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~ Abstract—The phase retrieval problem has a long history and intensity measurements required to recover the true soluti
is an important problem in many areas of optics. Theoretical can be reduced by taking into account that the sought signal

understanding of phase retrieval is still limited and fundamental ;
questions such as uniqueness and stability of the recovered ' sparsel[B],[[°], [[1I0], [TTA].[[112],[17],[[13].

solution are not yet fully understood. This paper provides . .
several additions to the theoretical understanding of spase phase ~ Even though([b],[[6],[[V] showed that there exist collection
retrieval. In particular we show that if the measurement ene@mble  of measurement vectors that provide accurate phase estimat
can be chosen freely, as few a$k — 1 phaseless measurements it js still not fully understood what properties these seggdh
suffice to guarantee uniqueness of a-sparseM-dimensional real 1, gatisfy for the phase retrieval map to be injective. Thet fir
solution. We also prove that2(k* — k + 1) Fourier magnitude . h . .
measurements are sufficient under rather general conditios. attempt to try to ‘%hafaCte“Ze the_se properties was given in
[14] (later refined in[[15B]). In particular the authors dexiv
necessary and sufficient conditions for injectivity for alre
signal and real collection of measurement vectors. Injigti
in the real case was also discussed[in [7]. For the complex
. INTRODUCTION case (complex signal and complex collection of measurement
N many areas in optics, physical limitations make it im\_/ectors),[[IB] gave necessary conditions for injectivity.

posable to measure the phase. If the signal is real, then . .
the sign is lost and if the signal is complex, the phase. Evgifs for sparse phase retrieval, it was shown [in [7] that
S

Index Terms—Phase retrieval, complement property, compres-
sive phase retrieval.

though the phase is not measured, it often contains valual i log(M/k)) real measurement vectors are sufficient for

. . . able recovery of ak-sparse M-dimensional real signal.
information. For example, in X-ray crystallograptiy [1[],[2 This means that the number of measurements needed for

only the magnitude of the Fourier transform is observed.

If the phase would be observable, then the inverse Fourler overY from quadratic measurements is the same, up 1o a

. . . Mmultiplicative scalar, as for linear measurements. Thekvilor
transform would directly give the atomic structure of th .
) X extended results presented in[14] and derived bounds
crystal considered. Therefore the phase has to be retrie ;
. : on the number of measurements needed for unique recovery
before structural information can be explored.

. ) . in the sparse real case (real measurement vectors and real
The problem of retrieving the phase from intensity measure-

' . Sparse signal) and for the complex sparse case (complex
ments is often referred to as tpbase retrieval probleniThe P gnal) P P ( P

problem is by nature often ill-posed and early methodsdeliéneasuremem vectors and complex sparse signal). For a
on additional information about the sought signal, sucheamsib parse signalik — 1 measurements were reported sufficient

L o in the real case anglk — 2 in the complex case. However, no
limitation, nonzero support, and nonnegativity to sucfidlys - . .
. . . characterization of the properties that lead to a uniquevey
recover the signal. The Gerchberg-Saxton algorithm is dne 0 . . :
was given in[[16]. In[[1F] the authors discuss sparse regover

the popular methods for recovery. It utilizes a prior on th1‘?0m Fourier magnitude measurements and show that, under
support and alternates between the Fourier and inverséeFou o . . . -
eneral conditions, the sought signal is uniquely defined by

transforms to obtain a phase estimate from a set of Fourfgr ) .
) magnitude of the full Fourier transform.

magnitude measurements [3]J [4]. More recent developmen?

[5], [6], [7] has shown thae.g.,random collections of mea-

. . The contribution of the current letter is twofold. We first
surement vectors are rich enough to provide a well posedephas o . . .
. give a characterization of properties leading to uniquevery
retrieval problem.

_for sparse signals. In particular we show that odly — 1

There has also bqen recent interest in sparse pha_lse rbtn. Sfhseless measurements suffice to guarantee uniqueness of a
In contrast to the literature on compressive sensing, which

: . -sparse)M -dimensional real solution whil2M — 1 measure-
assumes a linear relation between measurements and tse SRALts are required for a generel-dimensional real solution
unk_nown_and_ Is quite ”_‘at“re’ the literature on sparse ph‘ﬁ(?te that[16] also showed thak —1 phaseless measurements
retr|eva|-|s still developu_wg. Recent work has demonstfat uffice. However, the authors did not provide any condition
that as in the case of linear measurements, the numberfg when this is sufficient. Secondly we consider the imparta
Ohlsson is with the Dept. of Electrical Engineering and CatapSciences, case of sparse recovery from Fc_)u”er ma_-g_thde measurement
University of California, Berkeley, CA, USA, and with the peof Electrical We show that under rather mild conditior&(k? — k + 1)
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[1. THE PHASE RETRIEVAL PROBLEM B. Complex Measurement Vectors and a Complex Signal
Define ® as a collection of measurement vectebs = Let us now consider the complex case, when the measure-
{pn}N_; € RM (or CM) and consider the problem ofment vectors are complex asde CM. It was recently shown
retrieving a vectowx from NV intensity measurements in [15] that the complement property is a necessary contitio

for injectivity in this case.

