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ABSTRACT 

To solve the problem of joint sparsity pattern recovery in a decen-
tralized network, we propose an algorithm named decentralized 
and collaborative subspace pursuit (DCSP). The basic idea of 
DCSP is to embed collaboration among nodes and fusion strategy 
into each iteration of the standard subspace pursuit (SP) algorithm. 
In DCSP, each node collaborates with several of its neighbors by 
sharing high-dimensional coefficient estimates and communicates 
with other remote nodes by exchanging low-dimensional support 
set estimates. Experimental evaluations show that, compared with 
several existing algorithms for sparsity pattern recovery, DCSP 
produces satisfactory results in terms of accuracy of sparsity pat-
tern recovery with much less communication cost.  

Index Terms— Joint sparsity pattern recovery, compressive 
sensing, information fusion, subspace pursuit.

1. INTRODUCTION � 

Compressive sensing (CS) refers to the idea that a sparse signal 
can be accurately recovered from a small number of measurements 
[1]-[3]. It has been shown that CS is potentially useful in a wide 
range of applications including medical imaging [4], radar imaging 
[5], source localization [6], and spectrum sensing [7]. In particular, 
CS provides a new perspective for data reduction in sensor 
network applications without compromising performance [8]-[10].  

Consider a network composed of L distributed nodes. The 
measurements collected at the l-th node are given by  

l l l�y A x                                       (1) 
where yl is an M×1 measurement vector, Al is an M×N dictionary 
matrix, xl is an N×1 vector which has K nonzero entries with 
indices listed in a support set S. Assume that all {xl, l=1, 2, , L}
have the same sparsity pattern, i.e., S={i: xl(i) 0 for i=1, 2, , N}
with cardinality |S|=K. Our goal is to recover the support set S 
using {yl, Al, l=1, 2, , L} in the case that N>M 2K. Once S is 
determined, the nonzero entries in xl can be recovered by least 
squares estimation.  

In centralized processing, it is required for each node to 
transmit its measurement vector and dictionary matrix to a central 
fusion center. Due to practical constraints on communication 
bandwidth and computational capacity, recovering sparsity pattern 
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in a decentralized manner is more efficient. The joint orthogonal 
matching pursuit (JOMP) and the joint subspace pursuit (JSP) 
algorithms were presented in [11], where each node estimates the 
support set independently, and then the global estimate of the 
support set was obtained by fusing all individual estimates by 
majority rule. In [12], the distributed version of JSP, the 
distributed subspace pursuit (DiSP) algorithm, was developed by 
restricting the number of connectable neighbors for each node. 
DiSP reduces the requirement of network connectivity, however, at 
the cost of decreased accuracy of sparsity pattern recovery. The 
algorithms in [13]-[17] achieve better accuracy in sparsity pattern 
recovery compared to that in [11]-[12], by embedding 
collaboration among nodes into the iterative solution process at 
each node. In the distributed basis pursuit algorithms [13]-[14], 
each node solves for a local sparse solution by convex 
optimization and refines the solution by communicating with other 
nodes in an iterative manner. These convex optimization based 
algorithms require large computational resources. In the simulta-
neous orthogonal matching pursuit (SOMP) [15]-[16] and the sim-
ultaneous subspace pursuit (SSP) algorithms [17], collaboration 
among nodes at each iteration is also employed, but local estimates 
of the support set are obtained by greedy pursuit procedures. Gen-
erally speaking, SOMP and SSP are computationally much simpler 
than the convex optimization based algorithms in [13]-[14].  

To implement the algorithms in [13]-[17] in a decentralized 
network, at each iteration, each node has to send O(N)-length 
vectors consisting of the locally estimated coefficients to all the 
other nodes in the network. Before the iterative process converges, 
these O(N)-length messages are probably not sparse, and therefore, 
the total number of messages to be transmitted is considerably 
large. Thus, applying the algorithms in [13]-[17] to a decentralized 
network requires large communication bandwidth. A communica-
tion efficient algorithm, the distributed and collaborative 
orthogonal matching pursuit (DCOMP) algorithm, was proposed in 
[18], where the reduction of communication cost comes from the 
fact that transmission of O(N)-length-vectors is restricted to a 
small neighborhood surrounding each node. However, due to lack 
of backtracking operations, once an index is considered as reliable 
and selected by DCOMP, it is not removed from the support set. 
This means that the strategy of index selection in DCOMP is too 
restrictive, and therefore, a larger number of measurements is 
required to guarantee the success of sparsity pattern recovery. 

