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ABSTRACT

We propose a novel dynamic reweighted ℓ2 (DRℓ2) algorithm
in the regime of dynamic compressive sensing. Our analysis
shows that aiming to solve a Type II optimization problem,
DRℓ2 is effectively minimizing a ‘convex-concave’ penalty
in the coefficients that transitions from a convex region to a
concave function using knowledge of past estimations. DRℓ2
thus provides superior reconstruction performance compared
with state-of-the-art dynamic CS algorithms.

1. INTRODUCTION

Most recent work on dynamic compressive sensing (CS)
[1] has focused on sparse signal estimation by employing
a sparsity-inducing prior distribution in the ‘source space’
(Type I approach). Among these, multiple measurement vec-
tor (MMV) [2] approach is widely used to model a sequence
of temporally correlated signals. MMV model assumes that
the support (indices corresponding to the non-zero values in
the signal) of the correlated sparse signal vectors are identical
in the source space. However, the support of a practical time-
varying signal changes as time elapses rather than constant
[3], even if it is signatured as a slow dynamic process.

In view of the success of sparse Bayesian learning (SBL)
approaches [4] [5], we are interested in developing Type II
algorithms that operate and optimize in the ‘parameter space’,
to reconstruct a sequence of slowly time-varying signals in the
presence of support innovations. In [6], Wipf et al. prove that
Type II approaches seek optimal values in the parameter space
while it is equivalently minimizing an implicit ‘nonseparable’
cost function in the source space. In this way, a nonseparable
penalty introduces dependencies between entries in the source
space and hence offers a tighter approximation to the ℓ0 norm
in promoting sparsity. The Type II approach is also employed
in [7], where the common sparsity assumption is imposed by
introducing a constant temporal correlation to ensure that the
MMV model is satisfied.

In comparison, we propose a novel CS approach, the
dynamic reweighted ℓ2 (DRℓ2) algorithm. We show that
the proposed algorithm benefits from an embedded ‘convex-

concave’ penalty which is not present in conventional CS.
Simulation results show that DRℓ2 achieves better perfor-
mance than the state-of-the-art algorithms in reconstructing
signals having slow support changes. We also emphasize that
the proposed algorithm is free from the MMV model and
that it does not require any support detection schemes. Thus,
DRℓ2 relaxes the common support assumption and further
avoids the error introduced by the threshold required in [8]
[9]. The notation diag(X) extracts the diagonal entries from
matrix X to form a vector and Diag(x) constructs a diago-
nal matrix using the elements from vector x. Xii is the ith

diagonal element of matrix X.

2. A NOVEL STATISTICAL DYNAMIC MODEL
WITH PRIOR KNOWLEDGE

In the regime of CS reconstruction, we consider recovering
the sparse signal xt at time t using the sampling system:

yt = Φxt + nt, (1)

where yt ∈ RN denotes the current compressive measure-
ments, and the known sensing matrix Φ ∈ RN×M , (N < M)
projects the sparse signal xt ∈ RM from the source space into
measurement space. Here, for simplicity, Φ is assumed to be
constant during the dynamic process.

2.1. Sparse Bayesian Learning (SBL) Model

In the original SBL formulation [4], the signal prior is given
by the Gaussian distribution:

p(xt;γ) =
M∏
i=1

(2πγi)
−1/2

exp(−
x2
t,i

2γi
). (2)

The vector γ = [γ1, γ2, . . . γM ]T consists of the hyperparam-
eters γi that control the prior variance of each signal entry
xt,i. The noise nt is parameterized with the variance σ2. The
likelihood of the complete data set is given by:

p(yt|xt, σ
2) = (2πσ2)−1/2 exp{− 1

2σ2
∥yt −Φxt∥22}. (3)



The posterior density of xt is also Gaussian. Using Γ =
Diag(γ), the posterior mean for xt is obtained as µt, with
the estimation covariance Σx:

µt = (ΦTΦ+ σ2Γ−1)−1ΦTyt,Σx = (σ−2ΦTΦ+ Γ−1)−1.
(4)

Type II method alternatively maximizes the marginal likeli-
hood and gives corresponding cost function in the γ space:

p(yt|γ, σ2) =

∫
p(yt|xt;σ

2)p(xt;γ)dxt (5)

L(γ) = yT
t Σ

−1
y yt + log |Σy| . (6)

The cost function L(γ) is then optimized by iterating expec-
tation maximization (EM) steps among µt and γ [4].

