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Abstract

This paper deals with the problem of estimating the directions of arrival (DOA) of multiple source signals from a single
observation vector of an array data. In particular, four estimation algorithms based on the theory of compressed sensing
(CS), i.e., the classical ℓ1 minimization (or Least Absolute Shrinkage and Selection Operator, LASSO), the fast smooth ℓ0
minimization, and the Sparse Iterative Covariance-Based Estimator, SPICE and the Iterative Adaptive Approach for
Amplitude and Phase Estimation, IAA-APES algorithms, are analyzed, and their statistical properties are investigated
and compared with the classical Fourier beamformer (FB) in different simulated scenarios. We show that unlike
the classical FB, a CS-based beamformer (CSB) has some desirable properties typical of the adaptive algorithms
(e.g., Capon and MUSIC) even in the single snapshot case. Particular attention is devoted to the super-resolution
property. Theoretical arguments and simulation analysis provide evidence that a CS-based beamformer can achieve
resolution beyond the classical Rayleigh limit. Finally, the theoretical findings are validated by processing a real sonar
dataset.

Keywords: Compressive sensing; Angular sparsity; DOA estimation; Fourier beamformer; LASSO algorithm; SPICE
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1. Introduction
The problem of estimating the directions of arrival
(DOA) of a certain number of sources has been an
active research area for decades [1,2], with applications
to monostatic and multi-static radar systems [3-7] and
remote sensing [8,9]. The first approach to carrying out
space processing, i.e., DOA estimation, from data sam-
pled by an array of sensors was the well-known Fourier
beamformer (FB). However, the main drawbacks of the
FB are the high level of secondary lobes and poor angular
resolution [9]. In fact, the FB suffers from the Rayleigh
resolution limit, which is independent of the signal-
to-noise ratio (SNR). In order to overcome these limita-
tions, adaptive beamformers, such as Capon [10] and
MUSIC [11], have been proposed, and their perform-
ance is widely investigated, also in the presence of
multiplicative noise [8,9] and array errors [12]. How-
ever, most of these adaptive algorithms rely on asymp-
totic assumptions, e.g., high SNR level and large
number of snapshots. In many practical applications, for
* Correspondence: grasso@cmre.nato.int
2CMRE, Viale San Bartolomeo 400, La Spezia 19126, Italy
Full list of author information is available at the end of the article

© 2014 Fortunati et al.; licensee Springer. This i
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
example, in sonar processing, due to physical constraints,
e.g., sound speed, only a very small number of snap-
shots or, in the worst case, a single snapshot is available
for DOA estimation [13,14]. Another application in
which the number of available snapshots is a critical
parameter is the DOA estimation in automotive radar
systems (see, e.g., [15]). In the single-snapshot scenario,
the adaptive algorithms that require calculating the
inverse of the estimated noise covariance matrix, e.g.,
the Sample Covariance Matrix (SCM), cannot be used
since the estimate is rank deficient. Recently, new algo-
rithms, based on the emerging field of the Compressed
Sensing (CS) theory have been proposed in the array
processing literature (see e.g., [16-18]).
The aim of this paper is to investigate the statistical

properties of CS-based beamformers. The analysis is
carried out in the single-snapshot scenario, which is of
practical relevance in sonar and in automotive radar
applications. The multi-snapshot scenario is left to fu-
ture works. The focus here is on three statistical proper-
ties: (i) the estimation performance, i.e., the efficiency in
the DOA estimation; (ii) the detection performance, i.e.
evaluation of the receiver operating characteristic (ROC)
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curves; and (iii) the resolution capability. In particular, we
show that a CS-based DOA estimator is able to guarantee
the super-resolution property, typical of the adaptive esti-
mation algorithms.
The remainder of this paper is organized as follows. Sec-

tion 2 describes the single-snapshot DOA estimation
problem. In particular, a brief description of the classical
FB and of the four considered CSBs is provided. In Sec-
tion 3, the estimation and detection performance of the
four CSBs are evaluated and compared with that of the FB
for two different noise models. The super-resolution prop-
erty of the CSBs is investigated in Section 4, whereas some
results on real sonar data are presented in Section 5.
Finally, our conclusions are summarized in Section 6.

2 Single-snapshot DOA estimation
2.1 The measurement model
Assume a uniformly linear array (ULA) of N omnidirec-
tional sensors spaced by d and a single narrowband
source impinging on the array from conic angle �θ .
Moreover, suppose that only one snapshot is collected at
the output of the matched filter for each range cell. In
the narrowband case, the vector snapshot can be mod-
eled as [1,19]:

y ¼ sþ n ¼ ρv �νð Þ þ n; ð1Þ
where �ν ¼ d=λ0 sin�θ is the source spatial frequency,
λ0 is the wavelength of the transmitted signal,
v �νð Þ ¼ 1; exp j2π�νð Þ;…; exp j2π N−1ð Þ�νð Þ½ �T is the N × 1
source steering vector and n is the complex N × 1 meas-
urement noise vector (either Gaussian or non-Gaussian),
with zero mean and covariance matrix C. Finally, ρ is a
complex scalar that accounts for the transmitted com-
plex amplitude, the radiation pattern of the array sen-
sors, the two-way path loss, the sonar or radar cross
section (RCS) of the slowly fluctuating source, and the
straddling losses.a The parameter ρ can be modeled as
a complex unknown scalar factor of the form ρ = |ρ|ejϕ

where the phase ϕ is a uniformly distributed random
variable in [0, 2π) and (i) the magnitude |ρ| is a deter-
ministic parameter or (ii) the magnitude |ρ| is a
Rayleigh random variable (rv) with statistical power
E{|ρ|2} = σρ

2, which is equivalent to assume that ρ is a
complex zero-mean Gaussian rv with variance σρ

