, and the algorithm depicted below is useelyres a fine search

in the neighborhood of the doMDS output.

5.1. Likelihood function

Consider a connected gragh= (V, E) whereV = {1,..., N} is the set of
agents andv is a set of non-directed edges. In this paragraph, we allothépres-
ence of anchor nodes. We ldtC {1,..., N} be the set of anchor nodeés. for
eachk € A, the positionz;, of nodek is assumed to be known. Unknown parame-
ters thus reduce to set of coordinates- (z; : i € A) whereA = V'\ A. We denote
by .#; the neighbors of which belong tad and by.#; the neighbors of which are
anchors. We note 4, = (z; : j € 4;U{i}). For a connected pair of nodés j},
we let P j(n) (n € N) be an i.i.d. sequence following the LNSM model of Sec-
—P;,5(n)

—PLo follows a normal dis-

tion[2.2. Equivalently, the quantit@,j(n) = 101

tribution with meanlog,, d; ; and varianceli

. - €i,j
oo,z Sincely j(n) = logig dij + 155

by using [1). Based on the observatidis;(n) : i ~ j) at a given timen, the
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likelihood associated with the unknown sensors’ positicens be decomposed as

N
Ln(z) = Z fin(z.)
i=1

where

Filza) = 32 (Bgm) —tosio 2 — 250) + 32 (dalm) —logag 1z — zil)’

JEN; ke;

5.2. The algorithm: on-line gossip-based implementation

Following the idea ofE?](see aIsQZS] and reference tingreve propose a
distributed consensus-based implementation consistingaal computations and
random communications among the sensor nodes. The algoistigiven below.
The convergenceﬁ)of is omitted due to the lack of spacediawis from the

same arguments 28].

Algorithm 3: Distributed on-line MLE (doMLE)
Update: ateachtimer =1,2,...
[Local step] each node obtains{ P; ;(n) }vjc.» and{Piy(n)}vre.z,-
Each sensor computes a temporary estimate of its position’s set:

2JVZ-JL = Z #n—-1 " ’anfi,n(z{/i/i,n—l)
[Gossip step two uniformly random selected nodés- j in A exchange
their temporary estimated positions and average theiegahgcording to:

Z4in(0) + Z0(0)
2

Vee NN N, zaall) =
z4;n(0) = 24,0 (),

Otherwisey? ¢ 4, N Ajorm # i, j, setz 4, n(£) = Z 4, n(€).

Algorithm[3 uses a standard pairwise averaging betweensnddle note that

more involved gossip protocols have been proposed, we arefati instance broad-
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cast and push-sum protocols (SQ [29] Q [30]). Althougbritically possible,

such an extension of Algorithid 3 is however beyond the scopgpaper.

6. Numerical results

We consider the same network configuration correspondirth@set of N =
50 sensor nodes selected from the FIT IoT-LEEpIatform at Rennes. Sensor
nodes are located withinax 9m? area,i.e. p = 2. Six sensors of th60 were
set as anchor nodes (or landmarks). We compare the perfoentdiour proposed
distributed on-line MDS (doMDS) to other existing algonith. We consider the
distributed batch MDQG] (dwMDS) and the classical cditeal methods such
as: muItiIateratiorHG] (MC)min—max]g], Algorithm[ in Sectiof 311 (batch MDS)
and the Oja’s algoritm{6)={(7) described in Sectionl 3.2. Tiree iterative algo-
rithms (Oja’s, dwMDS and doMDS) are initialized by randonslyosen positions

in5 x 9m2,

6.1. Simulated data

First, we show the results from simulated data drawn acogrth the obser-
vation model defined in Sectidn B.2. In order to compare oop@sed algorithm
with the distributed MDS proposed tl;lm], we set the sam@&enmental context
in which o/n = 1.7. Figure[1 displays the comparison of the root-mean square
error (RMSE) when running Algorithria] 2 ove&d00 independent runs of the es-
timated positions when considering different communaatparameters(q;;); ;

(the Bernoullis related to the observation mode! (5)) arfthe Bernoullis related

2FIT 10T-LAB [https: //www.iot—1lab.info/
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to the ATS in Definition[R2). Since the variance of the errorusate is upper
bounded by the minimum probability value [0 (A.3)- (A.5), wbserve from Fig-
ure[1 a trade-off between the accuracy and the number of comations as the
RMSE decreases faster when the probability closer tol.

