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Abstract
Compressive sensing (CS) is a data acquisition technique that measures sparse or compressible
signals at a sampling rate lower than their Nyquist rate. Results show that sparse signals
can be reconstructed using greedy algorithms, often requiring prior knowledge such as the
signal sparsity or the noise level. As a substitute to prior knowledge, cross validation (CV),
a statistical method that examines whether a model overfits its data, has been proposed to
determine the stopping condition of greedy algorithms. This paper analyses cross validation in
a general compressive sensing framework. Furthermore, we provide both theoretical analysis
and numerical simulations for a cross-validation modification of orthogonal matching pursuit,
referred to as OMP-CV, which has good performance in sparse recovery.
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ABSTRACT

Compressive sensing (CS) is a data acquisition technique that mea-
sures sparse or compressible signals at a sampling rate lower than
their Nyquist rate. Results show that sparse signals can be recon-
structed using greedy algorithms, often requiring prior knowledge
such as the signal sparsity or the noise level. As a substitute to prior
knowledge, cross validation (CV), a statistical method that examines
whether a model overfits its data, has been proposed to determine
the stopping condition of greedy algorithms. This paper analyses
cross validation in a general compressive sensing framework. Fur-
thermore, we provide both theoretical analysis and numerical simu-
lations for a cross-validation modification of orthogonal matching
pursuit, referred to as OMP-CV, which has good performance in
sparse recovery.

Index Terms— Compressed sensing, signal reconstruction,
cross validation, orthogonal matching pursuit

1. INTRODUCTION

Compressive sensing (CS) is a data acquisition technique that mea-
sures sparse or compressible signals at sampling rate close to their
intrinsic information rate rather than the Nyquist rate [2,3]. Broadly
speaking, it consists of two main building blocks: encoding an N -
dimensional k-sparse signal x by computing its M ≪ N linear pro-
jections and decoding the signal using various sparse recovery meth-
ods, such as linear programming [4–6] or greedy algorithms [7–11].

While greedy algorithms are often preferred for their low com-
putational complexity, most of them require prior information—such
as signal sparsity or noise level—for accurate reconstruction, with-
out which the reconstructed signal may fail to completely reconstruct
the signal or overfit the noise [17]. Such information not available
in practice, cross validation (CV) [12–16], a statistical method that
examines whether a model overfits the data, has been proposed as
an alternative solution [17], where, in general, measurements are
separated into reconstruction measurements and CV measurements;
the former are used to reconstruct the signal via a greedy algorithm,
while the latter to compute the stopping criterion. It has also been
shown that CV can be used to estimate the recovery error. Specifi-
cally, using the Johnson-Lindenstrauss lemma, we can derive theo-
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retical bounds on the estimation error, quantifying how the number
of CV measurements mcv influences the estimation quality [18].

In this paper we provide an analysis of CV performance in gen-
eral CS problems. Furthermore, we analyse a variation of the or-
thogonal matching pursuit (OMP) algorithm, called OMP-CV, which
exploits CV to determine the recovered signal sparsity.

To analyse CV in general CS problems, we need to address the
following two problems. First, given a recovered signal, we are in-
terested in determining how close it is to the original input signal.
Second, given two candidate recovered signals, we are interested in
determining which of the two has lower recovery error.

Both questions could be answered using CV. Given a signal, the
recovery error εx can be estimated by its CV residual ϵcv; we attempt
to determine the accuracy and probability the CV residual could pro-
vide bounds on the recovery error. Furthermore, given two signals,
the comparison of two recovery errors can be estimated by their re-
spective CV residuals; we are interested in the probability the com-
parison of the error and the CV residual are consistent with each
other. In other words, these problems could be formulated as:

1. (Recovery error estimation) Given a recovered signal, with
what accuracy and what probability could its CV residual pro-
vide bounds on its recovery error?

2. (Recovery error comparison) Given two recovered signals,
with what probability could the comparison of their CV resid-
uals correctly reflect their recovery errors?

These problems are referred to as general CV problems in the
remainder of the article. To analyse both problems, we first calculate
the probability distribution of CV residuals. By transforming this
distribution into inequalities that hold with certain probability, we
directly answer the questions above. Our results for both problems
are given in Section 3.