2.2. A New Expectation Maximization Formulation For
Slow Dynamic Process

The work in [10] maximizes the likelihood on signal innova-
tion ∆x while it essentially still optimizes Eq.(5) having xt−1

as the prior mean for p(xt;γ). Instead, in order to specify a
slow varying signal xt ∈ RM at time stamp t, we propose
to use the following dynamic model involving an improper
hyperprior probability density p(γ):

xt = xt−1 +∆x,yt = yt−1 +∆y,∆y = Φ∆x+ nt (7)

p(γ) ∝
∏
i

e
−x2

t−1,i
2γi , p(∆x|γ) =

∏
i

(2πγi)
− 1

2 e
−∆x2

i
2γi (8)

where ∆x represents the signal innovation vector between the
time stamps t and t − 1, nt follows N (0, σ2). By imposing
an improper hyperprior probability density p(γ) as in Eq.(8),
we propose to optimize:

p(∆y|γ, σ2) =

∫
p(∆y|∆x)p(∆x|γ)p(γ)d∆x. (9)

By taking log of Eq.(9) and omitting the irrelevant terms, we
yield the new cost function:

L̂(γ) = ∆yTΣ−1
∆y∆y + log |Σ∆y|+ xT

t−1Γ
−1xt−1, (10)

where Σ∆y = σ2I+ΦΓΦT for which the optimal parameters
γi could not be obtained in closed form. The EM formula-
tion hence alternatively optimizes the conditional expectation
E∆x|y,γ,σ2 log[p(∆y|∆x) · p(∆x|γ) · p(γ)], which through
differentiation with regard to γ yields the optimal γi as:

γi = E∆x|y,γ,σ2(∆x2
i + x2

t−1,i)
= (∆µi)

2 +Σ∆x,ii + x2
t−1,i,

(11)

where Σ∆x = (σ−2ΦTΦ+ Γ−1)−1. The expectation of ∆x
is derived as ∆µ = σ−2Σ∆xΦ

T∆y. The effect of p(γ) is
as follows. When |xt−1,i| is large, the corresponding γi is
discouraged from having a value near zero, and therefore the

associated larger variance of ∆xi means |∆xi| is less likely to
be near zero. This is consistent with the intuition that existing
large entries |xt−1,i| are likely to have a wider dynamic range
than small or zero-valued ones. Larger |xt−1,i| also naturally
requires larger changes wherever support pruning is necessary
to occur. In contrast, when |xt−1,i| becomes small, the hyper-
prior on γi becomes increasingly flat, allowing the inherent
sparsity-inducing mechanism of SBL to dominate. This im-
plies that the associated ∆xi is likely to be near zero unless it
is particularly useful in representing ∆y. When xt−1,i = 0,
the hyperprior becomes perfectly flat, and Eq.(11) reduces to
the standard SBL. Note that without p(γ), SBL applied to the
innovations even favors sparse variations on nonzero entries
in xt−1, making gradual signal drifts difficult to model.

3. DYNAMIC REWEIGHTED ALGORITHM DRℓ2

The optimization of Eq.(9) differs from Eq.(5) in involving
xt−1 as the prior mean for p(xt;γ) and the presumed im-
proper hyperprior for p(γ). To investigate the mechanism
behind the intuitive γ updating rule proposed in Sec.2.2, we
construct an upper-bound on the cost function Eq.(10) in the
source space ∆x, from which we retrieve the identical up-
date rule, independently from the statistical standpoint. Since
min
∆x

1
σ2 ∥∆y −Φ∆x∥22 + ∆xTΓ−1∆x = ∆yT Σ−1

∆y∆y

holds, we majorize L̂(γ) into L(γ,∆x):

