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ABSTRACT 

 
We conducted experiments on forced alignment in 
Mandarin Chinese. A corpus of 7,849 utterances was created 
for the purpose of the study. Systems differing in their use 
of explicit phone boundary models, glottal features, and tone 
information were trained and evaluated on the corpus. 
Results showed that employing special one-state phone 
boundary HMM models significantly improved forced 
alignment accuracy, even when no manual phonetic 
segmentation was available for training. Spectral features 
extracted from glottal waveforms (by performing glottal 
inverse filtering from the speech waveforms) also improved 
forced alignment accuracy. Tone dependent models only 
slightly outperformed tone independent models. The best 
system achieved 93.1% agreement (of phone boundaries) 
within 20 ms compared to manual segmentation without 
boundary correction. 
 

Index Terms— Forced alignment, boundary model, 
glottal features, tone, Mandarin Chinese 
 

1. INTRODUCTION 
 
The ability to use large speech corpora for research in many 
fields, such as phonetics, sociolinguistics, and psychology, 
depends on the availability of phonetic segmentation and 
transcriptions. Automatic phonetic segmentation in English 
has been widely investigated and has achieved a level of 
accuracy comparable to human labelers. In this paper, we 
conducted experiments on automatic phonetic segmentation 
in Mandarin Chinese, which has been less studied [1,2].  

The most common approach for automatic phonetic 
segmentation is to build a Hidden Markov Model (HMM) 
based forced aligner [3-8]. In this approach, each phone is a 
HMM that has typically 3-5 states. The speech signal is 
analyzed as a successive set of frames. The alignment of 
frames with phones is determined by finding the most likely 
sequence of hidden states (which are constrained by the 
known sequence of phones) given the observed data and the 
acoustic model represented by the HMMs. The phone 
boundaries are simply derived from the alignment of phone 
states with frames. This approach is different from the 
manual phonetic segmentation process, in which the 
acoustic landmarks at phone boundaries [9], e.g., an abrupt 

spectral change, are used to determine the location of a 
boundary. To utilize the spectral characteristics of phone 
boundaries, some researchers have applied local boundary 
refinement to HMM-based forced alignment. For example, 
[10] used energy changes in different frequency bands, [2] 
trained contextual-dependent boundary GMMs, [11] trained 
support vector machine (SVM) classifiers to differentiate 
boundaries from non-boundary positions, and [12, 13] 
employed neural network to refine phone boundaries. [14] 
described a non-HMM system for phone alignment based on 
discriminative learning. In their system a set of base 
functions were learned to measure the confidence for an 
alignment. [15] proposed several modifications to an HMM-
based system, including the use of energy-based features 
and distinctive phonetic features, and the use of observation-
dependent state transition probabilities. 

In prior work [16], we demonstrated that employing 
explicit phone boundary models within the HMM 
framework could significantly improve forced alignment 
accuracy on the TIMIT corpus, a standard data set for 
training and evaluating English forced alignment systems. In 
that work, manual phonetic segmentation was used for 
training models. Special one-state phone boundary HMMs 
(i.e., a boundary can have one and only one state 
occurrence) were trained using frames extracted at the 
manually labeled phone boundaries, one frame for each 
boundary. It remains unclear whether (or to what degree) 
explicit phone boundary models help if no manual phonetic 
segmentation is available for training, and whether the 
special one-state HMM typology for modeling phone 
boundaries is beneficial for other languages. In this study, 
we addressed this question by investigating the use of phone 
boundary models on forced alignment in Mandarin Chinese. 
Unlike in English, no standard data set is available for study 
and evaluation of phonetic segmentation in Mandarin. We 
built a corpus for our study, for which only the test data but 
not the training data were manually segmented at the 
phonetic level.  