This problem is referred to as the phase retrieval probIeTheorem 3(Injectivity in the complex case (Thm. 7 £ [15)))

Introduce the operatad as (A(-))(n) = |(n,)|?. Note that E]etA(x) $CY/T — RY be defined by

if A(-): CM — RN thenA(x) = A(cx), c € C, |c| = 1, and (AX)(n) = [{gn, X))?, pneCM n=1,...,N. (3)

if A(-) : RM — RN then A(x) = A(—x). The mapA(-) is

hence not injective and can never be uniquely defined mor

than up to a global unit complex scalarsifis complex and

a global sign change ik is real. Therefore, when referring It is easy to verify that the complement property is only

to a unique solution and injectivity, it is always understoonecessary and not sufficient for injectivity. An example of

that it is either up to a unit complex scalar or a global siga set of measurement vectors that satisfies the complement

change. We henceforth consider the d(p) : C* /T — RY  property but does not provide an injective map is givef if.[15

(whereT is the complex unit circle) ik is complex andA(-) : It was conjectured (but not proven) in [15] that/ —4 generic

RM /{+1} — RY if x is known to be real. (see [15] for definition) measurements are both necessaty an
As shown in [14], [15], thecomplement propertis partic-  sufficient for unique recovery.

ularly useful when considering the theory of phase rettieva

f A is injective then® = {¢,})_, € CM satisfies the
é 2 n=1
complement property.

Definition 1 (Complement property [14][ T15])We say that 1. UNIQUENESS INSPARSEPHASE RETRIEVAL

O = {p,}_, € RM(CM) satisfies the complement property We now build on previous results and generalize them to

if for every S C {1,..., N}, either {¢, }nes Or {vnlnese the analysis of sparse phase retrieval. We start by studying

spanRM (CM). Here S ={n:n € {1,...,N},n ¢ S}. a collection of real measurement vectors and then extend the
results to an important class of complex measurement \&ctor

A. Real Measurement Vectors and a Real Signal a partial Fourier basis, in Section III-B.

Using the complement property, the following theorem on _
the injectivity of intensity measurements using a realamlbn A. Real Measurement Vectors and a Sparse Real Signal

of measurement vectors was shownl[in! [15]: To handle sparse signals, it is convenient to introduce the
Theorem 1 (Injectivity in the real case (Thm. 3 df [L5])Let following less restrictive version of the complement pnape
A(x) : RM/{+1} — R" be defined by Definition 2 (k-complement property)We say thatd =

N iofi .
A — Hom X% on €RM p=1....N. (2 {on}h_, satisfies thek-complement property if for_every
( (x).)(n_). |<_(p _x>| 4 " o @ S C{l1,...,N}andsubseK C {1,..., M}, |K| =k, either
Then A is injective iff & = {p,}_, € RY satisfies the {y, x}nes OF {@nxlncse Span RE. The notationy,, x
complement property. denotes the elements indexed Kyof the nth measurement

It is now easy to show thaM — 1 intensity measurements€CtOr ¥n-

are necessary foA_ to be injective. This bound was also given The k-complement property reduces to the complement
(without a proof) in [15]. property of Definition[]L whenk = M. If & < M then the

Corollary 2. To satisfy the complement property we must haiscomplement property is less restrictive. Furthermorep if

N > 2M — 1 intensity measurements. Ady < 2M — 1 satisfies thek-complement property then it also satisfies the

intensity measurements do not provide an injective tdap (¥ — 1)-complement property. _ _
We are now ready to state the following theorem on unique

Proof: From Theorenill it is sufficient to show that <  recovery of ak-sparse real signal:

2M — 1 vectors can never satisfy the complement property, . ,
By definition, ® satisfies the complement property if eithe heoremM4 (Unique recovery In the sparse real casept
{Pntnes OF {@n}nes: spanRM for any S € {1,...,N}. AC):RY/{F1} — RY be defined by
TakeS* C {_1, ..., N} to be any arbitrary set such that"| = (A () = [on, %), on €eRM n=1,...,N, (4)
M—1.Inthis caseS**| = N-M+1 <2M—-1-M+1=M ) N o
if N < 20/ — 1. Since bothS*| < M and|S*¢| < M, neither and assume that we are givgn=A(xo) € R™. If A satisfies
{On}nese OF {pnbnes-c spanRM. m the 2|x¢l/o-complement property, thes, is the unique real

