
ar
X

iv
:1

30
8.

54
47

v2
  [

cs
.IT

]  
9 

O
ct

 2
01

3
JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1

On Conditions for Uniqueness in Sparse Phase
Retrieval
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Abstract—The phase retrieval problem has a long history and
is an important problem in many areas of optics. Theoretical
understanding of phase retrieval is still limited and fundamental
questions such as uniqueness and stability of the recovered
solution are not yet fully understood. This paper provides
several additions to the theoretical understanding of sparse phase
retrieval. In particular we show that if the measurement ensemble
can be chosen freely, as few as4k − 1 phaseless measurements
suffice to guarantee uniqueness of ak-sparseM -dimensional real
solution. We also prove that2(k2

− k + 1) Fourier magnitude
measurements are sufficient under rather general conditions.

Index Terms—Phase retrieval, complement property, compres-
sive phase retrieval.

I. I NTRODUCTION

I N many areas in optics, physical limitations make it im-
posable to measure the phase. If the signal is real, then

the sign is lost and if the signal is complex, the phase. Even
though the phase is not measured, it often contains valuable
information. For example, in X-ray crystallography [1], [2],
only the magnitude of the Fourier transform is observed.
If the phase would be observable, then the inverse Fourier
transform would directly give the atomic structure of the
crystal considered. Therefore the phase has to be retrieved
before structural information can be explored.

The problem of retrieving the phase from intensity measure-
ments is often referred to as thephase retrieval problem. The
problem is by nature often ill-posed and early methods relied
on additional information about the sought signal, such as band
limitation, nonzero support, and nonnegativity to successfully
recover the signal. The Gerchberg-Saxton algorithm is one of
the popular methods for recovery. It utilizes a prior on the
support and alternates between the Fourier and inverse Fourier
transforms to obtain a phase estimate from a set of Fourier
magnitude measurements [3], [4]. More recent development
[5], [6], [7] has shown thate.g., random collections of mea-
surement vectors are rich enough to provide a well posed phase
retrieval problem.

There has also been recent interest in sparse phase retrieval.
In contrast to the literature on compressive sensing, which
assumes a linear relation between measurements and the sparse
unknown and is quite mature, the literature on sparse phase
retrieval is still developing. Recent work has demonstrated
that as in the case of linear measurements, the number of
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intensity measurements required to recover the true solution
can be reduced by taking into account that the sought signal
is sparse [8], [9], [10], [11], [12], [7], [13].

Even though [5], [6], [7] showed that there exist collections
of measurement vectors that provide accurate phase estimates,
it is still not fully understood what properties these sets need
to satisfy for the phase retrieval map to be injective. The first
attempt to try to characterize these properties was given in
[14] (later refined in [15]). In particular the authors derived
necessary and sufficient conditions for injectivity for a real
signal and real collection of measurement vectors. Injectivity
in the real case was also discussed in [7]. For the complex
case (complex signal and complex collection of measurement
vectors), [15] gave necessary conditions for injectivity.

As for sparse phase retrieval, it was shown in [7] that
O(k log(M/k)) real measurement vectors are sufficient for
stable recovery of ak-sparseM -dimensional real signal.
This means that the number of measurements needed for
recovery from quadratic measurements is the same, up to a
multiplicative scalar, as for linear measurements. The work in
[16] extended results presented in [14] and derived bounds
on the number of measurements needed for unique recovery
in the sparse real case (real measurement vectors and real
sparse signal) and for the complex sparse case (complex
measurement vectors and complex sparse signal). For ak-
sparse signal,4k − 1 measurements were reported sufficient
in the real case and8k− 2 in the complex case. However, no
characterization of the properties that lead to a unique recovery
was given in [16]. In [17] the authors discuss sparse recovery
from Fourier magnitude measurements and show that, under
general conditions, the sought signal is uniquely defined by
the magnitude of the full Fourier transform.

