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ABSTRACT

Statistical parametric speech synthesis (SPSS) using deep neural net-
works (DNNs) has shown its potential to produce naturally-sounding
synthesized speech. However, there are limitations in the current im-
plementation of DNN-based acoustic modeling for speech synthesis,
such as the unimodal nature of its objective function and its lack of
ability to predict variances. To address these limitations, this paper
investigates the use of a mixture density output layer. It can esti-
mate full probability density functions over real-valued output fea-
tures conditioned on the corresponding input features. Experimental
results in objective and subjective evaluations show that the use of
the mixture density output layer improves the prediction accuracy of
acoustic features and the naturalness of the synthesized speech.

Index Terms— Statistical parametric speech synthesis; hidden
Markov models; deep neural networks; mixture density networks;

1. INTRODUCTION

Statistical parametric speech synthesis (SPSS) [1] based on hidden
Markov models (HMMs) [2] offers various advantages over concate-
native speech synthesis [3]. However, the naturalness of the synthe-
sized speech from SPSS is still as not as good as that of the best
samples from concatenative speech synthesizers. One of the major
factors that degrades the naturalness is the accuracy of the acoustic
models [1]. There have been many attempts to improve the accuracy,
such as trajectory HMMs [4], autoregressive HMMs [5], minimum
generation error (MGE) training [6], product of experts (PoEs) [7,8],
Gaussian process regression (GPR) [9], and restricted Boltzmann
machines (RBMs) [10, 11].

Recently, deep neural networks (DNNs) [12], which are feed-
forward artificial neural networks (ANNs) with many hidden layers,
have achieved significant improvement in many machine learn-
ing areas. They were also introduced as acoustic models for
SPSS [13-15]. In SPSS, a number of linguistic features that affect
speech, including phonetic, syllabic, and grammatical ones, have
to be taken into account in acoustic modeling to achieve naturally
sounding synthesized speech. In a typical implementation, there
are normally around 50 different types of linguistic features [16],
which is much more than those used in acoustic modeling for speech
recognition. Effective modeling of these complex context dependen-
cies is one of the most critical problems for SPSS. In DNN-based
SPSS, a DNN is trained to represent the mapping function from
linguistic features (inputs) to acoustic features (outputs), which
are modeled by decision tree-clustered context-dependent HMMs
in HMM-based SPSS [2]. DNN-based acoustic models offer an
efficient and distributed representation of complex dependencies be-
tween linguistic and acoustic features and have shown the potential
to produce naturally-sounding synthesized speech [13, 15].

However, there are limitations in DNNs used for acoustic mod-
eling in speech synthesis. This paper addresses the following two
limitations:

e It is known that the distributions of acoustic features given
linguistic features can be multimodal since humans can speak
the same text in many different ways. It is also known that the
outputs of an ANN trained by minimizing the squared loss
function approximates the conditional mean of the outputs in
the training data [17,18]. This is problematic as the average of
the outputs (acoustic features) may actually be close to none
of the modes of the distribution. The DNN-based acoustic
model in [13], which uses the mean squared error (MSE) as
its objective function to optimize its weights, does not have
the power to model distributions of outputs any more complex
than a unimodal Gaussian distribution.

o The outputs of an ANN provide the mean values only. The
speech parameter generation algorithm [19], which has been
used in SPSS, uses both the means and variances of acous-
tic features to find the most probable acoustic feature trajec-
tories under the constraints between static and dynamic fea-
tures. Although it has been shown experimentally that hav-
ing precise variances had less impact on the naturalness of
the synthesized speech than having precise means in HMM-
based SPSS [20], variances are still useful to generate better
acoustic feature trajectories. Furthermore, advanced genera-
tion algorithms such as the speech parameter generation al-
gorithm considering global variance [21] relies more heavily
on the variance information.

To address these limitations, this paper investigates the use of
a mixture density network (MDN) [17] as an acoustic model for
SPSS. MDNs can give full probability density functions over real-
valued output features conditioned on the corresponding input fea-
tures. This is achieved by modeling the conditional probability dis-
tribution of output features given input features with a Gaussian
mixture model (GMM), where its parameters are generated using
an ANN trained with a log likelihood-based loss function. The use
of the MDNSs allows us to do multimodal regression as well as to
predict variances. In the speech synthesis-related area, MDNs have
been successfully applied to articulatory-acoustic inversion mapping
[22,23].

The rest of this paper is organized as follows. Section 2 de-
scribes the MDN. Experimental results in objective and subjective
evaluations are presented in Section 3. Concluding remarks are
shown in the final section.
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Fig. 1. Overview of the proposed SPSS framework using a deep MDN (DMDN). The red, blue, and green circles are the input, hidden, and
output units, respectively. The DMDN in this example has 3 hidden layers with 4 units per hidden layer, and a mixture density output layer

with 2 Gaussian components.