2, i.e.,

ρ∈CN 0; σ2ρ
� �

. The model in Equation 1 is relative to a

single source; in the multi-source scenario [1,19], the
data model is

y ¼ sþ n ¼
XK
k¼1

ρkv �νkð Þ þ n; ð2Þ

where K is the number of sources and �νkf gKk ¼ 1 are
their K spatial frequencies, relative to the K DOAs
�θk
� �K

k ¼ 1 , which are the parameters to be estimated. In
this paper, when the random signal model is adopted to
characterize the multi-source scenario, the sources are
assumed to be independent.
2.2 Classical beamforming
Due to the fundamental importance of the DOA esti-
mation problem in a multitude of practical applications,
many estimation algorithms have been proposed in the
literature. Without claiming to be complete, the estima-
tion methods associated with Equations 1 and 2 can be
categorized in two large classes: the non-parametric (spec-
tral-based) algorithms and the parametric algorithms [2].
The non-parametric algorithms (e.g., Fourier, Capon, and
MUSIC beamformers) exploit some spectrum-based func-
tion of the parameters to be estimated, e.g., the DOAs.
More precisely, the DOA's estimation problem is solved
by finding the locations of the highest peaks of a spectrum-
based function. The parametric techniques, e.g., Determin-
istic [20] and Stochastic [21] Maximum Likelihood (DML
and SML) algorithms, on the other hand, fully exploit
the statistical characterization of the measurements
and, in general, require a simultaneous search over all
the unknown parameters to be estimated. The latter
approach often guarantees higher estimation performance
than the spectral-based algorithm, albeit at the expense of
an increased computational complexity.
However, almost all these algorithms (both spectral-

based and parametric methods) have to work in the so-
called asymptotic region, i.e., they need high SNR
values and a large enough number of snapshots in
order to provide reliable estimates. However, in some
applications, e.g., sonar applications, due to physical
constraints, only a very small number of snapshots or, in
the worst case, a single snapshot is available for DOA esti-
mation. In the single-snapshot scenario, adaptive algo-
rithms (such as e.g., Capon, MUSIC, DML, and SML) that
rely on an estimate of the noise covariance matrix C cannot
be applied. In fact, if the standard Sample Covariance
Matrix (SCM) estimator is used, the resulting estimate of C
would be rank deficient (see, e.g., [22]). In the single snap-
shot case then, the only feasible algorithm is the FB.
Under the following three assumptions,

1. The noise vector n is a complex zero-mean
Gaussian-distributed random vector with covariance
matrix C = σn

2I.
2. The number of sources K in the scenario is equal to 1.
3. ρ is a deterministic unknown complex factor.

The maximum likelihood (ML) estimator for �ν is given
by the location of the maximum of the data periodogram
pF(ν) (see e.g., [1,2]):
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pF νð Þ ¼
XN−1

n¼0

yne
−j2πnν

�����
�����
2

: ð3Þ

In Equation 3, ν is a continuous variable. However, in
practical applications, since the periodogram is evaluated
using the fast Fourier Transform (FFT), then pF(ν) is
calculated only on a discrete set of spatial frequencies

ϒ ¼ νf g ϒj j
j ¼ 1 , where |ϒ| is the cardinality of the set Υ.

Generally, the number of spatial frequencies used to
evaluate pF(ϒ) is chosen to be equal to N (the number
of array elements). This is the reason for the low reso-
lution of the Fourier beamformer. The resolution prop-
erty will be extensively discussed in the next section.
Then, an estimate of the source spatial frequency is
obtained as follows:

ν̂F ¼ argmax
ϒ

pF ϒð Þ: ð4Þ

Again, it must be stressed that the FB suffers of two
main drawbacks: the high level of secondary lobes and the
Rayleigh resolution limit, which is a problem when K > 1.

2.3 A CS approach to single-snapshot DOA estimation
The application of the CS theory to the DOA estimation
problem has been investigated in many recent works
and it is based on the observation that the number of
possible sources in the scenario is much lower than the
‘number’ of all possible spatial frequencies, that is, in
general, a continuous parameter. As shown e.g., in [16],
the measurement model in Equations 1 and 2 can be re-
cast as a sparse linear problem by defining an overcom-
plete dictionary of steering vectors evaluated over a set
of possible spatial frequencies Ω = {ν1,…, νG}. In general,
the true source spatial frequencies could not belong to

this set, i.e., �νkf gKk ¼ 1⊄Ω , since Ω is arbitrary chosen

without any a priori knowledge on �νkf gKk ¼ 1 . However,
in order to guarantee a coherence between the signal in
Equations 1 and 2 and the CS-like signal model, we assume

that �νkf gKk ¼ 1⊂Ω . The effects of the violation of this as-
sumption (called off-grid effects) are discussed in Section 3.1.
An overcomplete representation matrix can be built by col-
lecting all the possible G steering vectors in a matrix:

A Ωð Þ ¼ v ν1ð Þ ⋯j jv νGð Þ½ �: ð5Þ
It must be noted that the representation matrix A does

not depend on the actual source spatial frequencies but
is only function of Ω. In this framework, the signal com-
ponent is represented by a G × 1 column vector x whose
gth entry is equal to ρg if a source has a spatial frequency
νg and zero otherwise. Since the cardinality G of Ω, i.e.,
the number of grid points used to cover the spatial fre-
quency domain, is much larger than the number of
possible sources, then the vector x is sparse. Finally, the
measurement model of Equation 2 can be recast in the
well-known linear CS measurement model:

y ¼ sþ n ¼ A Ωð Þxþ n: ð6Þ

Estimating the spectrum-like function pCS Ωð Þ ¼ x̂ Ωð Þj j2,
which is a sort of sparse periodogram, from Equation 6 is
equivalent to estimate the spatial energy as a function of
the set of assumed spatial frequencies Ω. By assuming to
have a single source in the scenario (K = 1), a CS-based
DOA estimator is given by the following:

ν̂CS ¼ argmax
Ω

x̂ Ωð Þj j2 ¼ argmax
Ω

pCS Ωð Þ ð7Þ

where a sparse estimate of x̂ is obtained from the meas-
urement vector y by solving the following constrained
optimization problem:

x̂ Ωð Þ ¼ argmin
x∈ℂG

xk k1 s:t: A Ωð Þx−yk k2≤δ: ð8Þ

Some consideration on the linear model in Equation 6
should now be done. It is well known from basic CS the-
ory that in order to reconstruct the sparse signal x using
the ℓ1 minimization problem given in Equation 8, the
matrix A in Equation 5 must satisfy the restricted isom-
etry property (RIP). It is easy to shown that the matrix A
does not satisfy the RIP, since a submatrix composed of
a very small number of contiguous columns is already
very close to singular [23]. However, in a recent paper
[24], the problem of reconstructing a sparse signal from
incomplete frequency samples is discussed and analyzed.
In particular, consider a discrete time signal x ∈ℂG and a
randomly chosen set of frequencies Ω. It has been
shown in [24] that it is still possible to exactly recon-
struct x from the partial knowledge of its Fourier coeffi-
cients on the set Ω. We return to this result later on,
when the super-resolution property is discussed. As it is
obvious from the previous discussion, also in the CS-
based approach, the spatial frequency ν is assumed to be
a discrete variable. It must be noted that recent works
deal with the more challenging case of continuous par-
ameter space (see e.g., [23,25]). However, these recent
results fall beyond the scope of this paper.