The contribution of the current letter is twofold. We first
give a characterization of properties leading to unique recovery
for sparse signals. In particular we show that only4k − 1
phaseless measurements suffice to guarantee uniqueness of a
k-sparseM -dimensional real solution while2M −1 measure-
ments are required for a generalM -dimensional real solution.
Note that [16] also showed that4k−1 phaseless measurements
suffice. However, the authors did not provide any condition
for when this is sufficient. Secondly we consider the important
case of sparse recovery from Fourier magnitude measurements.
We show that under rather mild conditions,2(k2 − k + 1)
Fourier magnitude measurements guarantee uniqueness. This
improves on [17] which only considered recovery from a full
Fourier ensemble, namely,M measurements.

http://arxiv.org/abs/1308.5447v2
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II. T HE PHASE RETRIEVAL PROBLEM

Define Φ as a collection of measurement vectorsΦ =
{ϕn}Nn=1 ∈ RM (or CM ) and consider the problem of
retrieving a vectorx from N intensity measurements

yn = |〈ϕn,x〉|2, n = 1, . . . , N. (1)

This problem is referred to as the phase retrieval problem.
Introduce the operatorA as (A(·))(n) = |〈ϕn, ·〉|2. Note that
if A(·) : CM → R

N thenA(x) = A(cx), c ∈ C, |c| = 1, and
if A(·) : RM → RN thenA(x) = A(−x). The mapA(·) is
hence not injective andx can never be uniquely defined more
than up to a global unit complex scalar ifx is complex and
a global sign change ifx is real. Therefore, when referring
to a unique solution and injectivity, it is always understood
that it is either up to a unit complex scalar or a global sign
change. We henceforth consider the mapA(·) : CM/T → RN

(whereT is the complex unit circle) ifx is complex andA(·) :
RM/{±1} → RN if x is known to be real.

As shown in [14], [15], thecomplement propertyis partic-
ularly useful when considering the theory of phase retrieval.

Definition 1 (Complement property [14], [15]). We say that
Φ = {ϕn}Nn=1 ∈ RM (CM ) satisfies the complement property
if for every S ⊆ {1, . . . , N}, either {ϕn}n∈S or {ϕn}n∈Sc

spanRM (CM ). HereSc = {n : n ∈ {1, . . . , N}, n /∈ S}.

A. Real Measurement Vectors and a Real Signal

Using the complement property, the following theorem on
the injectivity of intensity measurements using a real collection
of measurement vectors was shown in [15]:

Theorem 1 (Injectivity in the real case (Thm. 3 of [15])). Let
A(x) : RM/{±1} → RN be defined by

(A(x))(n) = |〈ϕn,x〉|2, ϕn ∈ R
M , n = 1, . . . , N. (2)

Then A is injective iff Φ = {ϕn}Nn=1 ∈ RM satisfies the
complement property.

It is now easy to show that2M − 1 intensity measurements
are necessary forA to be injective. This bound was also given
(without a proof) in [15].

Corollary 2. To satisfy the complement property we must have
N ≥ 2M − 1 intensity measurements. AnyN < 2M − 1
intensity measurements do not provide an injective mapA.

Proof: From Theorem 1 it is sufficient to show thatN <
2M − 1 vectors can never satisfy the complement property.
By definition, Φ satisfies the complement property if either
{ϕn}n∈S or {ϕn}n∈Sc spanRM for any S ⊆ {1, . . . , N}.
TakeS∗ ⊆ {1, . . . , N} to be any arbitrary set such that|S∗| =
M−1. In this case|S∗c| = N−M+1 < 2M−1−M+1 = M
if N < 2M−1. Since both|S∗| < M and|S∗c| < M , neither
{ϕn}n∈S∗ or {ϕn}n∈S∗c spanRM .

It can easily be verified that2M − 1 measurement vectors
independently drawn frome.g., an M -dimensional standard
Gaussian distribution (zero mean, unit variance) satisfy the
complement property with probability 1. According to The-
orem 1 it is hence possible to uniquely recover anM -
dimensional real signal from2M − 1 intensity measurements.