In this paper, we develop a new communication-efficient 
algorithm named decentralized and collaborative subspace pursuit 
(DCSP) for joint sparsity pattern recovery. The way that nodes in 
DCSP collaborate is different from that in JOMP and JSP. Similar 
to the algorithms in [13]-[17], DCSP also embeds the collaboration 
among nodes into the iterative solution process and, therefore, is 
superior to JOMP and JSP in terms of accuracy of sparsity pattern 



———————————————————————— 
Algorithm 1 The SSP algorithm at the l-th node 
———————————————————————— 
Input: K, yl , Al.
Initialization:  

1) Send the vector 0 | |H
l l l�c A y  to and receive 0

jc from the j-

th node, for all j G\{l}.
2) Let S0 = max_ind( 0

ll�� G
c , K); calculate the residual 0

lr =
resid(yl, Al(S0)).

Iteration: at the t-th iteration (t 1)
3) Send the vector 1| |t H t

l l l
��c A r  to and receive t

jc  from the 

j-th node, for all j G\{l}.
4) Let 1t t��S S� � max_ind( t

ll�� G
c , K).

5) Send the vector proj( , ( ))t t
l l l�d y A S�  to and receive t

jd

from the j-th node, for all j G\{l}.
6) Let St= max_ind( | |t

ll�� G
d , K); update the residual t

lr  = 
resid(yl, Al(St)). 

7) Send the value of 
2

2

t
lr  to and receive 

2

2

t
jr  from the j-th 

node, for all j G\{l}.

8) If 
2 21

2 2

t t
l ll l

�
� �

�� �G G
r r , let St=St-1 and stop; otherwise, 

let t=t+1, and return to Step 3).  
Output: The estimated support set St.
———————————————————————— 

recovery. Different from the unrestricted collaboration among 
nodes in SOMP [15]-[16] and SSP [17], at each iteration of DCSP, 
each node shares O(N)-length messages only with a few of its 
neighboring nodes and communicates with other remote nodes by 
exchanging local K-length estimates of the support set. Therefore, 
compared to SOMP and SSP, DCSP significantly reduces the 
number of messages to be transmitted and, accordingly, requires 
less communication bandwidth of the network. Different from 
DCOMP in which all of the index estimates from past iterations 
are deemed reliable, DCSP is capable of removing wrong index 
estimates during each iteration by reevaluating the reliability of the 
previously estimated support set and fusing all the local index 
estimates. Therefore, compared to DCOMP, DCSP provides much 
better accuracy of sparsity pattern recovery at a comparable 
communication cost.  

The rest of this paper is organized as follows. In Section 2, 
the implementation of SSP in a decentralized network is 
introduced. In Section 3, the DCSP algorithm is proposed for joint 
sparsity pattern recovery. Simulation results are provided in 
Section 4 and concluding remarks are given in Section 5.  

2. SSP IN A DECENTRALIZED NETWORK 

The original SSP algorithm was proposed in  [17]  for centralized 
processing. In this section, we consider the implementation of SSP 
in a decentralized network consisting of L nodes. We assume that 
there is no fusion center and the sparsity pattern estimation has to 
be performed via collaboration among nodes. To achieve the same 
accuracy of sparsity pattern recovery as with the centralized SSP 
algorithm, all nodes in the decentralized network need to exchange 
local processing results with each other at each iteration. The oper-
ations at the l-th node are summarized in Algorithm 1. We do not 
consider any specific communication protocol here and assume the 
worst-case scenario in terms of communication complexity that all 
the nodes communicate with each other one-by-one. To simplify 
the presentation, we define the following notations.  
� 1proj( , ) [ ]H H��y A A A A y calculates projection coefficients of 

a vector y onto the column space of the matrix A. (·)H denotes 
conjugate transpose.  