2.4 CS-based beamformers
In this work, four different algorithms are used to find a
feasible solution for the constrained optimization prob-
lem in Equation 8, i.e., the classical ℓ1 minimization (L1)
algorithm (or least absolute shrinkage and selection op-
erator, LASSO), the fast smoothed ℓ0 minimization
(SL0) algorithm, the sparse iterative covariance-based es-
timator (SPICE) algorithm and the iterative adaptive ap-
proach for amplitude and phase estimation (IAA-APES)
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algorithm. Even if these four algorithms have been de-
rived starting under different hypotheses, we will show
that they are strictly related. In the following, a brief de-
scription of the main advantages and drawback of each
algorithm is provided.

2.4.1 The ℓ1 minimization (L1)algorithm
In its most general form, the problem in Equation 8 be-
longs to the well-known class of constrained optimization
problem that can be solved using a LASSO solver (see e.g.,
[26]). One big advantage of the LASSO algorithm is that it
promotes sparse solutions irrespective of the particular
noise distribution. On the other hand, the LASSO solver re-
quires the setting of some additional parameters, which
have to be chosen heuristically by the user. A wrong choice
of these parameters could compromise the convergence of
the minimization algorithm. A LASSO-based algorithm is
used in [16] to solve the DOA estimation problem. An ex-
ample of a critical parameter is the threshold value δ in the
constraint of Equation 8. Clearly, δ is a function of the noise
covariance matrix C that is, in general, unknown, but there
are few theoretical studies on this point and the analytical
relation between δ and C has not been explicitly derived
so far. Moreover, an estimator of δ from the data snap-
shot y is not yet available in the literature. For the nu-
merical simulation, the NESTA [27] algorithm is used to
evaluate the LASSO solution of the minimization prob-
lem in Equation 8.

2.4.2 The fast smoothed ℓ0 minimization(SL0) algorithm
The SL0 algorithm is a suboptimal algorithm based on a
continuous approximation of the ℓ0 norm [28]. It is well
known that in order to force the solution of a minimization
problem similar to the one in Equation 8 to be the ‘spars-
est’ solution, the function to be minimized by definition of
sparsity is the ℓ0 norm and not the ℓ1 norm. Since the
problem is that the ℓ0 norm is a discrete and non-convex
function, then its minimization is a very difficult problem,
at least from a numerical point of view. In order to make
the problem more tractable, the ℓ1 norm is used and the
large majority of the theoretical results in CS have been
derived for this norm. However, it is also possible to exploit
some continuous (but, in general, not convex) approxima-
tion of the ℓ0 norm, as proposed in [28]. Instead of a prob-
lem similar to the one in Equation 8, in [28], the authors
propose to solve the following problem:

x̂ Ωð Þ ¼ argmin
x∈ℂG

F xð Þ s:t: A Ωð Þx ¼ y; ð9Þ

where F is some continuous function that approxi-
mates the ℓ0 norm. Of course, the SL0 is a suboptimal
algorithm for the DOA estimate. In fact, as it can be
seen from Equation 9, the SL0 algorithm does not take
into account the measurement noise. In [28], the authors
claim that the SL0 is robust with respect to the noise, but
there is no theoretical guarantee for this. However, the
SL0 algorithm has two advantages with respect to the
classical LASSO algorithm: (i) the numerical minimi-
zation algorithm (a gradient-based algorithm) is very
fast, and (ii) the SL0 algorithm requires the choice of a
very small number of critical parameters.

2.4.3 The SPICE algorithm
The SPICE algorithm is an iterative algorithm that, as
the previous two algorithms, provides an estimate of a
spectrum-like function pSPICE(Ω) of the data snapshot
on an assigned set Ω of possible spatial frequencies. The
SPICE algorithm was derived for the single snapshot
case in [29] and then generalized to the multi-snapshot
case in [30]. The SPICE algorithm has a different and
stronger statistical foundation with respect to the LASSO
algorithm. Moreover, it does not require any difficult and
heuristic selection of parameters, since they are jointly es-
timated within the iterations. In the following, a brief de-
scription of the fundamental concepts behind the SPICE
algorithm is provided.
Suppose that the noise vector n in the measurement

model in Equation 2 is a zero-mean Gaussian distrib-
uted complex random vector, with covariance matrix

C ¼ diag σ2n;1;…; σ2n;N

� �
. The covariance matrix of the snap-

shot y is then:

R ¼ E yyH
� � ¼

XK
k¼1

pkv �νkð Þv �νkð ÞH þ C; ð10Þ

where

pk ¼ ρk
�� ��2; deterministic signal model
σ2
ρ;k ; random signal model;

(
ð11Þ

where σρ,k
2 = E{|ρk|

2}. Using the notation introduced in
the previous section and by assuming a deterministic
signal model (the extension to the random signal model
is trivial), Equation 10 can be rewritten as follows:

~R ¼ E yyH
� �

¼
XG
g¼1

pgv νg
� �

v νg
� �H

þ diag σ2n;1;…; σ2n;N

� �
; pg ¼ xg

�� ��2; ð12Þ

where, as before, xg, the gth entry of x, is equal to ρg if a
source has a spatial frequency equal to νg and zero
otherwise. It must be noted that R ¼ ~R if and only if

�νkf gKk ¼ 1⊂Ω, i.e., the true source spatial frequencies be-
long to the set of the assumed possible frequencies. The
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parameters to be estimated are (1) the spectrum-like

function pSPICE Ωð Þ≜ pg
n oG

g¼1
and (2) the noise covari-

ance matrix C. The joint estimate of these parameters is
obtained by minimizing the following covariance-based
objective function [31]:

pSPICE Ωð Þ; Ĉ� �
≜ p̂g

n o Ωj j

g¼1
; σ̂ 2

n;i

n oN

i¼1

	 

¼ argmin

pgf g Ωj j
g¼1

; σ2n;if gN

i¼1

� �
∈ℝþ

0

~R−1=2 yyH−~R
� ��� ��2

F
;

ð13Þ

where ‖ ⋅ ‖F is the Frobenius norm. The minimization
problem in Equation 13 has an iterative closed form so-
lution [29,30]. Interestingly, even if they have been de-
rived from two completely different perspectives, the
SPICE and the LASSO algorithms are strictly related.
This connection is based on the Elfving theorem [32]
and it has been extensively discussed in [33] and [34].