B. Complex Measurement Vectors and a Complex Signal

Let us now consider the complex case, when the measure-
ment vectors are complex andx ∈ CM . It was recently shown
in [15] that the complement property is a necessary condition
for injectivity in this case.

Theorem 3 (Injectivity in the complex case (Thm. 7 of [15])).
Let A(x) : CM/T → RN be defined by

(A(x))(n) = |〈ϕn,x〉|2, ϕn ∈ C
M , n = 1, . . . , N. (3)

If A is injective thenΦ = {ϕn}Nn=1 ∈ CM satisfies the
complement property.

It is easy to verify that the complement property is only
necessary and not sufficient for injectivity. An example of
a set of measurement vectors that satisfies the complement
property but does not provide an injective map is given in [15].
It was conjectured (but not proven) in [15] that4M−4 generic
(see [15] for definition) measurements are both necessary and
sufficient for unique recovery.

III. U NIQUENESS INSPARSEPHASE RETRIEVAL

We now build on previous results and generalize them to
the analysis of sparse phase retrieval. We start by studying
a collection of real measurement vectors and then extend the
results to an important class of complex measurement vectors,
a partial Fourier basis, in Section III-B.

A. Real Measurement Vectors and a Sparse Real Signal

To handle sparse signals, it is convenient to introduce the
following less restrictive version of the complement property:

Definition 2 (k-complement property). We say thatΦ =
{ϕn}Nn=1 satisfies thek-complement property if for every
S ⊆ {1, . . . , N} and subsetK ⊆ {1, . . . ,M}, |K| = k, either
{ϕn,K}n∈S or {ϕn,K}n∈Sc span Rk. The notationϕn,K

denotes the elements indexed byK of the nth measurement
vectorϕn.

The k-complement property reduces to the complement
property of Definition 1 whenk = M . If k < M then the
k-complement property is less restrictive. Furthermore, ifΦ
satisfies thek-complement property then it also satisfies the
(k − 1)-complement property.

We are now ready to state the following theorem on unique
recovery of ak-sparse real signal:

Theorem 4 (Unique recovery in the sparse real case). Let
A(x) : RM/{±1} → RN be defined by

(A(x))(n) = |〈ϕn,x〉|2, ϕn ∈ R
M , n = 1, . . . , N, (4)

and assume that we are giveny = A(x0) ∈ RN . If A satisfies
the 2‖x0‖0-complement property, thenx0 is the unique real
vector satisfying the given measurements with‖x0‖0 or fewer
nonzero elements. Thus,x0 can be found as the solution to

x0 = arg min
x∈RM

‖x‖0 s. t. y = A(x). (5)

Proof: We prove the theorem by contradiction. Assume
that x̃ 6= ±x0, ‖x̃‖0 ≤ ‖x0‖0, y = A(x̃) = A(x0),
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x̃ ∈ RM . Theorem 1 gives that ifΦ associated withA satisfies
the 2‖x0‖0-complement property, then{|〈ϕn,K , ·〉|2}Nn=1 is
injective for all subsetsK ⊆ {1, . . . ,M}, |K| = 2‖x0‖0.
Let K∗ ⊆ {1, . . . ,M}, |K∗| = 2‖x0‖0, be an index set
that includes the support ofx0 and x̃. Note that ‖x̃‖0 +
‖x0‖0 ≤ 2‖x0‖0 = |K∗|. Then {|〈ϕn,K∗ ,x0,K∗〉|2}Nn=1 =
{|〈ϕn,K∗ , x̃K∗〉|2}Nn=1 = y. Since{|〈ϕn,K , ·〉|2}Nn=1 is injec-
tive for all subsetsK ⊆ {1, . . . ,M} of size |K| = 2‖x0‖0,
it must also be injective forK∗. We therefore conclude that
x̃K∗ = x0,K∗ which implies that̃x = ±x0 sinceK∗ includes
the support of both vectors.