2. MIXTURE DENSITY NETWORK

An MDN combines a mixture model with an ANN [17]. This paper
utilizes a Gaussian mixture model (GMM)-based MDN. An MDN
M maps a set of input features x to the parameters of a GMM (mix-
ture weights wy,, mean [s,, and variance cr,%,), which in turn gives a
full probability density function of an output feature y, conditioned
on the input features, p(y | x, M).! It takes the form of a GMM
given as

M
POIEM = wn@) N (vipm (0,08 (). 1)
m=1

where M is the number of mixture components and wy, (x), wm (x),
and o,% (x) correspond to the mixture weight, mean, and variance
of the m-th Gaussian component of the GMM, given x. The GMM
parameters can be derived from the MDN as

exp (z,(nw)(x, M))

Wi (x) = , )
Z;‘il exp (zl(w)(x, M))

om(x) = exp (=37 (x. M) ). 3)
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where z,(nw) (x, M), z,(,(,y) (x, M), and z,(,,”‘) (x, M) are the activations
of the output layer of the MDN corresponding to the mixture weight,
variance, and mean for the m-th Gaussian component in the GMM,
given x and M, respectively [17]. The use of the softmax function

For simplicity of notation, here the output feature is assumed to be a
scalar value. The extension to a vector is straightforward.

in Eq. (2) constrains the mixture weights to be positive and sum to 1.
Similarly, Eq. (3) constrains the standard deviations to be positive.

Training of the MDN aims to maximize the log likelihood of M
given the data as

N T™
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where

D= (<0 (e 00).
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is the set of input/output pairs in the training data, N is the number
of utterances in the training data, and T is the number of frames
in the n-th training utterance.

Figure 1 illustrates a speech synthesis framework based on a
deep MDN (DMDN). First, a text to be synthesized is converted to a
sequence of linguistic features {x1,...,x7}. Second, the durations
of each speech unit (e.g., phoneme) are predicted by a duration pre-
diction module. Then probability distributions (GMMs) over acous-
tic features including spectral and excitation parameters and their
dynamic features given linguistic features are predicted by a trained
DMDN using forward propagation. From the sequence of the pre-
dicted GMMs, the speech parameter generation algorithm [19] can
generate smooth trajectories of acoustic features which satisfy the
statistics of both static and dynamic features. Finally, a waveform
synthesis module outputs a synthesized waveform given the acoustic
features.



3. EXPERIMENTS

3.1. Experimental Conditions

Speech data in US English from a female professional speaker was
used for training speaker-dependent HMM-, DNN-, and DMDN-
based SPSS. The training data consisted of about 33 000 utterances.
The speech analysis conditions and model topologies were similar
to those used for the Nitech-HTS 2005 [24] system. The speech
data was downsampled from 48 kHz to 16 kHz sampling, then 40
mel-cepstral coefficients [25], logarithmic fundamental frequency
(log Fp) values, and 5-band aperiodicities (0-1, 1-2, 2-4, 4-6, 6—
8 kHz) [24] were extracted every 5 ms. Each observation vector
consisted of 40 mel-cepstral coefficients, log Fp, and 5 band aperi-
odicities, and their delta and delta-delta features (3 x (40 + 1 + 5)
= 138). Five-state, left-to-right, no-skip hidden semi-Markov mod-
els (HSMMs) [26] were used. To model log F sequences consisting
of voiced and unvoiced observations, a multi-space probability dis-
tribution (MSD) was used [27]. The number of questions for the de-
cision tree-based context clustering was 2 554. The sizes of decision
trees in the HMM-based systems were controlled by changing the
scaling factor « for the model complexity penalty term of the mini-
mum description length (MDL) criterion [28] (¢ = 1). The numbers
of leaf nodes for mel-cepstrum, log Fg, and band aperiodicities were
12578, 32 847, and 436, respectively.