2.4.4 The IAA-APES algorithm
The IAA-APES algorithm [35] is an iterative and non-
parametric algorithm that provides an estimate of a
spectrum-like function pIAA ‐APES(Ω) of the data snap-
shot on an assigned set Ω of possible spatial frequencies.
As for the SPICE algorithm, it does not require any se-
lection of parameters and can deal with the single snap-
shot case. In the following, a brief description of the
basic principles of the IAA-SPICE algorithm is provided.
Let P = diag(p1,… p|Ω|) be a diagonal matrix whose di-

agonal entries, defined as in Equation 11, represent the
power at each spatial frequency on the grid Ω. Further-
more, define a matrix Q(νg) to be:

Qg ¼ T−pgv νg
� �

v νg
� �H

; ð14Þ

where T =A(Ω)PA(Ω)H and A(Ω) is the overcomplete
matrix of steering vectors defined in Equation 5. Fol-
lowing [36] and [37], the spectrum-like function

pIAA‐APES Ωð Þ≜ pg
n o Ωj j

g¼1
is obtained by minimizing the ob-

jective function:

pIAA‐APES Ωð Þ≜ p̂g

n o Ωj j

g¼1
¼ argmin

pgf g Ωj j
g¼1

∈ℝþ
0

n
y−ρgv νg

� ���� ���2
Q−1

g

;

g ¼ 1;…; Ωj j ¼ G
o
;

ð15Þ
where ‖z‖W

2 ≜ zHWz. A closed form solution of the prob-
lem in Equation 15 can be obtained as follows:

p̂g ¼
v νg
� �H

T−1y

v νg
� �H

T−1v νg
� � ; g ¼ 1;…; Ωj j ¼ G: ð16Þ
Since to estimate the spectrum-like function

pIAA‐APES Ωð Þ≜ p̂g

n o Ωj j

g¼1
, the IAA-APES algorithm requires

the matrix T, which itself depends on the unknown signal
power, it has to be implemented as an iterative algorithm
[35]. Remarkably, as shown in [35], the IAA-APES algo-
rithm is a close approximation of the ML estimator in the
multi-source scenario.

3 Estimation and detection performance
In this section, we investigate the estimation and the de-
tection performance of the CSB DOA estimators. Re-
garding the DOA estimation, the root mean square error

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E �ν−νð Þ2� �q

in the estimation of the true

spatial frequency is evaluated for the three described CSBs
in the single snapshot-single target scenario and compared
with the RMSE of the FB and with the Cramér-Rao Lower
Bound (CRLB). The signal model assumed in the simula-
tions is the deterministic model. The RMSE and the ROC
curves are evaluated for two different kinds of disturbance:
Gaussian white noise and Gaussian white noise plus
spatially correlated Gaussian clutter. In this last case, the
clutter is modeled as an autoregressive (AR) process of
order 1, so its Power Spectral Density (PSD) is given by:

Sc vð Þ ¼ σ2c
1− ξj j2

1−ξe−j2πvj j2 ; ð17Þ

where ξ is a complex scalar factor. The covariance
matrix of the noise vector n in Equations 1 and 2 is

C ¼ σ2nI; white noise only
σ2nIþ σ2cQ ξð Þ; noise plus clutter;



ð18Þ

where Q(ξ) has the Toeplitz structure typical of an AR
(1) process, i.e., [Q(ξ)]i,j = (ξ|i−j|)* where the asterisk de-
fines the conjugate operator.

3.1 RMSE and CRLB on DOA estimation
The Gaussian white noise case is considered first. The
CRLB on the accuracy of DOA estimation in white noise
has already been derived in the literature [19]:

CRLB �νð Þ ¼ 6
4π2SNR

⋅
1

N N2−1
� � : ð19Þ

In order to evaluate the RMSE, the measurement
model in Equation 1 has been adopted with the follow-
ing parameters:

� n is a white, zero-mean, complex Gaussian vector
with covariance matrix C = σn

2I with σn
2 = 1.

� |ρ| is a complex unknown scalar factor with ρj j2
¼ SNR � σ2n, where SNR is the signal-to-noise ratio.
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� The number of independent Monte Carlo trials is 104.
� The number N of array sensors is 32.
� The nominal value of the target spatial frequency �ν

is chosen uniformly at random between −0.5 and
0.5, i.e., �νs∈U −0:5; 0:5½ Þð Þ.

� Since the number of grid points is chosen to be
equal to 29 for all the beamformers (FB and CSBs),
then |ϒ| = |Ω| =G = 29.

In Figure 1, the comparison between the RMSE of the
five beamformers and the CRLB is shown. In this scenario,
since the FB is the ML estimator, then it is, at least
asymptotically, the most efficient estimator. However, from
Figure 1, we also get that the FB and the CSBs have very
close performance. In particular, the FB and the SL0-CSB
algorithms have the same performance. This means that
even if the CSBs are suboptimal algorithms in terms of
RMSE (at least in the white noise case), the loss in estima-
tion accuracy is negligible. Moreover, we also observe that
for SNR below 0 dB, all the estimators are in the ‘low SNR’
region where the CRLB is not tight. From 0 to 10 dB, the
estimation accuracy of all the beamformers is close to the
CRLB. However, for SNR greater than 10 dB, the so-called
off-grid effects become evident. The off-grid effects are bias
errors in the DOA estimation that arise when the nominal
target spatial frequency �ν does not belong to the set Υ for
the FB and to Ω for the CSBs. Of course, the residual bias
depends on the ‘thinness’ of the grid: as the number of the
grid points G tends to infinity, the bias tends to zero. More-
over, the residual bias is upper-bounded by 1/2G: in fact,
this value is achieved when �ν falls exactly between two grid
points. In our simulations, the number of grid points is
chosen to be equal to 29 in order to make the grid-off ef-
fects significant only for high SNR.
Figure 1 RMSE and CRLB for the DOA estimation in the white
noise case (G = 29).
In Figure 2, the comparison between the RMSE of the
five beamformers and the CRLB is shown for the
spatially correlated Gaussian clutter scenario. The CRLB
for this case has already been derived in the literature [38]:

CRLB �νð Þ ¼ 2 ρj j2dHC−1=2ΣC−1=2d
� �−1

; ð20Þ

where Σ = I −C− 1/2v(vHC− 1v)− 1vHC− 1/2, d ¼ ∂v=∂�ν . For
notation simplicity, we omitted the dependence of the
steering vector v on the actual spatial frequency �ν . As
before, the measurement model in Equation 1 has been
adopted with the following parameters:

� n is a white, zero-mean, complex Gaussian vector
with covariance matrix σn

2I + σc
2Q(ξ), where σn

2 = 1,
[Q(ξ)]ij = (ξ|i−j|)*, ξ = 0.98ejϑ, ϑ is uniformly distributed
in [0, 2π), and σc

2 is chosen accordingly to the given
clutter-to-noise ratio (CNR) value, σ2c ¼ CNR � σ2n. In
this simulation, CNR = 15 dB.

� |ρ| is a complex unknown scalar factor with ρj j2
¼ SINR � σ2n þ σ2c

� �
, where SINR is the signal-to-

interference-plus-noise ratio.
� Since the number of grid points is chosen to be

equal to 210 for all the beamformers (FB and CSBs),
then |ϒ| = |Ω| =G = 210.

All the other parameters are equal to the ones used in
the white noise case. As we can see from Figure 2, also
in this case, the RMSEs of the five beamformers are very
close to each other. However, for high SINR values, i.e.,
greater than 25 dB, all the CSBs slightly outperform the
FB, that is, no more ML estimator in this scenario [2].
Figure 2 RMSE and CRLB for the DOA estimation in the white
noise plus clutter case.
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3.2 The ROC curves
The ROC curves show the Probability of Detection (PD) as
a function of the Probability of False Alarm (PFA). More
precisely, given a cell under test (CUT) in the spatial fre-
quency domain and by defining H1 as the event of pres-
ence of the source in the CUT, PD can be defined as:

PD λð Þ≜ Pr H1 H1j g ¼ Pr p �νCUTð Þ≥λ H1j g;ff ð21Þ
where p(·) is one of the ‘periodograms’ described in
Section 2.4. For both the FB and the CSBs, the size of
the CUT is chosen to be equal to the Rayleigh resolution
limit (see Section 4).
On the other hand, by defining with H0 the event of

absence of source, PFA is defined as

PFA λð Þ≜ Pr H1 H0j g ¼ Pr p νð Þ≥λ; ∀ν≠�νCUT H0j g:ff ð22Þ
The signal model used to evaluate the ROC curves is the

random model. In Figures 3 and 4, the ROC curves relative
to the white-noise-only case and to the white noise plus
spatially correlated Gaussian clutter case are shown. The
measurement model in Equation 1 and the random signal
model are adopted. The simulation parameters (noise and
clutter powers, grid points, and so on) for both the scena-
rios are chosen to be equal to those used in Section 3.1,
except for the signal component ρ, which is assumed
to be a zero-mean complex Gaussian rv with
σ2ρ ¼ SINR⋅ σ2n þ σ2

c

� �
. In this simulation, SINR = −10, 0,

and 10 dB.
In Figure 3, the ROC curves relative to the white-noise-

only case are shown. In this case, the FB slightly outperforms
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Figure 3 ROC curves in the white noise case for three different SNRs.
the CSBs. However, this behavior is somehow expected since,
as shown in Section 3.1, the FB is the ML estimator, so it is,
at least asymptotically, the most efficient. Nevertheless, the
loss in terms of PD for a given PFA of the CSBs with respect
to the FB is small. In particular, we observe that the FB and
the SL0-CSB algorithms have almost the same performance.
In Figure 4, the ROC curves for the scenario cha-

racterized by a spatially correlated clutter model are re-
ported. We note that in this case, all the three CSBs
outperform the classical FB. In particular, the SPICE and
the L1 algorithms have the best detection performance.

4. The super-resolution property
It is well known that the FB suffers from the Rayleigh
resolution limit, which is independent of the SNR.
Some adaptive methods, e.g., MUSIC and Capon, are
able to resolve two sources within a Rayleigh cell.
However, as discussed before, to achieve super-reso-
lution, they need a sufficiently high SNR level and a
suitable number of temporal snapshots (to estimate
the disturbance covariance matrix). In this section, we
investigate the super-resolution property of the four
proposed CSBs. The results show that unlike Capon
and MUSIC estimators, a CSB can achieve the super-
resolution with only one temporal snapshot, without
the need to estimate the disturbance covariance
matrix.
For a ULA of N array elements, the Rayleigh reso-

lution limit, i.e., the beamwidth in the spatial frequency
space, defined as the full width of the main lobe at the
half-power level, is [1]
0 .1 1
P
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B
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Δν ¼ 0:886
N

: ð23Þ

Then, if two sources are spaced by less than the Rayleigh
resolution limit Δv, they cannot be resolved by a classical
non-adaptive FB. Instead, providing a sufficient level of
SNR and a suitable number of grid points, a CSB is able to
resolve sources that are in the same Rayleigh resolution cell.
The ability of a CSB to achieve super-resolution has been
also discussed in recent works. For example, in [16], the au-
thors investigate the super-resolution property for a CSB
for the single and the multi-snapshot scenarios. However,
only a qualitative proof of this property is provided, neither
a strong theoretical justification nor a statistical charac-
terization of the CS super-resolution capability is reported
in [16]. In this paper, a fundamental result of the CS theory
is exploited to provide theoretical justification and a
rigorous definition of the CS super-resolution capabil-
ity. Moreover, this property of the CSB is also statisti-
cally characterized.
The ability of a CSB to resolve two sources below the

Rayleigh limit, even using a single snapshot, is strictly re-
lated to the fundamental Theorem 1.3 in [24]. Roughly
speaking, this theorem claims that under the sparsity as-
sumption, it is possible to exactly reconstruct (with over-
whelming probability) a complex signal x from a very low
number of its Fourier coefficients (or anti-coefficient).
This theorem is clearly related to the CS beamforming by
the Equation 6. In fact, as discussed previously, by assum-
ing that the true source spatial frequencies belong to the
set Ω Equation 6 is equivalent to the measurement model
of Equation 2, then it is clear from the particular structure
of the matrix A(Ω) that the entries of the measurement
vector y represent N Fourier (anti-) coefficients of the
complex vector x ∈ℂG (with N≪G = |Ω|) corrupted by
noise. Theorem 1.3 can be recast in the following form,
more suitable in the array processing framework.
Theorem 1.3 [24] (Array processing formulation). Let