For a sufficiently sparsex, unique recovery can hence be
guaranteed from fewer measurements than in the dense case.
We give this result as a corollary:

Corollary 5. A collection ofmin(4k−1, 2M−1)measurement
vectors suffice to uniquely recovery anyk-sparsex.

Before proving the corollary, we state the following lemma:

Lemma 6. A set of4k − 1 independent samples from anM -
dimensional standard Gaussian distribution satisfies the2k-
complement property with probability 1.

Proof of Lemma 6:Generate the collection of measure-
ment vectors by independently drawing4k − 1 samples from
a M -dimensional standard Gaussian distribution. IntroduceΦ

as theM × (4k− 1)-matrix obtained by arranging the4k− 1
vectors ofΦ into a matrix. LetΦK,S be the|K| × |S|-matrix
obtained by picking out the rows indexed inK and columns
indexed byS.

Consider the probability thatΦ does not satisfy the2k-
complement property:

P (E) = P
(

∃S,K : S ⊂ {1, . . . , 4k − 1}, |K| = 2k,

λmin(ΦK,SΦ
∗
K,S) = λmin(ΦK,ScΦ

∗
K,Sc) = 0

)

,

where λmin denotes the smallest eigenvalue. We now use
Boole’s inequality for unions of events

P (E)

≤
4k−1
∑

s=1

(

4k − 1
s

)(

M
2k

)

P
(

a 2k × s-submatrix ofΦ is singular
)

·P
(

a 2k × (4k − 1− s)-submatrix ofΦ is singular
)

= 0,

where we used thatP (a 2k × s-submatrix is singular) = 0
when s ≥ 2k and P (a 2k × (4k − 1 −
s)-submatrix is singular) = 0 when s < 2k, which follow
from the Gaussianity of the entries of the submatrices.

Proof of Corollary 5: First, since2M − 1 measurements
are enough in the dense case, this provides an upper bound
on the number of measurements. Second, Theorem 4 gives
that y = A(x) has a uniquek-sparse solution formin(4k −
1, 2M − 1) measurements if the collection satisfies the2k-
complement property. Finally we have from Lemma 6 that
such a collection exists since a set of4k − 1 samples from
anM -dimensional unit Gaussian distribution satisfies the2k-
complement property with probability 1.

B. Complex Measurement Vectors and Real Signal: Fourier
Magnitude Measurements

A particularly interesting set of complex measurement vec-
tors is the incomplete Fourier basis. This special case is
of great importance since Fourier magnitude measurements
(FMMs) are inherent in applications such as X-ray crystallog-
raphy [1], [2], speckle imaging and blind channel estimation
[17].

A complication in dealing with FMMs is that some proper-
ties are entirely embedded in the phase of the Fourier trans-
form and therefore lost in the measuring process. In addition to
the global sign shift previously discussed, we therefore include
mirroring (reverse the ordering of the elements inx) and shifts
(circularly shift the elements inx) in the set of invariancesT
from here on.

Before discussing the results, note that even if a Fourier ba-
sis may satisfy some complex equivalent of thek-complement
property, this is not enough to provide uniqueness up to the
invariances ofT. This was shown in [18] by giving an example
of two signals, not equivalent with respect toT, with the same
autocorrelation. Such signals can thereby never be uniquely
specified by the magnitude of their Fourier transforms. Thek-
complement property is therefore not enough to characterize
when a signal is uniquely defined by its FMMs.

In deriving guarantees for FMMs, we need the concept of
a collision free vectorintroduced in [17, Def. 1].

Definition 3 (Collision free vector). Let x(i) denote theith
element of the vectorx. We say thatx is collision free if
x(i) − x(j) 6= x(k) − x(l), for all distinct i, j, k, l ∈ {i : i ∈
{1, . . . ,M}, x(i) 6= 0}.

We are now ready to state the following theorem on the
uniqueness of a sparse real solution given its FMMs.