Mandarin Chinese is a tone language. Many studies 
have demonstrated the benefit of incorporating tones in 
automatic speech recognition in Mandarin Chinese [17-24]. 
The goal of automatic phonetic segmentation is, however, 
different from that of speech recognition. In this study, we 
investigated whether tone information is useful in terms of 
improving forced alignment accuracy. To our knowledge, 



this question has not been addressed in the literature. There 
are two major approaches on how to incorporate tones in 
automatic speech recognition: embedded tone modeling and 
explicit tone modeling [25]. In embedded tone modeling, 
tones were treated as a property of other units (e.g., vowels, 
finals, etc.); and tonal acoustic features are appended to the 
spectral features at each frame. In explicit tone modeling, 
tones are independently recognized and then combined with 
phone recognition. In this study, we adopted the first 
approach and compared the performance on forced 
alignment between tone-dependent and tone-independent 
models. In our experiments appending F0 features to the 
spectral feature vector at the frame level resulted in slightly 
lower forced alignment accuracy, most probably due to 
problems of pitch tracking and normalization. For the 
purpose of this study, spectral features extracted from glottal 
waveforms (by performing glottal inverse filtering from the 
acoustic speech waveforms, detailed in Section 3.1.3) were 
used in place of F0s. The motivation is that the glottal 
features represent the characteristics of vocal fold vibration, 
which contains tone information. It was reported that, for 
example, the difference between the first and second 
harmonics (which is commonly used as a glottal feature) 
was correlated with tones in Mandarin Chinese [26], and 
also spectral cues could be used by native speakers in tone 
perception [27]. On the other hand, glottal features may also 
contain information about supraglottal characteristics of 
speech sounds due to nonlinear coupling between the glottal 
source and the vocal tract filter [28]. For example, [29] 
demonstrated that vocal fold vibration was most destabilized 
when F0 crossed F1 in vowel production; and [30] 
demonstrated that glottal waveforms were different during 
both the close and open phases between the four vowels /i, 
e, a, u/.  Therefore, glottal features could help forced 
alignment (and speech recognition) in both tone-dependent 
and tone-independent models. 

In this study, we trained forced alignment systems 
differing in their use of phone boundary models, glottal 
features, and tone, and compared the performance of the 
systems. The experiments were conducted on a corpus 
described in Section 2.  
 

2. CORPUS 
 
The 1997 Mandarin Broad News Speech (LDC98S73) 
corpus was used. We extracted the “utterances” (the 
between-pause units that are time-stamped in the transcripts) 
from the corpus and listened to all utterances to exclude 
those with background noise and music. Utterances from 
speakers whose names were not tagged in the corpus or 
from speakers with accented speech were also excluded. 
The final dataset consisted of 7,849 utterances from 20 
speakers. We randomly selected 300 utterances from six 
speakers (50 utterances for each speaker), three male and 
three female, to compose a test set. The remaining 7,549 
utterances were used for training. 

The 300 test utterances were manually labeled and 
segmented into initials and finals in Pinyin (a Roman 
alphabet system for transcribing Chinese characters). While 
researchers have disagreed on the vowel phonemes in 
Mandarin Chinese (see discussion in [31]), the inventories 
of initials and finals in the language are largely 
straightforward. A final in Mandarin Chinese may consist of 
one or more vowels (or vowels and glides, depending on the 
adopted phonological analysis), with or without a nasal 
coda. Because /o/ and /uo/ occur in complementary 
distribution and the acoustic difference between the two 
finals is negligible [32], they were treated as the same final. 
/i/ has three pronunciation variants, often transcribed as  [ɿ] 
(when appearing after an alveolar fricative/affricate), [ʅ] 
(when appearing after a retroflex fricative/affricate), and [i] 
(in all other contexts). The three variants were treated as 
different finals, /i/ for [i], /ii/ for [ɿ], and /iii/ for [ʅ]. In total, 
there were 21 initials and 37 finals. Tones were marked on 
the finals, including Tone1 through Tone4, and Tone0 for 
the neutral tone. The phonetic labels are listed in Table 1. 

Excluding boundaries between silence and a stop or an 
affricate (for which the boundary location cannot be 
determined because of the silent closure at the consonant 
onset), the test set contained 6,666 boundaries. 