The input features for the DNN- and DMDN-based systems in-
cluded 342 binary features for categorical linguistic contexts (e.g.
phonemes identities, stress marks) and 25 numerical features for nu-
merical linguistic contexts (e.g. the number of syllables in a word,
position of the current syllable in a phrase). In addition to the linguis-
tic contexts-related input features, 3 numerical features for coarse-
coded position of the current frame in the current phoneme and 1
numerical feature for duration of the current segment were used. The
output features were basically the same as those used in the HMM-
based systems. To model log Fp sequences, the continuous Fp with
explicit voicing modeling approach [29] was used; voiced/unvoiced
binary value was added to the output features and log Fy values in
unvoiced frames were interpolated. To reduce the computational
cost, 80% of silence frames were removed from the training data.
The weights of the networks were initialized randomly (no pretrain-
ing was performed), then optimized; The weights of the DNN-based
systems were trained to minimize the mean squared error between
the output features of the training data and predicted values using,
whereas those of the DMDN-based systems were trained to maxi-
mize the log likelihood of the model given the training data. A GPU
implementation of a minibatch stochastic gradient descent (SGD)-
based back-propagation algorithm was used. To schedule the learn-
ing rate of the minibatch stochastic gradient descent (SGD)-based
back-propagation algorithm, AdaDec [30] was used.> Both input
and output features in the training data were normalized; the input
features were normalized to have zero-mean unit-variance, whereas
the output features were normalized to be within 0.01-0.99 based
on their minimum and maximum values in the training data. The
rectifier linear activation function (ReLU) [32] was used in hidden
layers.3 Linear and mixture density output layers were used for the
DNN- and DMDN-based systems, respectively. In each case a sin-

2 AdaDec is a variant of AdaGrad [31], which can manage the learning
rate on per-parameter basis. Preliminary experiments showed that AdaGrad
and AdaDec gave faster convergence and more stable optimization while
training MDNs, which had heterogeneous parameter types (means, standard
deviations, and mixture weights) requiring different learning rates.

3 A preliminary experiment showed that DNNs with the ReLU activation
functions in hidden layers achieved better objective measures.

Table 2. Preference scores (%) between speech samples from the
DNN (4 hidden layers, 1024 units per hidden layer) and DMDNs (4
hidden layers, 1024 units per hidden layer, mixture density output
layer with 1, 4, or 16 mixture components).

DNN DMDN
Imix | 4mix | 16mix | Neutral || p-value | z-score
116 | 17.9 - - 70.5 <1073 3.5
8.8 - - 28.3 62.9 <1076 | -11.1
- 6.7 | 16.1 - 77.2 <1076 -6.3
- 9.2 - 18.3 72.5 <107 5.4

gle network was trained to model both both spectral and excitation
parameters.

Speech parameters for the evaluation sentences were generated
from the models using the speech parameter generation algorithm
[19].4 The DNN-based systems used the per-dimension variances
computed from all training data whereas the DMDN-based systems
used the ones predicted by the network. While generating the acous-
tic features from the HMMs and DMDNS, the mixture component
that had the highest predicted mixture weight was selected at each
frame.> Spectral enhancement based on post-filtering in the cepstral
domain [33] was applied to improve the naturalness of the synthe-
sized speech. From the generated speech parameters, speech wave-
forms were synthesized using the source-filter model.

To objectively evaluate the performance of the HMM-, DNN-,
DMDN-based systems, mel-cepstral distortion (dB) [34], linear ape-
riodicity distortion (dB), voiced/unvoiced error rate (%), and root
mean squared error (RMSE) in log Fp were used.® Phoneme dura-
tions from natural speech were used while performing objective and
subjective evaluations. To subjectively evaluate the performance of
the systems, preference and mean opinion score (MOS) tests were
also conducted. 173 utterances not included in the training data were
used for evaluation. One subject could evaluate a maximum of 30
pairs in the preference tests and 30 stimuli in the MOS tests. Each
pair was evaluated by five subjects in the preference tests, whereas
each stimulus was evaluated by three subjects in the MOS tests. The
subjects used headphones. In the preference tests, after listening to
each pair of samples, the subjects were asked to choose their pre-
ferred one, whereas they could choose “neutral” if they did not have
any preference. In the MOS tests, after listening to a stimulus, the
subjects were asked to rate the naturalness of the stimulus in a 5-
scale score (1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent).

3.2. Experimental Results

Table 1 shows the objective measures and the mean opinion scores
for all architectures. Table 2 also shows the results of the subjective
preference listening tests to evaluate the effect of the mixture density
output layer.

4The generation algorithm considering global variance [21] was not in-
vestigated in this experiment.

5 Although the case 3 algorithm of [19], which is based on the EM algo-
rithm and can marginalize hidden variables, can also be used, a preliminary
experiment showed that the differences in the objective measures between
choosing the most probable mixture component and marginalizing them was
negligible.

SThese criteria are not highly correlated to the naturalness of synthesized
speech. However they have been used to objectively measure the prediction
accuracy of acoustic models.



Table 1.

Voiced/unvoiced error rates (%), root mean squared errors (RMSEs) in log Fp, mel-cepstral distortions (dB), band aperiodicity

distortions (dB), and 5-scale MOSs of the HMM-, DNN-, and DMDN-based systems with different architectures. In this table, “L x X
means L hidden layers with X units per hidden layer, and “M mix” means M components at the mixture density output layer.