It can easily be verified that)/ — 1 measurement vectors Vector satisfying the given measurements With||o or fewer
independently drawn frone.g., an M-dimensional standard NOnzero elements. Thus, can be found as the solution to

Gaussian distribution (zero mean, unit variance) satibfy t xg =arg min  |xjo s.t. y=A(x). )
complement property with probability 1. According to The- xeRM
orem[1 it is hence possible to uniquely recover af Proof: We prove the theorem by contradiction. Assume

dimensional real signal frordM — 1 intensity measurements.that x # +xo, |X[lo0 < [%ollo,y = AX) = A(xo),
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% € RM, Theorentl gives that ib associated wittd satisfies B. Complex Measurement Vectors and Real Signal: Fourier
the 2||xo/|o-complement property, theti| (¢, x,-)|*}Y_; is Magnitude Measurements
injective for all subsets C {1,...,M}, |K| = 2||x0]o-

. A particularly interesting set of complex measurement vec-
Let K* C {1,...,M}, |K*| = 2||xollo, be an index set i y g P

that includes th ¢ of d% Note thatlx tors is the incomplete Fourier basis. This special case is
a |nc<u2es e_suf{gor_rh o andx. Note a2 ||]>\§||o J_r of great importance since Fourier magnitude measurements
IIxollo < NHXOHO = K7 Then {[{pn k=, X0.kc+)[*Fn=1 = (FMMs) are inherent in applications such as X-ray crystallo

{{pn. e, X )2, = y. Since{|{pn x,)[*}N_; is injec- h Kle imaai d blind ch | estimmati
tive for all subsetsk C {1,.... M} of size |K| = 2[xolo, E_% y [1], [2], speckle imaging and blind channel estimatio

it must also be injective folx*. We therefore conclude that

- LT . . . A complication in dealing with FMMs is that some proper-
XK+ = X0, Which implies thatk = £x, since K* includes P g brop

the support of both vectors ties are entirely embedded in the pr_]ase of the Fourier _trans-
. . form and therefore lost in the measuring process. In additio
For a sufficiently sparse, unique recovery can hence bethe global sign shift previously discussed, we therefocuite
guaranteed from fewer measurements than in the dense Cﬁ'ﬁﬁ’oring (reverse the ordering of the elementx)rand shifts

We give this result as a corollary: (circularly shift the elements i) in the set of invariance®

Corollary 5. A collection ofmin(4k—1,2M —1) measurement from here on.
vectors suffice to uniquely recovery aknsparsex. Before discussing the results, note that even if a Fourier ba

_ ) sis may satisfy some complex equivalent of thReomplement
Before proving the corollary, we state the following Iemmebroperty, this is not enough to provide uniqueness up to the

Lemma 6. A set ofdk — 1 independent samples from ad- invariances off". This was shown ir [18] by giving an example

dimensional standard Gaussian distribution satisfies 2ke ©f two signals, not equivalent with respectfowith the same

complement property with probability 1. autocorrelation. Such signals can thereby never be unjiquel

] specified by the magnitude of their Fourier transforms. The

Proof of Lemm4l6: Generate the collection of measuregomplement property is therefore not enough to charaeteriz

ment vectors by independently drawin§ — 1 samples from \yhen a signal is uniquely defined by its FMMs.

a M-dimensional standa_rd Gau_ssmn d|str|but|_on. Introdbce |, deriving guarantees for FMMs, we need the concept of

as theM x (4k — 1)-matrix obtained by arranging the: —1 3 cqjlision free vectoiintroduced in [17, Def. 1].

vectors of® into a matrix. Letd x ¢ be the|K| x |.S|-matrix

obtained by picking out the rows indexed i and columns Definition 3 (Collision free vector) Let x(i) denote theith

indexed bysS. element of the vectox. We say thatx is collision free if
Consider the probability thab does not satisfy thek- x(i) —x(j) # x(k) — x(1), for all distincti, j, k,l € {i: i€
complement property: {1,..., M}, x(i) # 0}

We are now ready to state the following theorem on the
unigueness of a sparse real solution given its FMMs.