� 1resid( , ) [ ]H H�� �y A y A A A A y  outputs the projection resid-
ual vector.

� max_ind(y, K)={K indices corresponding to the largest magni-
tude entries in the vector y}.

� max_occ(S, K) ={K elements that have the highest frequency 
of occurrence in the set S}.

� A(S) denotes a sub-matrix composed of the columns of A in-
dexed by the set S. 

� y(S) denotes a sub-vector composed of the entries of y indexed 
by the set S. 

� G={1, 2, , L} records the indices of all nodes. 
� superscript t denotes the iteration counter.  

Our focus is on the communication cost during the collabora-
tion among nodes. The communication cost can be considered 
proportional to the number of messages to be transmitted. The 
communication between nodes in the network appear in Steps 1), 
3), 5) and 7) of SSP, and the lengths of the messages transmitted 
from each node are N, N, 2K and 1, respectively. Thus, the total 
number of messages transmitted from all nodes is  

� 	2 1 ( 1)SSP SSPC N T N K L L� 
 � � � � � �  ,              (2) 

where TSSP is the number of iterations needed to successfully re-
cover the support set by SSP and its value depends on the ampli-
tude distribution of the sparse signal [19]. The total communica-
tion cost in (2) will dramatically increase as the network connec-
tivity increases.  

3. THE DCSP ALGORITHM  
 
Considering the tradeoff between the communication cost and the 
recovery accuracy, in this section we present the DCSP algorithm, 
which provides satisfactory accuracy of sparsity pattern recovery 
and requires much less communication overhead compared to SSP. 
Note that the communication cost in SSP is dominated by the 
transmissions of N-length messages among nodes. From this ob-
servation, it is desirable to reduce the communication cost by re-
stricting exchanges of N-length messages among nodes. In the 
DCSP algorithm, each node is allowed to share O(N)-length mes-
sages only with a few of its neighboring nodes and communicates 
with other remote nodes in the network by transmitting and receiv-
ing K-length messages. The indices of the neighbors of the l-th 
node are recorded in the set Gl, which also contains the l-th node 
itself. When Gl=G for all l G, the DCSP algorithm will degener-
ate into the decentralized version of SSP described in Section 2. 

In DCSP summarized in Algorithm 2, each node first collabo-
rates with a few of its neighbors to obtain the local estimate of the 
support set and then fuses all local estimates received from all 
nodes in the network by majority role, as described below. At each 
iteration, each node communicates with its neighbors twice and 
broadcasts to all nodes twice. After initialization, the first collabo-
ration among neighboring nodes appears in Step 5) of DCSP, 
where the l-th node shares an N-length correlation coefficient vec-



———————————————————————— 
Algorithm 2 The DCSP algorithm at the l-th node 
———————————————————————— 
Input: K, yl , Al .
Initialization:  

1) Send the vector 0 | |H
l l l�c A y  to and receive 0

jc  from the 

j-th node, for all j Gl\{l}.
2) Let 0

l� =max_ind( 0

l
ll�� G

c , K).  

3) Send 0
l� to and receive 0

j�  from the j-th node, for all j
G\{l}.

4) Let 0 0 0 0
1 2{ , , , }L�� � � �� and S0=max_occ( 0� , K); set the 

residual 0
lr = resid(yl, Al(S0)).

Iteration: at the t-th iteration (t 1)
5) Send the vector 1| |t H t

l l l
��c A r  to and receive t

jc  from the 

j-th node, for all j Gl \{l}.
6) Let 1t t

l
��S S� � max_ind(

l

t
ll�� G

c , K); calculate the pro-

jection coefficients proj( , ( ))t t
l l l l�x y A S� .

7) Send t
lx  to and receive t

jx  from the j-th node, for all j
Gl\{l}.

8) Let t
l� =max_ind( | |

l

t
ll�� G

x , K).

9) Send t
l� to and receive� t

j�  from the j-th node, for all j
G\{l}.

10) Let 1 2{ , , , }t t t t
L�� � � �� and St=max_occ( t� , K)��update 

the residual t
lr = resid(yl, Al(St)). 

11) Send
2
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t
lr  to and receive the 

2

2

t
jr  from the j-th node, for 

all j G\{l}.