L(γ,∆x) =
1

σ2
∥∆y −Φ∆x∥22 +∆xTΓ−1∆x

+ xT
t−1Γ

−1xt−1 + log |Σ∆y| , (12)

on which we proceed to minimize over γ:

L(∆x)
∆
= min

γ≥0
L(γ,∆x)

=
1

σ2
∥∆y −Φ∆x∥22 +min

γ≥0
(∆xTΓ−1∆x

+ xT
t−1Γ

−1xt−1 + log |Σ∆y|)

=
1

σ2
∥∆y −Φ∆x∥22 + gdr(∆x). (13)

By using h∗(z) to represent the concave conjugate [11] of
log

∣∣Σ−1
∆x

∣∣ with respect to vector diag(Γ−1), gdr(∆x) is up-
per bounded in the ∆x space:

gdr(∆x) ≤ xT
t−1Γ

−1xt−1 +∆xTΓ−1∆x+ log |Σ∆y|
= xT

t−1Γ
−1xt−1 +∆xTΓ−1∆x+ log |Γ|+ log

∣∣Σ−1
∆x

∣∣+ log σ2N

≤ xT
t−1Γ

−1xT
t−1 +∆xTΓ−1∆x+ log |Γ|

+zTγ−1 − h∗(z) + 2N log σ

= 2N log σ − h∗(z) +
∑
i

(
x2
t−1,i+∆x2

i

γi
+ zi

γi
+ log γi),

(14)

We define the sum term in Eq.(14) as fℓ2(∆x,γ, z), and per-
form coordinate descent method over:

min
∆x;z,γ≥0

1

σ2
∥∆y −Φ∆x∥22−h∗(z)+fℓ2(∆x,γ, z), (15)



Algorithm 1 Dynamic Reweighted ℓ2 algorithm (DRℓ2)
Input: Sensing matrix Φ, past estimation xt−1 measure-
ments yt and yt−1

Initialization: k = 0, xt = 0,∆x = 0, γi = 1, i ≤ M ;
while halting criterion false do

k = k + 1; ⋄ k is the iteration index
∆xk = σ−2ΣxΦ

T (yt − yt−1);
xk
t = xt−1 +∆xk;

γi = x2
t−1,i +Σ∆x,ii +∆x2

i , γ = [γ1, γ1...γM ]T ;
Σ∆x = (σ−2ΦTΦ+ Γ−1)−1;

end while
return xt;

in which γi = x2
t−1,i+∆x2

i +zi is the minimizer having fixed
zi and ∆xi, while the optimal xt,op in each iteration becomes:

xt,op = xt−1 + σ−2ΣxΦ
T (yt − yt−1), (16)

and zi =
∂ log|Σ∆x|

∂γ−1
i

= Σ∆x,ii is the optimal value due to the

concavity property of log
∣∣Σ−1

∆x

∣∣ [11]. If we replace the nota-
tion Σ∆x,ii in Eq.(11) with the zi obtained here, it is clear that
the coordinate descent updates derived here exactly match the
EM steps proposed in Sec.2.2. Ignoring irrelevant terms, the
effective regularization with respect to ∆x behind the EM for-
mulation becomes:

min
∆x;z,γ≥0

1

σ2
∥∆y −Φ∆x∥22 + fℓ2(∆x,γ, z), (17)

fℓ2(∆x,γ, z) =
∑
i

(
x2
t−1,i +∆x2

i

γi
+

zi
γi

+ log γi). (18)

We now concentrate our attention to the penalty fℓ2(∆x,γ, z)
satisfying:∑

i

log(x2
t−1,i +∆x2

i ) ≤
∑
i

log(x2
t−1,i +∆x2

i + zi)

≤
∑
i

(
x2
t−1,i+∆x2

i

γi
+ zi

γi
+ log γi − 1)

= fℓ2(∆x,γ, z)−M,
(19)

for which the second equality becomes tight iff γi = x2
t−1,i+

∆x2
i + zi holds. It is now clear that the minimizer of

the object function Eq.(15) is essentially iterating in ∆x
space to minimize the strict upper-bounding hyperplanes
of