Figure[2a shows the comparison of the localization RMSE 8verindepen-
dent runs of the overall estimated positions when consigetiie three iterative
methods: the centralized Ojald (6)-(7), the deDSQ [168l aur proposed Al-
gorithm[2. The estimated positions aftl00 iterations of the three iterative al-
gorithms are reported in Figuité 2. Note that, the result guFé[2¢ requires at
least twice the number of communications compared to thdtseboth on-line
Oja’s approaches. Positions close to the barycentric af¢i@ork tend to be more
accurate than positions on the surrounding area for the ttases. Nevertheless,
Figured Z2b an@ 2d show these outer positions better presénmae EL]. Indeed,
our distributed and asynchronous Oja’s algorithm achi@vegneral better accu-
racy (around thé&5% of positions) except for the third part of nodes which are
located around the network’s boundagyg. nodesl1 or 36 — 37 for instance (see

squared nodes in Figure]2d).

6.2. Real data: FIT I0T-LAB platform of wireless sensor rode

6.2.1. Platform description

In order to obtain real RSSI values we make use of the FIT I8B-[platform
deployed at Rennes (France). T4 WSN430 open nodgsavailable at the plat-
form are issued to the standard ZigBee IEEE 802.15.4 opgrati2.4 GHz. The

3See the technical specifications of WSN430 seriisoros : //github. com/iot-1lab/iot-lab/wiki/Hardware_Wsn4
and CC2420 transceivers involve in our campaidtisip: //www.ti.com/1it/ds/symlink/cc2420.pdf
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sensor nodes are located in two storage rooms oftsizé5 m? containing differ-
ent objects. They are placed at the ceil which.$sm height from the floor in a grid
organization. Through of our user profile created in the FIT-LAB’s website,
we run remotely several experiments involving Hfeselected sensor nodes within
5 x 9m?. All real data used in this section can be foundinThe environment
parameters issued to the LNSM (1) arez = 28.16dB, PLy = —61.71dB and

n = 2.44. We setg;; = 0.8 Vi, j, ¢ = 0.85 and~,, = % for Algorithm[2.

6.2.2. Performance comparison

We compare the same algorithms considered in Selction 6.&tbggsthe esti-
mated positions obtained from each algorithm to the imitadion of Algorithm[3.
Table[1 shows the RMSE values before and after the refinerhasep In addition,
we include the ratio of the accuracy improvement considgttie RMSE values af-
ter and before applying the distributed MLE and the ratiardmg the number of
positions over the totaV that are improved. The best performances are achieved
by min-max, dwMDS and doMDS in terms of minimum RMSE valuerabe N
estimated positions. Nevertheless, the highest impromemseobtained with the
proposed doMDS since the RMSE before the refinement phasdiglasr than
the values from min-max and dwMDS which do not experimentreszrable de-
crease. In general, the refinement Algorithim 2 improves atrath the positions
for each method and especially the anchor-free methods lias¢he MDS ap-
proach. Indeed, the highest values are those from thelditgd versions which

may exploit in advantage the local knowledge of each sersae.n

“Data base available at G. Morral personal welisttep: //perso.telecom-paristech.fr/-morralad/
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7. Conclusion

This paper introduced a novel algorithm based on Oja’s #lguarfor self-
localization in wireless sensor networks. Our algorithnbased on a distributed
PCA of a similarity matrix which is learned on-line. Almostre convergence of
the method is demonstrated in the context of vanishing &tep he algorithm can
be coupled with a distributed maximum likelihood estimdtorefine the sensors
positions if needed. Numerical results have been condurtdzbth simulated and
real data on a WSN testbed. Although we focused on fixed sepasitions, the
on-line nature of the algorithm makes it suitable for useyinainic environments

where one seek to track the position of moving sensors.