K and N be the number of sources in a given range cell
and the number of array elements, respectively. Let Ω =
{ν1,…, νG} be the set of cardinality G of spatial frequen-
cies in the grid and let A(Ω) = [a(ν1)|⋯ |a(νG)] be the
overcomplete matrix of steering vectors on Ω. If the
sparse complex signal x (and consequently the source
DOA) is recovered from the single noise-free spatial snap-
shot y by solving the following optimization problem

x̂CS Ωð Þ ¼ argmin xk k1;
x∈ℂG

s:t: y ¼ A Ωð Þx; ð24Þ

with

Ωj j ¼ G≤e
Cd
K ; ð25Þ

then, with probability at least η = 1 −O(G−d), the solution
of the problem in Equation 24 is unique and is equal to x.
The value η represents the probability of exact recon-

struction, Pex≜ Pr x ¼ x̂CSf g ¼ η . The value of Cd is ex-
plicitly derived in [24] under asymptotic conditions, i.e.,
valid for N ≤G/4, d ≥ 2, and G ≥ 20, as Cd = 1 / (23(d + 1)).
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In particular, Cd depends on the desired value of Pex. Using
the result of Theorem 1.3, a CS super-resolution limit can
be defined. In fact, if it is possible to reconstruct x on a set
Ω of cardinality G with probability at least η then, with
probability at least η, it is also possible to resolve two
sources spaced by
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ν≥e

CdN
K : ð26Þ

It can be seen that while the Rayleigh resolution limit
in Equation 23 decreases as N−1, the CS super-resolution
limit in Equation 26 decreases as exp ( −CdN/K). In par-
ticular, given a fixed number of array elements N, the
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Fourier
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tial frequency between two sources.



Figure 9 RMSE and CRLB for DOA estimation for source 1 in
different Rayleigh resolution cells. RMSE and CRLB for the DOA
estimation in the white noise case for two sources in different
Rayleigh resolution cells: source no. 1 (G = 210).

Figure 7 RMSE and CRLB for DOA estimation for source 1 in
the same resolution cell. RMSE and CRLB for the DOA estimation
in the white noise case for two sources in the same Rayleigh resolution
cell: source no. 1 (G = 210).
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minimum possible spatial frequency separation between
two sources is at least Δν = 0.886N− 1 if FB is used, while
it is at least Δ

―
v ¼ exp −CdN=2ð Þ if CSB is used. Roughly

speaking, the Rayleigh resolution limit decreases linearly
with the number N of sensors, while the CS super-
resolution limit decreases exponentially with N.
Finally, some comment needs to be made regarding

the constant Cd. As stated in [24], the asymptotic value
of Cd provided by Theorem 1.3 is a very conservative
value. In other words, the same value of Pex can be guar-
anteed by a smaller value of Cd than the one provided in
Theorem 1.3 and therefore, a finer resolution can be
Figure 8 RMSE and CRLB for DOA estimation for source 2 in
the same resolution cell. RMSE and CRLB for the DOA estimation
in the white noise case for two sources in the same Rayleigh resolution
cell: source no. 2 (G = 210).
achieved in practice. Additional theoretical investigations
are necessary to refine the value of Cd, and this is an
active research area within the CS community. A first
attempt to refine this constant can be found in [39].
Theorem 1.3 refers to the noise-free case. Moreover, the

true spatial frequency is assumed to belong to the set Ω.
In array processing applications, however, since a certain
amount of noise is always present, then the optimization
problem in Equation 24 should be replaced with the prob-
lem in Equation 8. Of course, in the noisy case and in the
presence of the off-grid events, one cannot expect exact
recovery [24] and Theorem 1.3 is no longer valid. In the
Figure 10 RMSE and CRLB for DOA estimation for source 2 in
different Rayleigh resolution cells. RMSE and CRLB for the DOA
estimation in the white noise case for two sources in different Rayleigh
resolution cells: source no. 2 (G = 210).



Figure 11 Bistatic geometry during the COLLAB13 experiment.
A fixed source insonifies the surveillance region, while a 32-element
acoustic array towed by an AUV acts as a receiver to detect echoes
from the test target.
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following, the robustness of the previous results on CS
super-resolution is verified against the measurement noise
and the off-grid effects as a function of the SNR.
To perform this robustness analysis, a resolution cri-

terion is necessary [40]. To this purpose, we exploit the
procedure proposed in [41] to investigate the super-
resolution property of the MUSIC algorithm. Following
[41], a super-resolution event can be characterized by
means of the following random inequality:

γ ν1; ν2ð Þ≜ 1
2
p ν1ð Þ þ p ν2ð Þ½ �−p νmð Þ > 0; ð27Þ

where νm = (ν1 + ν2)/2. Two sources located at spatial
frequencies ν1 and ν2 are said to be resolvable if the
Figure 12 COLLAB 2013 scenario at scan time 08:55:12Z, 1 July 2013.
inequality in (27) holds true and to be irresolvable other-
wise. Hence, this problem can be seen as a binary deci-
sion problem, where γ is the decision statistic. Finally,
the probability of resolution can be defined as:

Pres ¼ Pr γ > 0f g: ð28Þ

In the following, Pres is evaluated as a function of the
SNR and of the frequency separation between the two
sources. The measurement noise generated in the simu-
lation is white Gaussian.
Figure 5 shows the probability of resolution (Pres) of

the various beamformers as a function of SNR. The
simulation parameters are the following:

� |ϒ| = |Ω| =G = 29.
� νm = 0.3, while ν1 and ν2 are sampled, in the same

Rayleigh resolution cell (Δν≃ 0.0277), from two
uniform and independent probability density
functions, such that νi∼U μi−1=2G; μi þ 1=2Gð Þ
where μ1 = 0.2922 and μ2 = 0.3078. This allows us to
model the grid-off effects.

� The number of independent Monte Carlo trials is 103.