Theorem 7. Let {ky,ko,...,kn} C{0,...,2M — 1},
where \,,;, denotes the smallest eigenvalue. We now use

P(E)=P(3S,K:SC{1,...,4k — 1},|K| = 2k,
Amin(Px 5Pk 5) = Amin (P 5: P ge) = 0),

Boole’s inequality for unions of events n = [1e7i2mhn/2M g—idmhn [2M .e*wﬂ'(?Mfl)knﬂM}T’
(6)
P(E with i = /=1, and let A(x) : RM /T — R" be defined by
Ak — 1\(M
< ( s )<2k>P(a 2k x s-submatrix of® is singulaj (A(x))(n) = [{n, [x" 01xM]T>|2, n=1,...,N. (7)
s=1
-P(a2k x (4k — 1 — s)-submatrix of® is singulay Assume that we are given= A(xo) € R" with N a prime
_0 integer larger than2(||xo||3 — ||xollo + 1). Then a collision

free xo € RM is uniquely defined by whenever

where we used thaP(a 2k x s-submatrix is singuldr= 0« |xollo # 6, or
when s > 2k and P(a2k x 4k — 1 - e |Ix0llo = 6 and x( (i) # xo(j), for somei,j € {i:i €
s)-submatrix is singulgr = 0 when s < 2k, which follow {1,..., M}, x0(i) # 0}.

from the Gaussianity of the entries of the submatrices.m The implication of the theorem is that we can quarantee a
Proof of Corollary(®: First, since2M — 1 measurements b 9

are enough in the dense case, this provides an upper bolng e solution from FMMs as long as enough measurements

on the number of measurements. Second, Thediem 4 gi\%% taken, the signal is sparse enough, collision free amd th

thaty = A(x) has a unique:-sparse solution fomin(4k — Stpport cgnstramed. . .

1,2M — 1)(measurements if the collection satisfieg the Proof: If there are no Co"z!ﬁqus ani_io € R" is k-sparse,
complement property. Finally we have from Lemina 6 tha‘ltﬂ'en the autocorrelatioa € R , defined as

such a collection exists since a set4df — 1 samples from min{M,M—1}

an M-dimensional unit Gaussian distribution satisfies 2ke  a(l) = Z x(s)x(s+1),l=1-M,...,M—1, (8)
complement property with probability 1. ] s=max{1,1—1}
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is k2 — k + 1-sparse (see for instancé [17]). We fur267381, by a postdoctoral grant from the Sweden-America
ther have that the autocorrelation is centro-symmetriepundation, donated by ASEAs Fellowship Fund, and by a
a(l) a(—1), 1 0,....M — 1, and via Wiener- postdoctoral grant from the Swedish Research Council.rElda

Khinchin’s theorem that a(l), [ 0,....M — 1,
is related to y(n), n 1,....,N, via y(n) =
(¢n, [a(0) ... a(M —1)0a(M —1)a(M —2) ... a(1)] ).

Ignoring the symmetry, the problem of recovering the sparse
autocorrelation from the partial FMMg can therefore be [1]
posed as

(2]

i, lallo g
s. t. y(n):<§0n,q>7 nzla"'va (9)
0=q(M +1). [4]

This is a well studied problem in compressive sensing (see fgs)
instance[[1D],[[20]) and using the result bf [21, Thm. 1] ihca
be shown that ifV is prime and satisfies

2(|Ixollg — fIxollo + 1) < N, (10)

then [9) has a unique solution. This becaaéb), ... ,a(M — [7]
1) contain(||xo||2 — ||x0|l0)/2 nonzero elements at most. 8]
Finally, it was recently shown irl_[17] that whenever there
are no collisions inxy, and the following conditions are [9]

satisfied, then the autocorrelation uniquely defirgs
o [|xo0llo # 6, or
e [Ixo0llo = 6 andxq(i) # xo(j), for somei,j € {i :
{1,..., M}, x0(i) # 0}, or
e ||%0llo = 6 andxq(i) = x¢(j), for all i,j € {i : i €
{1,..., M},x0(i) # 0}. In this case, the autocorrelation )
uniquely definescy almost surely.
Hence, under the conditions of the theorem, the FMWMs ;5
uniquely definea, and a uniquely definesxy, from which
the theorem follows. [ |
Note that the theorem does not require the Fourier basis vec-
tors to be selected deterministically or randomly and tloeee [13]
holds for both.

(6]

1€ [10]

[14]

IV. CONCLUSION

Even though phase retrieval is a longstanding problem [llnS]
optics it is still not well understood whether a collection
of measurements provides an injective map or not. It w&$!
recently shown that the complement property gives necgssgag,
and sufficient conditions for the uniqueness of a real signal
and a real collection of measurement vectors. Here we shBf
that if the measurement vectors satisfy a weaker version (g4
the complement property then a sought sparse signal can
be guaranteed to be uniquely defined by associated intené%@
measurements. We also consider a complex collection (gf
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