Number of V/UV error | log Fo Mel-cepstral Band aperiodicity
Model Architecture | parameters (x100) rates (%) RMSE | distortion (dB) distortion (dB) 5-scale MOS
1 mix 3.267 4.293 0.1232 4.820 1.263 3.537 + 0.113
HMM 2 mix 6.548 4.275 0.1275 4.895 1.263 3.397 £ 0.115
4x1024 3.673 3.505 0.1243 4.794 1.222 3.635 + 0.127
DNN 5%x1024 4.723 3411 0.1225 4.542 1.199 3.681 + 0.109
6x1024 5.772 3.477 0.1221 4.526 1.198 3.652 £ 0.108
7x1024 6.822 3.495 0.1225 4.537 1.200 3.637 £ 0.129
1 mix 3.818 3.752 0.1217 4.637 1.204 3.654 £ 0.117
DMDN 2 mix 3.962 3.342 0.1191 4.541 1.201 3.796 £ 0.107
(4x1024) 4 mix 4.251 3.399 0.1193 4.565 1.200 3.766 + 0.113
8 mix 4.829 3.340 0.1190 4.553 1.202 3.805 + 0.113
16 mix 5.986 3.383 0.1188 4.543 1.203 3.791 £ 0.102

3.2.1. Having variances

The effect of having variances can be seen by comparing the DNN
(4 x 1024) and the DMDN (4 x 1024, 1 mix). Although there was
no significant difference between them in the mean opinion scores,
the preference test results show that the DMDN (4 x 1024, 1 mix)
was more preferred to the DNN (4 x 1024). As DNNs were trained
to minimize the squared error between data and predicted values and
DMDNSs were trained to maximize the log likelihood of the model
given data, the DMDN had to get worse in the squared error-based
measures. However, it can be seen from the tables that having vari-
ances was helpful in predicting mel-cepstra and band aperiodicity
and improved the naturalness of the synthesized speech. This can be
due to the speech parameter generation algorithm, which determines
smoothly-varying acoustic feature trajectories using both means and
variances. To check this, an additional experiment was conducted.
The variances predicted by the DMDN (4 x 1024, 1 mix) rather
than global ones were used with the means predicted by the DNN
(4 x 1024, 1 mix) as inputs of the speech parameter generation algo-
rithm. Table 3 shows experimental results. It can be seen from the

Table 3. RMSE in log Fp, mel-cepstral distortion (dB), and band
aperiodicity distortion (dB) of the DNN-based system (4 x 1024)
with variances predicted by the DMDN-based system (4 x 1024, 1
mix).

log Fo Mel-cepstral | Band aperiodicity
RMSE | distortion (dB) distortion (dB)
0.1240 4.783 1.221

tables that the use of the variances predicted by the DMDN with the
means predicted by the DNN achieved small improvements. How-
ever, it was not as good as the DMDN.

3.2.2. Having multiple components

The effect of having multiple Gaussian components can be found by
contrasting the DMDN with 1 mixture component and those with
multiple mixture components. It can be seen from the table that hav-
ing multiple components was helpful in predicting log Fp and im-
proved the naturalness of the synthesized speech. This is reasonable
as there can be multiple possible naturally-sounding Fo contours for
the same texts. Having multiple components can help capturing such

phenomena. It can also be seen from the preference and MOS test
results that having multiple components improved the naturalness
of the synthesized speech significantly. The MOS test results also
showed that having mixture density output layer is more efficient
than having more layers. For example, although DNN (5 x 1024)
and DMDN (4 x 1024, 4 mix) had the similar numbers of param-
eters, the DMDN (4 x 1024, 4 mix) achieved better mean opinion
score than the DNN (5 x 1024).

Overall, the DMDN (4 x 1024, 8 mix) achieved 3.803 in the 5-
scale MOS, which was 0.266 better than the standard HMM-based
system.

4. CONCLUSIONS

This paper has extended DNN-based SPSS by introducing mixture
density networks (MDNs). The proposed DMDN-based approach
can relax the limitations in the DNN-based acoustic modeling for
speech synthesis: the lack of variances and the unimodal nature of
the objective function. Objective and subjective evaluations showed
that having variances and multiple mixture components by using a
mixture density output layer was helpful in predicting acoustic fea-
tures more accurately and improved the naturalness of the synthe-
sized speech significantly.

Future work includes exploring better network architectures and
optimization algorithms to train networks. Evaluation of DMDNs
with the speech parameter generation algorithm considering global
variance is also necessary.
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