We also analyse the OMP-CV algorithm, described in Table 1.
In this analysis we refer to the algorithm output, which is the recov-
ered signal with the smallest CV residual, as the OMP-CV output.
The recovered signal with the smallest recovery error is referred to
as the oracle optimum.

Our main result shows that the recovery error of the OMP-CV
output is very close to that of the oracle optimum with high probabil-
ity given that the oracle optimum recovers all indices in the support
set of the signal. Note that OMP-CV includes two almost separate
procedures: one is reconstructing the signal using OMP, the other is
estimating the recovery error by CV. To achieve the main result, we
first analyse the internal structure of two recovered signals acquired
in different iterations of OMP. We then study how their CV residuals
correspond to their recovery errors using the techniques we devel-
oped for the general CV problem. Finally we generalize the recov-
ery error comparison between two recovered signals, as generated



by the OMP iterations, to the comparison of all recovered signals.
Thus we can estimate how close is the OMP-CV output to the oracle
optimum.

The reminder of the paper is organized as follows. Section 2
formulates the problem and describes the OMP-CV algorithm. Sec-
tion 3 gives the analysis of CV, while Section 4 gives the analysis
of OMP-CV. Numerical simulations are given in Section 5. Finally,
Section 6 discusses our findings and concludes.

2. BACKGROUND

2.1. Notation and Problem Formulation

We consider an unknown k-sparse signal x ∈ RN observed using
M linear measurements corrupted by additive noise. Let T be its
support set, using |T | = k to denote the size of T . The vector xT

contains the coefficients of x indexed by T . To implement the CV-
based modification, we separate the M by N sampling matrix to a re-
construction matrix A ∈ Rm×N and a CV matrix Acv ∈ Rmcv×N .
Measurements are also separated accordingly, to reconstruction mea-
surements y ∈ Rm and CV measurements ycv ∈ Rmcv .

Our analysis only considers Gaussian sampling matrices and ad-
ditive Gaussian noise, i.e.,

y = Ax+ n, n = σnan,

ycv = Acvx+ ncv, ncv = σnacv,n,

where elements of A, Acv, an, and acv,n are i.i.d normally dis-
tributed with mean zero and variance 1/m so that the sensing matrix
will have unit column norm. For notational simplicity, we also de-
fine:

Definition 1. (Generalized sampling matrix and input signal): Let
Ag ! [A,an] and xg ! [x′,σn]

′, then

y = Ax+ n = Agxg, (1)

where Ag is called the generalized sampling matrix, and xg is called
the generalized input signal.

In describing the OMP algorithm, we use x̂p to denote the re-
covered signal in the p-th iteration, and T p to denote its support set.
The difference between the recovered signal x̂p and the input signal
x is denoted using ∆xp and the corresponding recovery error us-
ing εpx. The generalized versions of ∆xp and εpx are ∆xp

g and εpg ,
respectively, and ϵpcv denotes the CV residual of x̂p. In other words,

∆xp ! x− x̂p, εpx ! ∥∆xp∥22,
∆xp

g ! [(∆xp)′,σn]
′, εpg ! ∥∆xp

g∥22,
ϵpcv ! ∥ycv −Acvx̂

p∥22.

To make the analysis more clear, we emphasize that in this pa-
per, the input signal is considered as deterministic while the sam-
pling matrix and noise are random. Without loss of clarity and for
notational simplicity, the random variables and their realizations are
denoted by same notation.

2.2. OMP-CV: Algorithm Description

The OMP-CV algorithm, described in Table 1, is a noise- and
sparsity-robust greedy recovery algorithm that combines OMP and
CV [17]. The path it follows can be interpreted intuitively: as the
signal estimate improves, the recovery error and CV residual de-
crease; when the recovered signal starts to overfit the noise, the

Table 1. OMP-CV Algorithm

Input: Reconstruction matrix A, CV matrix Acv, reconstruc-
tion measurements y, CV measurements ycv, iteration times d;
Output: The recovered signal x̂.
Initialization: Set p = 1, ϵ0cv = ∥ycv∥22;
Repeat:

Compute x̂p using an OMP iteration;
Compute ϵpcv = ∥Acvx̂

p − ycv∥22;
Increment p by 1;

Until: p ≥ d

Compute ocv = argmin
p

ϵpcv;

Return: x̂ = x̂ocv .

recovery error increases. The CV residual detects the change by
starting to increase simultaneously. That is, CV residuals provide a
good estimate for recovery errors and, further, the OMP-CV output
is close to the oracle optimum.