∑
i

log(x2
t−1,i +∆x2

i + zi). The non-negative duality

term zi forming the first inequality in Eq.(19) recalls the
tuning term ϵ used in [12]. In fact, [12] and [13] have
shown that tuning factors in similar forms potentially as-
sist in avoiding convergence to local minima and also sta-
bilize the reweighted reconstruction. In the noiseless case,
zi = 0 upon the convergence to local optima, and the kernel
of the penalty in ∆x space is effectively the upper-bound of
fk(∆x) =

∑
i

log(x2
t−1,i +∆x2

i ).
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Fig. 1. Visualization of Penalty fk(∆x)

4. THE CONVEX-CONCAVE PENALTY

A Log-sum penalty is a concave non-decreasing function
of the coefficient magnitudes, therefore risking conver-
gence to local minima. On the other hand, the concave
penalty favors sparse solutions while its convex counterparts
guarantee global optima. We show here that the penalty
fk(∆x) =

∑
i

log(x2
t−1,i +∆x2

i ) beneficially exhibits both

of the desired properties that stem from its ‘convex-concave’
nature. Fig.1(a) and Fig.1(b) visualize the 1D (M = 1) and
2D (M = 2) cases of the penalty fk(∆x) respectively. It
is xt−1 that determines the transition point of fk(∆x) with
regard to the signal innovation ∆x. As a result, in the blue
solid curve region where the signal variations are smaller
than xt−1, fk(∆x) leads to a convex penalty that encourages
a non-sparse solution of ∆x. In contrast, larger innovations
than xt−1 inducing the concave penalty have the sparsity-
enforcing effect as the red dashed region shows. Small non-
sparse variations hence are driven to take place on the past
support (0 < |∆xi| < |xt−1,i|) as the blue region indicates,
rather than triggering support changes. Support additions
(|∆xi| > |xt−1,i| = 0) and removals (|∆xi| = |xt−1,i| > 0)
are therefore promoted to be sparse as the red dashed concave
curve indicates. In this way, DRℓ2 takes advantage of the pre-
vious estimations to transition from a convex penalty region
to a concave penalty to avoid false support innovations.

In order to obtain an elementary perspective of what
gdr(∆x) is suggesting, we remove the ith column ϕi from Φ

and define Φ̃ ∈ RN×(M−1) as the dictionary consisting of
the remaining columns from Φ, while Γ̃ ∈ R(M−1)×(M−1)

is a diagonal matrix excluding the ith row and ith column
in Γ. Substituting G = σ2I + Φ̃Γ̃Φ̃T , c = [ϕT

i G
−1ϕi]

−1,
r(∆x) = xT

t−1Γ
−1xt−1 +∆xTΓ−1∆x, we yield:

gdr(∆x) ≤ xT
t−1Γ

−1xt−1 +∆xTΓ−1∆x+ log |Σ∆y|
= r(∆x) + log

∣∣∣σ2I+ Φ̃Γ̃Φ̃T + γiϕiϕ
T
i

∣∣∣
= r(∆x) + log |G|+ log

∣∣1 + γiϕ
T
i G

−1ϕi

∣∣
= r(∆x) + log |G|+ log

∣∣c−1
∣∣+ log |γi + c|

=
x2
t−1,i+∆x2

i

γi
+ log |γi + c|+ p,

(20)



where p = log |G|+log
∣∣c−1

∣∣+∑
j ̸=i

x2
t−1,j+∆x2

j

γj
is the term in-

dependent from xt−1,i and ∆xi. The entrywise optimization

cost with regard to ∆xi becomes fic(∆xi) =
x2
t−1,i+∆x2

i

γi
+

log |γi + c|. Notice c = (ϕT
i G

−1ϕi)
−1 actually indicates

how closely the ith column ϕi is correlated to the remaining
atoms Φ̃. In an extreme scenario that σ2 = 0 and the ith atom
is orthogonal to any other columns in Φ̃, c vanishes and the
entrywise fic(∆xi) is equivalent to the 1D case of fk(∆x)
with an identical update rule of DRℓ2. In this way, the esti-
mation of each ∆xi will benefit from the same characteris-
tic described earlier, namely either to trigger sparse support
change or merely non-sparse small variation given xt−1,i. If
c is large due to any significant correlation with the remaining
columns, the transition point drifts away from xt−1,i. Conclu-
sively, the more a dictionary is behaving like an orthogonal
basis, the more aggressively DRℓ2 can distinguish relevant
columns with lower noise.