In accordance with the previous result on the estima-
tion accuracy (see Figure 1), for SNR lower than 0 dB,
all the estimators are in the non-asymptotic region: they
do not provide reliable DOA estimates. Beyond 0 dB,
the Pres of the four CSBs is much better than that of the
FB. In particular, the Pres of the FB is much lower than
that of the CSBs and independent of the SNR. Regarding
the CSBs, the best estimator, at least in terms of Pres, is
the SPICE algorithm: its Pres, as well as the one of the
IAA-APES, tends to 1 as the SNR increases.



Figure 13 Matched filter average power at scan time 08:55:12Z, 1 July 2013. The target is visible at a BRS of 4,600 m. The direct blast is
clearly visible at a BRS of 2,800 m. The power is normalized with respect to the direct blast maximum power.
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In Figure 6, Pres is evaluated as a function of the source sep-
aration Δ in the spatial frequency domain, for SNR=10 dB
and |ϒ| = |Ω| =G= 29. The frequency separation, denoted as
Δ= 2l/G for l= 1, 2,…, L<G, is defined with reference fre-
quency νm∼U μm−1=2G; μm þ 1=2Gð Þ with μm =0.3 so that
the spatial frequencies of the two sources are given by ν1
= νm−Δ/2, ν2 = νm+Δ/2. The number of Monte Carlo trials
is 103. Even in this case, the Pres of the CSBs is always higher
than that of the FB. Clearly, by decreasing Δ, Pres decreases.
The SPICE algorithm is the one that provides the best Pres.
In order to get a deeper insight in the performance of

the beamforming algorithms, in the presence of two
sources in the same Rayleigh resolution cell in Figures 7
and 8, the RMSE of the investigated beamformers have
been compared with that of the RELAX algorithm [42,9],
a well-known parametric DOA estimator, and with the
CRLB as function of the SNR. The deterministic signal
model is exploited; the CRLB is given by Eq. (4.1) in [19].
The simulation parameters are the following:

� |ϒ| = |Ω| =G = 210,
Figure 14 Fourier beamformer output at scan time 8:55:12Z, 1 July 2
frequency 0.3. The direct blast (green circle) is visible at a BRS of 2,800 m a
power in dB with respect to the direct blast maximum power.
� νm = 0.3, while, in order to take into account the
grid-off effects, ν1 and ν2 are sampled, in the same
Rayleigh resolution cell (Δν≃ 0.0277), from two
uniform and independent probability density
function, such that νi∼U μi−1=2G; μi þ 1=2Gð Þ
where μ1 = 0.2930 and μ2 = 0.3066.

� The number of independent Monte Carlo trials is 105.

As expected, the FB presents a high RMSE and a bias
in the estimate of ν1 and ν2, since it is not able to resolve
the two sources. The CSBs and the RELAX beamformers
that have the super-resolution property provide better
estimation performance.
Finally, the RMSE in the DOA estimation of two sources

in different Rayleigh resolution cells is shown in Figures 9
and 10. The simulation parameters are the same used in
the previous case (i.e., sources in the same resolution cell)
except for the values of μ1 and μ2. In this simulation, we
set μ1 = 0.2803 and μ2 = 0.3193. The results highlight the
ability of the CSBs (except for the SL0 algorithm) and of
the RELAX algorithm to achieve better performances in
013. The target (red circle) is visible at a BRS of 4,600 m and spatial
nd spatial frequency −0.27. The map scale represents normalized



Figure 15 SPICE beamformer output at scan time 8:55:12Z, 1 July 2013.
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terms of RMSE with respect to the FB. However, such esti-
mation performance tends to be equal to the one obtained
in the single-source scenario as the distance in spatial fre-
quency between the two sources increases.

5 Testing on real sonar data
The Cooperative Littoral ASW Behaviour (COLLAB)
2013 experiment has been conducted by CMRE in La
Spezia waters, Italy, from 29 June to 7 July 2013. The pur-
pose of the experiment was to test environmentally adap-
tive, collaborative area search algorithms and behaviors
for Autonomous Underwater Vehicles (AUVs) which act
as the receiving nodes in the Generic Littoral Intelligent
Network Technology (GLINT) Autonomous Sensor Net-
works (AuSN) antisubmarine warfare (ASW) demonstra-
tion system [43,44].
Figure 11 shows an example of the bistatic geometry

used during the experiment. The transmitter, at fixed
known position, insonifies the surveillance region with a
pre-defined pulse repetition interval (PRI) by transmitting
a frequency-modulated chirp signal. An underwater towed
target (an echo repeater) was used to test detection and
tracking performance by a 32-element hydrophone array
towed by an AUV. Target and AUV navigation data has
Figure 16 L1 beamformer output at scan time 8:55:12Z, 1 July 2013.
been registered to allow the generation of ground truth
data to be used in the post analysis and validation of the
performance. The parameters of the bistatic geometry (see
Figure 11) include the following: the transmitter/target
distance Rtx, the receiver/target distance Rrx, and the
transmitter/receiver baseline L; θrx, θtx, and θtg are the
heading angles of receiver, transmitter, and target, respect-
ively; ϕ is the bearing angle of the target with respect to
an (x, y) local coordinate reference system on the array, as
depicted in Figure 11.
Figure 12 highlights the position of the AUV and the

target for the scan at time T1 = 08:55:12Z, 1 July 2013, as
well as the heading of the receiving array and the bistatic
geometry. The received scan data are processed to compare
CSBs against the classical Fourier beamformer. Pre-
processing of the received data includes baseband con-
version, complex matched filtering and normalization for
the bistatic range sum (BRS = Rtx + Rrx, estimated from the
echo time of arrival at the receiver) profile attenuation.
The attenuation profile has been estimated from the data
by using a set of mathematical morphology filters as in
[45] and [46]. Figure 13 shows the average power of the
array elements after the normalization for the attenuation
profile at scan time T1. The target echo is present at an