There are several advantages of OMP-CV. First, it does not re-
quire prior information such as noise level or sparsity. Instead, only
the maximum number of iterations, d, is required as input1. This can
be set two or three times larger than the sparsity k without hurting
recovery performance. Second, the algorithm provides an estimate
of the recovery error in its residual. Additionally, by properly setting
mcv, the recovery performance of OMP-CV competes with that of
OMP when combined with accurate information on the noise level.

Earlier work has provided experimental support on the recov-
ery performance of OMP-CV [17, 18]. However, to the best of our
knowledge, theoretical analysis on this algorithm does not exist. Our
work presents such analysis in Section 4. In addition, we also pro-
vide numerical simulations in Section 5 to support our theoretical
results.

3. CROSS VALIDATION IN COMPRESSIVE SENSING

This section describes our results for general CV problems, as de-
scribed in Section 1. We start with calculating the probability distri-
bution of ϵcv, i.e.

Lemma 1. Let x̂ be a recovered signal and εx be its recovery error.
Provided that mcv is sufficiently large 2, then

ϵcv = ∥ycv −Acvx̂∥22 ∼ N (µ,σ2), (2)

where µ = mcv
m (εx + σ2

n), and σ2 = 2mcv
m2 (εx + σ2

n)
2 .

The condition “provided that mcv is sufficiently large” is used
in one approximation step of the proof which uses the Central Limit
Theorem (CLT). The actual probability distribution of ϵcv converges
absolutely to (2) as mcv increases and the approximation error be-
comes negligible very fast. In practical cases the number of CV
measurements mcv is often tens or hundreds and the approximation
is very good. The precision of the approximation is also supported
by the simulation result in Section 5.1. The same condition is also

1Note that d cannot be greater than m, since regular OMP will produce
zero residual after that and conclude.

2An mcv exceeding tens, which is common in CS, meets the requirement.



required in Lemma 2, Theorem 1, and Theorem 2 for the same rea-
son.

One immediate consequence of Lemma 1 is that ϵcv can be used
to provide an estimate of εx in the form of an inequality that holds
with certain probability. In particular:

Theorem 1. (Recovery error estimation): Provided that mcv is suf-
ficiently large, with probability erf( λ√

2
) the following holds

h(λ,+)ϵcv − σ2
n ≤ εx ≤ h(λ,−)ϵcv − σ2

n, (3)

where h(λ,±) is a function related to λ defined as

h(λ,±) ! m
mcv

1

1± λ
√

2
mcv

, (4)

and erf(u) is the error function of normal distribution,

erf(u) ! 1√
π

∫ u

−u

e−t2dt. (5)

Theorem 1 provides an answer to Prob. 1 bounding the recovery
error εx by the interval

[
h(λ,+)ϵcv − σ2

n, h(λ,−)ϵcv − σ2
n

]
. (6)

The difference of the upper bound and the lower bound,

m
mcv

2λ
√
2

√
mcv − 2λ2

√
mcv

ϵcv, (7)

is roughly proportional to 1/m2/3
cv and becomes tighter as mcv in-

creases.
For Prob. 2, we compute the distribution of ∆ϵcv = ϵpcv − ϵqcv.

Lemma 2. Let x̂p and x̂q be two recovered signals , εpg and εqg be
the their generalized recovery error, and

ρg ! ⟨∆xp
g,∆xq

g⟩
∥∆xp

g∥2∥∆xq
g∥2

. (8)

Provided that mcv is sufficiently large, then

∆ϵcv = ϵpcv − ϵqcv ∼ N (µ,σ2), (9)

where µ = mcv
m (εpg−εqg), and σ2 = 2mcv

m2 [(εpg)
2+(εqg)

2−2ρ2gε
p
gε

q
g].