5. SIMULATION RESULTS

We apply DRℓ2 to reconstruct the synthetic dynamic signal
generated from N (0, 1) having length M = 100 and sparsity
K = 7 (number of nonzero entries in xt−1). In both of the
experiments, the signal to noise ratio (SNR) is 17dB. In order
to evaluate robustness against support changes, we demon-
strate the algorithm performance where the elapsed time is
only one time stamp. However, tracking multiple time stamps
gives similar results that are not shown due to limited space.
The sampling matrix Φ remains a constant Gaussian matrix
throughout the experiments. In both of the experiments, we
randomly remove 2 existing supports from the xt−1 while
∆K support additions are randomly generated from an ampli-
tude distribution N (0, 1). In addition, we impose random am-
plitude variations produced from Gaussian distribution N (0,
0.5) to be added to the remaining support in order to model
the slow dynamic process. In this way, the innovation vector
∆x is of sparsity Kinn = ∆K + (K − 2) which is a chal-
lenging case. The reconstruction performance with regard to
the compression ratio N/M is also presented, where N is the
number of measurements. We conduct 500 trials for each ex-
periment. The MSE (Mean Square Error) adopts the conven-
tion ∥xt − x̃t∥22 / ∥xt∥22, where xt indicates the true signal
and x̃t represents the reconstructed signal. We use RSS to de-
note the rate of successful support reconstruction, computed
by Kr/[500(K−2+∆K)] where Kr is the number of correct
supports obtained from x̃t in 500 trials.

The algorithms compared include state-of-the-art dy-
namic and reweighted algorithms: Modified CS (ModCS)
[9], Regularized modified CS (RegMod) [8], Block SBL-EM
(BSBL) [7] [14], the Reweighted l2 SBL (SBLℓ2) [13] and
Reweighted l1 (Reℓ1) [12]. Notice that the previous estimate
xt−1 is input to all the algorithms that require it.

In the first experiment, N = 25 is fixed and the number
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Fig. 2. Performance evaluated by mean square error (MSE)
and the rate of successful support detection (RSS)

of support additions ∆K varies from 1 through 5 to investi-
gate robustness against unexpected support innovations. As
Fig.2(a) and Fig.2(b) illustrate, DRℓ2 always offers the best
reconstruction against signal variations. In contrast, although
benefiting from prior knowledge obtained from xt−1 as DRℓ2
does, ModCS and RegMod are much vulnerable to support
changes since both of the algorithms heavily count on the old
estimates without adaptation to adjust the bias. BSBL-EM
fails due to the strong block sparsity assumed that produces
estimation artifacts caused by the noise. SBLℓ2 exhibits the
advantage of the non-separable penalty, but is completely in-
dependent from past information and hence performs poorly
with small N/M .

The second experiment evaluates algorithm performance
at low sampling rates. N ranges from 22 to 30, indicating the
compression ratios from 0.22 to 0.3. As Fig.2(c) and Fig.2(d)
illustrate, DRℓ2 not only remains robust against noise and the
varying support, but also leverages the reconstruction accu-
racy at lower sampling rates.

6. CONCLUSION

In this paper, we propose the novel dynamic CS algorithm
DRℓ2. We reveal the ‘convex-concave’ feature inherent in
the penalty, which benefits the reconstructions. DRℓ2 is not
only robust against significant signal variations even in noisy
cases, but also achieves more accurate reconstruction at lower
sampling rates in comparison with state-of-the-art CS algo-
rithms.
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