Figure 17 SL0 beamformer output at scan time 8:55:12Z, 1 July 2013.
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approximated BRS of 4,600 m. The average target excess
with respect to the mean clutter level is about 5 to 6 dB.
The direct echo from the transmitter is also present at
BRS of 2,800 m. The figure plots the power normalized
with respect to the direct blast maximum power.
The complex normalized data have been spatially proc-

essed using a spatial frequency grid of 180 points for each
range cell of a scan. Figure 14 shows the results of the FB
at scan time T1. The map scale represents normalized
power in decibel with respect to the direct blast maximum
power. The target (red circle) is visible at a BRS of 4,600 m,
as expected from Figure 9, and spatial frequency 0.3. The
direct blast (green circle) is visible at a BRS of 2,800 m and
spatial frequency −0.27. It is worthwhile to mention that
the results of the spatial beamforming are affected by the so
called left-right ambiguity [44] that shows up in linear
arrays, so the real target bearing (or spatial frequency) can
be actually the opposite of the one observed in the map.
Here, the disambiguation is achieved using the target and
the AUV navigation data, the transmitter position, and the
array parameters to locate the target within the map.
Figures 15, 16, 17, 18 show the SPICE, the L1, the SL0, and
the IAA-APES beamformer outputs, respectively, at scan
Figure 18 IAA-APES beamformer output at scan time 8:55:12Z, 1 July
time T1. As showed in Figure 19, the resolution of the CSBs
is higher than the classical FB.
The analysis of the processing time per range cell per

iteration of the L1, SPICE, SL0, and IAA-APES solvers is
reported in Figure 20a for 289 different sonar scans (a
fixed spatial frequency grid of 180 points was consid-
ered).b The statistics were evaluated by processing 180
range cells per scan centered on the test target (the echo
repeater). The processing time averaged over the scans
is TL1 = 1.68 × 10− 4 s, TSPICE = 1.42 × 10− 3 s, TSL0 =
2.5 × 10− 4 s, and TIAA ‐APES = 4.27 × 10− 3 s for L1,
SPICE, SL0, and IAA-APES, respectively. The processing
time per range cell of the Fourier beamformer (TFFT =
5.79 × 10− 6 s) is also reported as a reference (conven-
tionally, the number of iterations of the Fourier beam-
former is set to 1). The L1 solver has lower processing time
than SPICE, SL0, and IAA-APES. In particular, SPICE and
IAA-APES solvers have a processing time that is an order
of magnitude higher than the two other CSBs. For a fair
comparison among the CSBs, the number of iterations to
reach the convergence is also evaluated and reported in
Figure 20b for the same scans. The average over the scans
is NI,L1 = 280, NI,SPICE = 95, NI,SL0 = 18, and NI,IAA-APES = 93
2013.



Figure 19 Main lobe beamwidth.
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for L1, SPICE, SL0, and IAA-APES, respectively. Consider-
ing a typical application setup, with a number of range cells
per scan NR = 4,916, a number of processors NP = 8 (eight
range cells are processed in parallel) and making the hy-
pothesis that the time per scan scales linearly, the average
processing time per scan, TS,(·) =T(·)NRNI,(·)/NP, of the four
CSBs is TS,L1 = 29 s, TS,SPICE = 83 s, TS,SL0 = 2.8 s, and TS,
IAA-APES = 244 s. Even if a comprehensive and more detailed
analysis of the processing time is out of the scope of this
work, the preliminary tests here reported show that the
SL0 solver outperforms L1, SPICE, and IAA-APES by one
and two orders of magnitude, respectively, providing the
indication that the SL0 may be a candidate for a future
real-time implementation of the CSB.

6 Conclusions
In this paper, some CS-based beamformers, i.e., the clas-
sical ℓ1 minimization (or LASSO), the fast smooth ℓ0
Figure 20 Processing time and number of iterations. (a) Processing tim
iterations to reach the convergence versus the scan number.
minimization, the SPICE, and the IAA-APES algorithms,
have been analyzed and compared with the classical FB for
target DOA estimation in a single-snapshot scenario. We
analyze the estimation accuracy, the detection perform-
ance, and the resolution capability. The performance of the
CSBs has been investigated, both in the presence of white
Gaussian noise and in the presence of spatially correlated
Gaussian noise. Regarding the estimation performance, the
RMSE of the FB and of the four CSBs has been compared
with the CRLB in the white noise scenario (that is the case
when the FB is the ML estimator) and in the spatially cor-
related noise scenario. As concerning the estimation accur-
acy and the detection performance, we found that the FB
slightly outperforms the CSBs in the white noise scenario,
whereas the four CSBs outperform the classical FB in the
spatially correlated noise scenario. In particular, the SPICE
and the L1 algorithms have the best detection perform-
ance, especially at low SNR values. Concerning the reso-
lution capability, we verified that the CSBs can achieve
super-resolution beyond the Rayleigh limit even with a sin-
gle pulse, while classical super-resolution algorithms like
MUSIC need multiple snapshots. Theoretical arguments
have been proposed here to link the super-resolution prop-
erty of the CSBs to the CS theory, and a new rigorous def-
inition of CS super-resolution limit has been provided.
Moreover, a robustness analysis of the CS super-resolution
property has been carried out exploiting a classical method
already used in the array processing literature to statisti-
cally characterize the MUSIC super-resolution capability in
terms of probability of resolution. The simulations have
shown that the SPICE algorithm has the best super-
resolution capability. Finally, the performance of the four
CS-based beamformers has been tested on real sonar data.
In particular, the range-spatial frequency maps at the out-
put of the four CS-based beamformers have been evaluated
e per range cell per iteration versus the scan number. (b) Number of
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and compared with the map at the output of the Fourier
beamformer. From this comparison, the ability of the CS-
based algorithms to reduce the secondary lobes and then,
to reduce the probability of false alarm, becomes clear.
Using the same range-spatial frequency maps, the super-
resolution capability of the CS-based beamformers has
been verified as well. As concerning the processing time of
the four CSBs, both the simulated and the real data ana-
lyses have shown that the SL0 algorithm is at least one
order of magnitude faster than SPICE, IAA-APES, and L1
algorithms. Since, in many practical applications, a low
processing time is a stringent requirement, the SL0 algo-
rithm could represent a good tradeoff between the statis-
tical optimality and the practical implementation.
Future research efforts will be devoted to the multi-

snapshot case. Moreover, a deeper comprehension of the
statistical properties of the CSBs in different noise and
clutter distributions, e.g., the widely known compound-
Gaussian distributions, has to be developed.
Endnotes
aThe straddling losses arise because a source is not al-

ways precisely centered in a range-Doppler gate, so the
acquired sample is not located at the maximum of the
matched filter output.

bThe tests were performed on an Intel® Xeon® E5620
2.40 GHz multicore processor (Intel Corporation, Sta
Clara, CA, USA) using a Matlab® (MathWorks Inc.,
Natick, MA, USA) implementation of the three CSBs.
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