Lemma 2 brings us closer to determining the probability that
ϵpcv > ϵqcv given that εpx > εqx. In particular, we obtain:

Theorem 2. (Recovery error comparison) Let x̂p and x̂q be two
recovered signals. If εpx ≥ εqx, it holds with probability Φ(λ) that
ϵpcv ≥ ϵqcv, where λ is given by

1
λ2

=
2

mcv

[
1 + 2(1− ρ2g)

εpgε
q
g

(εpg − εqg)2

]
, (10)

and Φ(u) is the cumulative distribution function (CDF) of standard
normal distribution,

Φ(u) ! 1√
2π

∫ u

−∞
e

−t2

2 dt. (11)

Theorem 2 answers Prob. 2 by giving the probability that the
comparison of CV residuals correctly reflect the comparison of the
recovery errors. This probability increases with mcv, ρ2g, and εpg/ε

q
g.

In other words, as the number of CV measurements increases, as
recovered signals are more correlated, and as the recovery error dif-
ference increases, this probability also increases.

4. SPARSITY- AND NOISE- ROBUST OMP

This section provides our analysis on OMP-CV. Before stating our
main theorem, we first define:

Definition 2. (Ratio of unrecovered signal and noise): The ratio
αp ∈ R, defined as

αp ! ∥xT\Tp∥2
σn

, (12)

measures to what extent the signal x̂ has not been recovered by x̂p.

Next, we provide our main theorem for OMP-CV:

Theorem 3. In OMP-CV, assume that the oracle optimum is x̂o and
T ⊂ T o. For any recovered signal x̂p other than x̂o:

• if T\T p ̸= ∅, then ϵocv < ϵpcv with probability Φ(λ), where

λ ≥
√

mcv

2

√
1− g(αp); (13)

• if T\T p = ∅ and if x̂p is the OMP-CV output, then with
probability greater than {1− (d− k)[1− Φ(λ0)]} we have

εpg ≤ C1ε
o
g, (14)

where g(αp) is roughly proportional to 1/(αp)2, λ0 is a constant
chosen to decide the probability with which (14) holds, and C1 is
only related to λ0 and mcv.

Theorem 3 supports the recovery performance of OMP-CV. It
divides recovered signals into two categories. For x̂p with T\T p ̸=
∅, the probability [1− Φ(λ)] decays sharply as αp increases. Since
this is the probability that ϵpcv < ϵocv, it is nearly impossible for such
x̂p to be the OMP-CV output. For example, [1− Φ(λ)] would be
less than 0.5% with αp = 1, and further drop to 0.0063% with
αp = 2. As a result, the OMP-CV output recovers all indices of the
support set with overwhelming probability. Further, if the OMP-CV
output recovers all indices of the support set, its recovery error can
be bounded by εog with high probability showing that the recovery
error of OMP-CV output is very close to that of the oracle optimum.

Remark 1. Parameter details of Theorem 3 are:

g(αp) =
β1(α

p)2 + β2

β1(αp)2 + β2 +max((αp)2 − β3αp − β4, 0)2

≈β1/
[
(αp)2 + β1

]
,

C1 =2C0 + 1 + 2
√

C2
0 + C0,

C0 ≤β5λ
2
0/(mcv − 2λ2

0),

where betas are decided by RIP constant [4] of the sampling matrix.
E.g., if δd < 0.1, the values of betas are: β1 = 2.08, β2 = β3 =
0.03, β4 = 0.02, and β5 = 0.0376. Further, if, e.g., (d− k) = 100,
setting mcv = 48 and λ0 = 4, produces a numerical form of (14):
with probability 99.7% we have

εpg ≤ 1.47εog (15)

Apart from the performance analysis on OMP-CV, we also note
that the recovery error of OMP-CV can be estimated using its CV
residual by directly applying Theorem 1.
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Fig. 1. Validation for Lemma 1 and Lemma 2. Fig.1(a) validates
Lemma 1 by plotting the simulation result of probability distribution
of ϵcv, while Fig.1(b) validates Lemma 2 by plotting that of ∆ϵcv
(red curve). The simulation results agree well with the theoretical re-
sults, which are plotted in black as reference. The Kullback-Leibler
divergences of the theoretical results from the simulation results are
0.0152 and 0.0093 for Fig. 1(a) and Fig. 1(b) respectively.