Theorem 7. Let {k1, k2, . . . , kN} ⊆ {0, . . . , 2M − 1},

ϕn =
[

1 e−i2πkn/2M e−i4πkn/2M . . . e−i2π(2M−1)kn/2M
]T

,
(6)

with i =
√
−1, and letA(x) : RM/T → RN be defined by

(A(x))(n) = |〈ϕn,
[

xT 01×M

]T〉|2, n = 1, . . . , N. (7)

Assume that we are giveny = A(x0) ∈ RN with N a prime
integer larger than2(‖x0‖20 − ‖x0‖0 + 1). Then a collision
free x0 ∈ RM is uniquely defined byy whenever

• ‖x0‖0 6= 6, or
• ‖x0‖0 = 6 and x0(i) 6= x0(j), for somei, j ∈ {i : i ∈

{1, . . . ,M}, x0(i) 6= 0}.

The implication of the theorem is that we can guarantee a
unique solution from FMMs as long as enough measurements
are taken, the signal is sparse enough, collision free and the
support constrained.

Proof: If there are no collisions andx0 ∈ RM is k-sparse,
then the autocorrelationa ∈ R2M−1, defined as

a(l) =

min{M,M−l}
∑

s=max{1,1−l}

x(s)x(s+l), l = 1−M, . . . ,M−1, (8)
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is k2 − k + 1-sparse (see for instance [17]). We fur-
ther have that the autocorrelation is centro-symmetric,
a(l) = a(−l), l = 0, . . . ,M − 1, and via Wiener-
Khinchin’s theorem that a(l), l = 0, . . . ,M − 1,
is related to y(n), n = 1, . . . , N, via y(n) =

〈ϕn,
[

a(0) . . . a(M − 1) 0 a(M − 1)a(M − 2) . . . a(1)
]T〉.

Ignoring the symmetry, the problem of recovering the sparse
autocorrelation from the partial FMMsy can therefore be
posed as

min
q∈R2M

‖q‖0

s. t. y(n) = 〈ϕn,q〉, n = 1, . . . , N,

0 = q(M + 1).

(9)

This is a well studied problem in compressive sensing (see for
instance [19], [20]) and using the result of [21, Thm. 1] it can
be shown that ifN is prime and satisfies

2
(

‖x0‖20 − ‖x0‖0 + 1
)

≤ N, (10)

then (9) has a unique solution. This becausea(1), . . . , a(M−
1) contain(‖x0‖20 − ‖x0‖0)/2 nonzero elements at most.

Finally, it was recently shown in [17] that whenever there
are no collisions inx0 and the following conditions are
satisfied, then the autocorrelation uniquely definesx0:

• ‖x0‖0 6= 6, or
• ‖x0‖0 = 6 andx0(i) 6= x0(j), for somei, j ∈ {i : i ∈

{1, . . . ,M}, x0(i) 6= 0}, or
• ‖x0‖0 = 6 and x0(i) = x0(j), for all i, j ∈ {i : i ∈

{1, . . . ,M},x0(i) 6= 0}. In this case, the autocorrelation
uniquely definesx0 almost surely.

Hence, under the conditions of the theorem, the FMMsy

uniquely definea, and a uniquely definesx0, from which
the theorem follows.

Note that the theorem does not require the Fourier basis vec-
tors to be selected deterministically or randomly and therefore
holds for both.

IV. CONCLUSION

Even though phase retrieval is a longstanding problem in
optics it is still not well understood whether a collection
of measurements provides an injective map or not. It was
recently shown that the complement property gives necessary
and sufficient conditions for the uniqueness of a real signal
and a real collection of measurement vectors. Here we show
that if the measurement vectors satisfy a weaker version of
the complement property then a sought sparse signal can
be guaranteed to be uniquely defined by associated intensity
measurements. We also consider a complex collection of
measurement vectors and Fourier magnitude measurements.
We show that in general,2(k2 − k + 1) Fourier magnitude
measurements suffice to guarantee uniqueness of ak-sparse
signal.
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