 
Table 1. Phonetic labels (in Pinyin). 

Initials b, p, m, f, d, t, n, l, g, k, h, j, q, x, zh, ch, sh, r, z, 
c, s 

Finals a, ai, an, ang, ao 
e, ei, en, eng, er 
i, ii, iii, ia, ian, iang, iao, ie, in, ing, iong, iu 
ong, ou 
u, ua, uai, uan, uang, ui, un, ung, uo 
v, van, ve, vn * 

Tones 1, 2, 3, 4, 0 
Silence sil 

 * “v” represents “ü” in Pinyin. 
 

3. SYSTEMS AND EVALUATION 
 
3.1. Systems 
 
HMM-based forced alignment systems were trained with the 
CALLHOME Mandarin Chinese Lexicon (LDC96L15) 
using the HTK toolkit [33]. All systems employed the 
standard 39 Perceptual Linear Prediction (PLP, [34]) 
features extracted with 25ms Hamming window and 10ms 
frame rate; the features were augmented with glottal features 
for some systems (as detailed below). Initials, monophthong 
finals (/a, e, i, ii, iii, u, v/), and silence were 3-state HMMs, 
all other finals (including diphthongs, triphthongs, and 
nasal-coda finals) were 5-state HMMs. Each state had 2 
Gaussian mixture components with diagonal covariance 
matrices. The systems differed in their use of explicit phone 
boundary models, tone information, and glottal features. 



3.1.1. Special one-state model for phone boundaries 
The phone boundary models were a special 1-state HMM 
(as shown in Figure 1), in which the state cannot repeat 
itself. Therefore, a boundary can have one and only one 
state occurrence, i.e., aligned with only one frame. 
 

 
Figure 1: Special 1-state HMM for phone boundaries with 

transition probabilities a11 = 0 and a12 = 1. 

The special 1-state phone boundary HMMs were 
combined with monophone HMMs. Given a phonetic 
transcription (which was manually labeled on the test set 
and derived from the lexicon and word transcription on the 
training set), phone boundaries were inserted between 
phones for both training and testing purposes. For example, 
“sil i g e sil” became “sil sil_i i i_g g g_e e e_sil sil”. The 
boundary states were tied through decision-tree based 
clustering, similar to triphone state tying in speech 
recognition. 
 
3.1.2. Tone information 
Tones were treated as a property of the finals. Tone-
dependent final models (for which the same final with 
different tones had different HMMs) were trained to 
compare with tone-independent final models (for which the 
same final with different tones shared the same HMM). 
 
3.1.3. Glottal features 
Glottal waveforms were derived from the acoustic speech 
waveforms by performing glottal inverse filtering with the 
IAIF method developed by Alku and colleagues [35,36]. 
Mel-frequency cepstral coefficients (MFCCs, [37]) were 
extracted from band-limited glottal waveforms, with 20 
band-pass filters ranging from 0 to 2000 Hz (Window size 
and frame rate were the same as used for PLPs). For the 
systems using glottal features, 26 glottal MFCCs (13 static 
coefficients and 13 delta coefficients) were appended to the 
PLP feature vector at each frame.  
 
3.2. System evaluation 
 
The accuracy of automatic segmentation is generally 
measured in terms of what percentage of the automatically 
labeled boundaries are within a given time threshold 
(tolerance) of the manually labeled boundaries. 20 ms has 
been most widely used as a tolerance for measuring phone 

segmentation quality. In the following section the agreement 
percentages for 20ms tolerance are reported.  

Systematic errors generated by HMM-based forced 
alignment systems can be corrected using statistical models 
learned from comparing forced aligned and manually 
labeled boundaries in the training data [16]. However, 
because manual phonetic segmentation is not available for 
the training data used in this study, in the following section 
forced alignment results are evaluated against manual 
phonetic segmentation in the test set without boundary 
correction.  
 