Appendix A. Proof of Proposition[I

Set for each, Zj M (i, ))U,_1(j) = (MU, _;); and
&n(i) = (Y,(i) — (MU p1);) + U1 () (UL MU,—1 — An(i)) (A1)
Then, the sequence generated by each sensoringdegitten as:
U (i) = Un-1(0) + 3 (MU p-1)i = U1 () (U MU 1)) + (i)

Denote by, theo-algebra generated by all random variables defined up tortime

Using LemmasILI2 ard 3, it is immediate to check fhég,|F,—1) = 0 and thus
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the sequencgkgn V& IS F,-adapted martingale. We estimate

E[|&0 ()2 Fn-1] < EY n()2Fne1] + 11U ne1@)|PE[[| A (8]} Fp—1]

The first term on the right hand side (RHS)[0f (A.2) can be egpdras:

E(IY n(0)|*[Fn1] < B[ Ma(i,d) ) [Un-1 ()]

+ A SO RM G, )P ()]
1%

+2> B[M (i, i) M (i, )] [Un 1 G)* . (A3)
J#i
Upon noting that for any, j E[S,,(i,7)%] = q%_jdj.ijS andU,,_ lies in a fixed
compact set, there exists a constafitsuch thatk[||Y (i) || F._1] < K’ for all
n depending onV, ¢,,;, = min, ; g;;, C defined in[2) andnax; ; d4 such that
[|Mn(z',j)| | < K for some constank’. The second term on the RHS bf (A.2)

can be handled similarly:

E[|An()I*Fa-1] < ENY w (I |Fa-s [Tn-1 (D + ZEHY 2 (F 1]
J#Z
+2 BY 2 @)Y n()IFaaDIUna (I < K"
J#i
(A.4)
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for some constank™. Finally,

+ Y EY . ()Y u ()| Tl Facr (G)| - (A5)
j#i

is uniformly bounded as well. Therefore, we have shown thsat a
sup E[[|€(0)%|Fn—1] < 00

Sincey”, v2 < oo, it follows that > 2E[[|&,(7)[|*|Fn-1] < oo a.s. By Doob’s
Theorem, the martingale_, ., v+&x(i) converges almost surely to some random

variable finite almost everywhere. This completes the proof

Appendix B. Proof of Theorem[4
Consider the following Lyapunov functior : RV*? < {0} — R*:

U

V(U) = MU

(B.1)

The following properties hold:

i) limgr| -0 V(U) = +o0 and the gradient i¥V (U) = —2%h(U).

iy (V(U),r(U)) <0 and the equality holds iffU € RVN*? | h,(U) = 0}.
The proof is an immediate consequence of Proposiilon 1, xtsteace of [(B.1)
along with Theorem 2 o@l]. Sequentg, converges a.s. to the roots/of The

latter roots are characterized [24]. In particulaflU’) = 0 implies that each

column ofU is an unit-norm eigenvector a¥1.
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Figure 1: RMSE as a function afV from the two estimated eigenvectatsg ; and
u, 2 When considering the noiseless and noisy case and foretiffenlues of;.

Method MC | min-max | MDS | Oja | dwMDS | doMDS
Before refinement 1.87 0.8 1.98 | 2.18 0.86 1.56
After refinement 1.05 0.54 1.39 | 1.37 0.6 0.51
Improvement (%) 44 32 30 28 30 78
Positions improved (%) | 75 71 80 80 82 86

Table 1: RMSE averaged over th¢ estimated positions considering real data.
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(b) Oja’s algorithm[(B)fT7). (c) dwMDS [16]. (d) Algorithm[2 (doMDS).

Figure 2: Estimated positions aftéd00 iterations. Markersl{) correspond to the
estimated values while marker®] to the true positions. Squared positioa$) (n

d) highlight worse accuracy compared to b).
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