12) If 
2 21

2 2

t t
l ll l

�
� �

�� �G G
r r , let St=St-1 and stop; other-

wise, let t=t+1, and return to Step 5).   
Output: The estimated support set St.

Table 1 Comparison in terms of communication cost 
Algorithm  Number of transmitted messages  
JSP&JOMP K(L 1)L
SOMP KN(L 1)L
DCOMP � 	( 1) ( 1)DCOMPT g NL L L� � �

SSP � 	2 1 ( 1)SSPN T N K L L
 � � � � � �
DCSP

� 	
( 1) ( 1)

( 1)( 2 ) ( 1)( 1)DCSP

g NL K L L
T L g N K K L
� � �

� � � � � �

tor t
lc with its neighbors. The coefficients in t

lc are probably not 
sparse before the iterations converge, so transmission of the entire 

t
lc  is necessary. The neighboring nodes collaborate once again in 

Step 7) of DCSP, where the l-th node shares a 2K-length projection 
coefficient vector t

lx with its neighbors. By such two-stage collab-

oration, the l-th node selects K indices from t
lS�  as the local esti-

mate of the support set by finding a K-dimensional subspace that 
the local measurements lie in. Then in Step 9) of DCSP, the l-th

node broadcasts the K-length vector t
l�  (i.e. the local estimate of 

the support set) to all nodes in the network. As a result, the index 
set t� in Step 10) of DCSP is the same for all the nodes in the 
network. Fusion of all local estimates of the support set is per-
formed according to majority rule. In Step 10) of DCSP, K indices 
that have the highest frequency of occurrence are recorded in the 
set St. Thus, St represents the global estimate of the support set. In 
Step 11) of DCSP, each node broadcasts once again to report the 
local recovery error. When the global recovery error reaches the 
minimum, iterations at all the nodes are terminated. From all the 
steps of DCSP, the total number of transmitted messages can be 
calculated as   

� 	
( 1) ( 1)

          ( 2 ) ( 1) ( 1)( 1)

DCSP ll

DCSP ll

C N g K L L

T N K g K L L
�

�

� � � �

� � � � � �

�
�

G

G

,    (3) 

where TDCSP is the number of iterations needed to successfully 
recover the support set by DCSP.  

In what follows, we compare different algorithms in terms of 
the number of messages to be transmitted. Without loss of general-
ity, a symmetric network is considered and two assumptions are 
made: 1) gl=g for all l G, and 2) the neighbors of the l-th node 
are indexed by {mod(l+1,L)+1, mod(l+2,L)+1, , mod(l+g-
1,L)+1}, where mod(·) is the modulus operation. The numbers of 
messages to be transmitted in different algorithms are listed in 
Table 1, where TDCOMP is the number of iterations needed for suc-
cessful sparsity pattern recovery by DCOMP. JOMP and JSP have 
the smallest number of transmitted messages in Table 1, since in 
these two algorithms, support set fusion is performed after each 
node independently completes the local estimation of the support 
set. However, as shown in the next section, the recovery accuracies 
of JOMP and JSP are unsatisfactory. Since K� N, g<L and all 
values of TDCOMP, TSSP and TDCSP are in the order of O(K), we can 
see that the communication cost of DCSP is much less than that of 
SOMP and SSP and in the same order of magnitude as that of 
DCOMP.  

It is also worth discussing the recovery accuracies of DCOMP 
and DCSP, since their communication costs are comparable. In 
contrast to DCOMP, DCSP is capable of removing poor index 
estimates from the support set estimate. This is achieved by two 
operations: 1) in Steps 6) of DCSP, each node reevaluates the 
reliability of previous index estimates and newly added indices; 
and 2) in Step 10) of DCSP, poor local estimates of indices 
corresponding to low frequency of occurrence are rejected by 
majority voting. Thus, the recovery accuracy of DCSP is expected 
to be better than that of DCOMP, which will also be shown by 
simulations in the next section.   
 