4. RESULTS 
 
Table 2 lists the accuracies (20 ms agreement percentages) 
of the forced alignment systems that either employ (shown 
as +) or not employ (shown as -) boundary models, glottal 
features, and tone. 

As a reference, we also calculated the overall mean 
time difference between forced alignment and manual 
segmentation for all boundaries in the test set, and then 
corrected the boundaries by this difference. The accuracies 
after boundary correction are listed in parentheses in Table 
2. It is interesting to note that although the boundary 
correction procedure significantly increased the accuracies 
for the systems not using boundary models, it did not 
change the accuracies for the systems using boundary 
models. This suggests that there is little system bias in 
forced alignment for the systems using boundary models.  
 
Table 2. Forced alignment accuracies of different systems. 
Tone Glottal 

features 
Boundary 

models 
Accuracy Mean accuracy 

- - - 0.859  
(0.894) 

 
- Boundary: 

0.874 (0.898) 
+ Boundary: 
0.925 (0.925) 

 
- Glottal: 

0.895 (0.906) 
+ Glottal: 

0.904 (0.916) 
 

- Tone: 
0.896 (0.913) 

+ Tone: 
0.903 (0.909) 

- + - 0.871  
(0.906) 

+ - - 0.878  
(0.887) 

+ + - 0.888  
(0.903) 

- - + 0.923  
(0.923) 

- + + 0.929  
(0.929) 

+ - + 0.918  
(0.918) 

+ + + 0.928  
(0.927) 

 
 
4.1. Boundary models 
 
From Table 2 we can see that the use of phone boundary 
models significantly improved forced alignment accuracy. 



On average the accuracy increased from 0.874 to 0.925, 
representing a relative error reduction over 40%. 

The improvement to individual systems is illustrated in 
Figure 2. It shows that employing phone boundary models 
consistently improved forced alignment accuracy, for both 
tone dependent and tone independent systems, and for 
systems using or not using the glottal features.  

 

 
Figure 2: Comparison between systems using (+B) and not using (-
B) phone boundary models. –T: tone independent models; +T: tone 
dependent models; -G: not using glottal features; +G: using glottal 
features. 
 
4.2. Glottal features 
 
From Table 2, and as illustrated in Figure 3, the use of 
glottal features also improved forced alignment accuracy 
across the systems, although to a lesser degree. On average, 
the accuracy increased from 0.895 to 0.904, representing a 
relative error reduction of 8.6%.  
 

 
Figure 3: Comparison between systems using (+G) and not using (-
G) glottal features. –T: tone independent models; +T: tone 
dependent models; -B: not using boundary models; +B: using 
boundary models. 

4.3. Tone 
 
Unlike phone boundary models and glottal features, tone 
dependent models had mixed effects. As shown in Figure 4, 
tone dependent models only outperformed tone independent 
models when phone boundary models were not used. When 
phone boundary models were used, tone dependent models 
slightly underperformed tone independent models. This may 
be due to the limited amount of data used for training. To 
overcome the data sparseness problem, we retrained tone 
dependent models by state tying - the states of the same 
final in different tones were pooled and clustered. After state 
tying, tone dependent models did outperform tone 
independent models, but the difference remained very small. 
The results are listed in Table 3. 
 
Table 3. Force alignment accuracies of tone independent 
system (-), tone dependent system (+), and tone dependent 
system with state tying (+*). 

Tone Glottal  
features 

Boundary 
models 

Accuracy 
 

- + + 0.929 (0.929) 
+ + + 0.928 (0.927) 

+* + + 0.931 (0.931) 
 

 
Figure 4: Comparison between tone independent (-T) and tone 
dependent (+T) systems. -G: not using glottal features; +G: using 
glottal features; -B: not using boundary models; +B: using 
boundary models. 
 
From Table 2 and 3, we conclude that the best system 
employed phone boundary models, tone dependent models 
with state tying, and glottal features. The system achieved 
93.1% agreement (of phone boundaries) within 20 ms 
compared to manual segmentation on the test set without 
boundary correction. 
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