5. NUMERICAL SIMULATION

This section gives our simulation results.3 Section 5.1 simulates the
probability distribution of random variables described in Lemma 1
and Lemma 2 to support both lemmas. Section 5.2 provides sim-
ulations on the performance of OMP-CV and OMP as a function
of mcv. The simulations demonstrate the recovery performance of
OMP-CV. Throughout this section, Gaussian signals are used where
non-zero entries are generated following the standard Gaussian dis-
tribution.

5.1. Validation for Lemma 1 and Lemma 2

As previously noted, CLT is used to approximate the probability dis-
tribution of ϵcv in Lemma 1 and ∆ϵcv in Lemma 2. The simulations
in this section attempt to validate this approximation. In both sim-
ulations, parameters are set as N = 512, m = 96, mcv = 48,
and k = 50. With recovered signals (x̂ for Lemma 1; x̂p and x̂q

for Lemma 2) fixed, the random CV matrix along with its noise is
realized 1E5 times and the probability distributions of random vari-
ables (ϵcv for Lemma 1; ∆ϵcv for Lemma 2) are calculated. The
experiment results, shown in Fig.1, indicate that the simulation re-
sults agree well with the theoretical prediction. This validates our
approximation and supports both lemmas.

5.2. Recovery Performance of OMP-CV with Variation of CV
Measurements Number

Given a fixed total number of measurements M , there is a tradeoff
between m and mcv [17]. On one hand, increasing m will reduce

3The code for simulation is available at
http://gu.ee.tsinghua.edu.cn/publications#zj1
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Fig. 2. The trade Off between m and mcv. Parameters are fixed
as N = 1000, k = 50, σ2

n = 0.1, and M = 400. mcv varies
from 100 to 10 with step −10 while m = M − mcv. OMP-CV
outperforms OMP except when mcv is too small. In addition, using
same number of measurements, OMP-CV has recovery performance
similar to OMP (recovery error with m = 400) with parameters
appropriately set even though the prior knowledge is required for
OMP.

the reconstruction error. On the other hand, increasing mcv will
improve the CV estimate, and thus make the OMP-CV output closer
to the oracle optimum. This simulation empirically investigates the
recovery performance of OMP-CV as mcv varies.

In this experiment, we set N = 1000, k = 50, σ2
n = 0.1, and

M = 400. mcv varies from 100 to 10 with step −10 and we have
m = M − mcv. For OMP-CV, m measurements are used for re-
construction, while mcv measurements are used for CV. For OMP,
m measurements are used for reconstruction and the termination is
based on residual with the accurate noise level given. In addition, the
recovery performance, where all M measurements are used for re-
construction using OMP, is given for comparison. We average 1000
repetitions for experiments of each parameter setting.

The experiment result, plotted in Fig.2, shows the best per-
formance of OMP-CV lies in the region where mcv is neither too
small nor too large. OMP-CV outperforms OMP except when
mcv is very small, indicating that CV-based termination is better
than residual-based termination, even if the latter uses an exact noise
level. Additionally, note that with the same number of measurements
at hand (M measurements for both OMP-CV and OMP), OMP-CV
can achieve recovery performance similar to OMP with parameters
appropriately set, even though prior knowledge is required for OMP.
In this sense, OMP-CV outperforms OMP.

6. CONCLUSION

This paper presents a theoretical study of CV in compressive sens-
ing, providing analysis of general CV problems as well as analysis
of the OMP-CV algorithm. As a highly practical algorithm, OMP-
CV could reconstruct the signal without prior knowledge such as
sparsity or noise level; its performance is supported in this paper
both theoretically and empirically. Additionally, our results on gen-
eral CV problems could also be used to apply CV to other CS-based
reconstruction algorithms. CV sacrifices a small amount of mea-
surements to estimate the reconstruction error. In a nutshell, this
technique makes it possible for greedy algorithms to reconstruct the
signal without prior knowledge like the sparsity or noise level. In fu-
ture work, we would like to extend our analysis on CV by studying
the use of CV in other greedy sparse recovery algorithms.
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