4. SIMULATION RESULTS 

In the first experiment, we evaluate the sparsity pattern recovery 
capability of different algorithms. Consider a network composed 
of 6 nodes, i.e., L=6. With the fixed sparsity K=10 and the length 
of sparse solution at each node N=200, simulations are carried out 
as follows.  
a) Choose a value of M such that M 2K.
b) Randomly generate a set of M×N dictionary matrices  {Al , l=1,

2, , L} from the standard independent and identically distrib-
uted (iid) Gaussian ensemble.  

c) Randomly select K indices from {1, 2, , N} as the support set 
S, and draw the entries of xl supported on S from the standard 
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iid Gaussian ensemble, for l=1, 2, , L.
d) Generate the measurement vectors yl=Alxl, l=1, 2, , L. Apply 

different algorithms to recover the support set. If the support 

set estimate is equal to S, the recovery is considered as suc-
cessful.   

e) Repeat the Steps b) to d) 500 times for each value of M, and 
count the frequency of successful reconstruction.  
In Fig. 1, we compare DCSP with five algorithms for sparsity 

pattern recovery (i.e. SSP [17], SOMP [16], DCOMP [18], JOMP 
and JSP [11]) in terms of accuracy of sparsity pattern recovery. 
Assuming that all of the 6 nodes are fully collaborative, SSP re-
quires M 26 to achieve success rate greater than 99.8%, which is 
the best performance in Fig. 1. Under the same assumption, SOMP 
requires M 34 to achieve success rate greater than 99.8%. In both 
DCSP and DCOMP, the number of neighbors is set to g=3 for each 
node. DCSP and DCOMP require M 30 and M 44 to achieve 
success rates greater than 99.8%, respectively, which means that 
DCSP has much better sparsity pattern recovery capability than 
DCOMP. It is worth emphasizing that, due to the capability of 
removing wrong index estimates from the support set, DCSP based 
on full collaboration among 3 nodes yields slightly higher success 
rate than SOMP based on full collaboration among all 6 nodes.  

In the second experiment, we compare communication costs 
and convergence speeds of four algorithms (i.e. SSP, SOMP, 
DCOMP and DCSP) that have higher success rates in Fig. 1, i.e., 
JOMP and JSP are not considered. Let M=50, N=200 and K=10.
Assume that the network scale is increasing, i.e., L is varying from 
5 to 40, and the number of neighbors is fixed at g=3 for each node. 
The number of messages to be transmitted and the required num-
ber of iterations for the four algorithms are plotted in Fig. 2 and 
Fig. 3, respectively. The simulation implementation is the same as 
that in the previous experiment, and every point is obtained by 
averaging over 100 trials. Fig. 2 demonstrates the superiority of 
DCSP to SOMP and SSP in terms of communication efficiency. 
The reason is that DCSP replaces a large number of exchanges of 
N-length messages among nodes with exchanges of K-length mes-
sages. The communication cost of DCSP is comparable with that 
of DCOMP: in a small scale network, the number of transmitted 
messages of DCSP is slightly smaller than that of DCOMP, while 
the situation is reversed in a large scale network. Fig 3 plots the 
number of iterations required for different algorithms versus the 
number of nodes. Thanks to the effective collaboration among 
nodes, SSP and DCSP have faster convergence speeds compared 
to DCOMP and SOMP, and they are even capable of successfully 
recovering the support set from only one iteration when the num-
ber of nodes is large enough.  

5. CONCLUSION 

In this paper, we focused on the recovery of sparsity pattern in a 
decentralized network. By embedding collaboration among neigh-
boring nodes and fusion strategy into each iteration of the standard 
SP algorithm, we developed an algorithm named DCSP for decen-
tralized estimation of the sparsity pattern. In the DCSP algorithm, 
each node collaborates with a few of its neighbors by sharing 
O(N)-length messages and communicates with other remote nodes 
by exchanging K-length messages. Simulation results show that, 
compared with other similar algorithms, DCSP provides satisfacto-
ry recovery accuracy and has less communication cost. Future 
work includes convergence analysis, study of robustness to quanti-
zation errors, and extension to more complicated sparse structures. 
Our approach presented here can be easily combined with the 
compressive sampling matching pursuit (CoSaMP) algorithm [20], 
since CoSaMP and SP are very similar to each other.  
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