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ABSTRACT

Recently, major attention has been given to penalized log-likelihood
estimators for sparse precision (inverse covariance) matrices. The
penalty is responsible for inducing sparsity, and a very common
choice is the convex l1 norm. However, it is not always the case that
the best estimator is achieved with this penalty. So, to improve spar-
sity and reduce biases associated with the l1 norm, one must move to
non-convex penalties such as the lq (0 ≤ q < 1). In this paper we in-
troduce the resulting non-concave lq penalized log-likelihood prob-
lem, and derive the corresponding optimality conditions. A novel
cyclic descent algorithm is presented for penalized log-likelihood
optimization, and we show how the derived conditions can be used
to reduce algorithm computation. We illustrate by comparing recon-
struction quality over the range 0 ≤ q ≤ 1 for several experiments.

Index Terms— sparsity, lq penalty, non-convex, precision ma-
trix, optimality conditions.

1. INTRODUCTION

Graphical models have a long history [1–3] and provide a system-
atic way of reducing large dimensional data. The structure of the
graph identifies meaningful interactions among the data variables.
Assuming the data is Gaussian with mean µ = 0p×1 and covariance
Σp×p, the graphical model is an undirected graph specified by the
precision matrix Ω := Σ−1. Specifically, no edge between nodes i
and j (i 6= j) in the graph denotes the conditional independence of
variables i and j given the other variables, which in turn corresponds
to having Ω(i, j) = 0, [1–3]. Thus, obtaining an undirected graph
is equivalent to obtaining Ω.

Following the parsimony principle, the objective is to choose
the simplest model, i.e., the sparsest graph that adequately explains
the data. The sparsity requirement improves the interpretability of
the model and prevents over-fitting. Equivalently, in order to esti-
mate a sparse Ω, attention has been given to maximizing a spar-
sity Penalized Log-Likelihood (PLL) objective function. The log-
likelihood measures the goodness-of-fit of the estimator while the
penalty forces many of its entries to become zero. The most com-
mon sparsity penalties can be characterised using the lq “norm”1,
which for 0 < q ≤ 1 is defined by:

‖Ω‖q :=

(
p∑
i=1

p∑
j=1

|Ω(i, j)|q
) 1

q

(1)

This research was partially supported by AFSOR grant FA9550-13-1-
0043.

1The lq function is not a norm for 0 ≤ q < 1.

The function ‖Ω‖qq approaches the total number of non-zero entries
in Ω as q → 0+. Thus, for q = 0 the lq penalty, known as the
l0 “norm”, is defined as this limit, and denoted by: ‖Ω‖00. So, for
0 ≤ q ≤ 1 the lq PLL problem is:

max
Ω�0

Lλ,q(Ω) := log det(Ω)− tr(ΩS)− λ‖Ω−‖qq (2)

where Ω is symmetric (ΩT = Ω), S � 0 is the sample covariance
matrix, λ > 0 is a constant penalty parameter, and Ω− is Ω with
diagonal entries set to zero.

Even though l0 (q = 0) is the most natural penalty in (2), the l1
norm (q = 1) has become the dominant sparsity promoting penalty,
see [4–11]. This is motivated by the convexity of ‖Ω‖1 and the
use of the l1 norm in sparse linear regression [12]. Its convexity
makes (2) a desirable concave problem, allowing global solutions to
be obtained.

It has recently been noted that using non-convex penalties can
alleviate the biases of the l1 norm for estimation of sparse preci-
sion matrices and similar problems, see [13–24]. It is expected
that the lq “norm” with q < 1 can achieve this and, at the same
time, result in more aggressive shrinking/hard-thresholding, which
produces relatively sparser solutions. The advantages of lq penal-
ties for 0 ≤ q < 1 have been shown for related estimation prob-
lems [15, 16, 20–25]. This paper establishes that similar improve-
ments can be achieved for the PLL problem (2).

The remainder of the paper is organised as follows: Section
2 relates to prior work. Section 3 gives the optimality conditions
for problem (2) when 0 ≤ q < 1, and Section 4 states a novel
algorithm for its optimization. Section 5 shows how algorithm com-
putation can be reduced by considering the optimality conditions,
and provides estimator comparisons for 0 ≤ q ≤ 1. Section 6 has
concluding remarks.

Notation: For Ωp×p matrix, Ω/i/j is a (p−1)×(p−1) sub-matrix
produced by removing row i and column j in Ω. β−i denotes β with
the i-th entry set to 0. sgn(β) is the sign of β 6= 0 and 0 otherwise.
ei denotes a vector with 1 in the i-th entry and 0 in the rest. 1{·} is
the indicator function, equaling 1 if the statement in {·} holds, and
zero otherwise.

2. RELATION TO PRIOR WORK

Optimality Conditions: The existing literature on the PLL
problem has predominantly focused on the concave l1 PLL formu-
lation, i.e., (2) with q = 1. Some references include [4–11], bearing
in mind that even though [7] mentions the use of the lq penalty, the
work is limited to q ≥ 1. The optimality conditions for q = 1 are
well known, for example see [4]. They can easily be derived and
follow directly from the convex l1 linear regression setting studied,
for example, in [26, 27].



Other non-concave PLL formulations are given in [13,14,17,19].
The primary focus of [14, 17, 19] is not the lq penalty (q < 1) and
the work does not derive optimality conditions. The same is true for
[13], even though it focused solely on the l0 PLL problem. So, as far
as we are aware, except for [13], the non-concave lq PLL formulation
with q < 1 has never been studied before, and hence, the derivation
of the corresponding optimality conditions has never been attempted.
We lastly note that, in order to derive these conditions one cannot
apply the convexity flavoured ideas and arguments used when q = 1.
Consequently, we take an alternative approach that takes advantage
of the features unique to the objective function in (2).

Cyclic Descent (CD): The general CD algorithm is given in
[28, 29], while the CD algorithms that were specifically designed
for the PLL problem are given in [4, 6, 9, 11]. None of these, how-
ever, can handle (2) when q < 1, i.e., they do not provide a way
to construct CD updates for 0 ≤ q < 1. Our novel algorithm is a
block type CD method shown in the first author’s recent PhD the-
sis [22]. Other block CD methods for the PLL problem are given
in [4, 6], but these can only handle (2) with q = 1. More specifi-
cally, they are derived using duality arguments for convex/concave
objective functions, which are not applicable when 0 ≤ q < 1. As a
result, our method is fundamentally different and is derived by direct
arguments.

3. OPTIMALITY CONDITIONS

In this section we derive the necessary optimality conditions for
problem (2) with 0 ≤ q < 1. To do this, the following two the-
orems are needed:

Theorem 1. For 0 ≤ q < 1 consider the (scalar) problem:

min
β

1

2
(z − β)2 + λ|β|q (3)

where |β|q := 1{β 6=0} for q = 0. Then, all its solutions are:

Tλ(z) =


0 if |z| < hλ

0 if |z| = hλ

sgn(z)βλ if |z| = hλ

sgn(z)β̂ if |z| > hλ

(4)

where
βλ := [2λ(1− q)]

1
2−q and hλ :=

1

2

(
2− q
1− q

)
βλ (5)

and
β̂ =

{
|z| if q = 0

|z| − λqβ̂q−1 ∈ (βλ, |z|) if 0 < q < 1
(6)

For 0 < q < 1, β̂ is found by iterating: βk+1 = |z|−λqβq−1
k using

βλ ≤ β0 ≤ |z|.

Proof: See first author’s [15, Theorem 1 and Remark 3].

Theorem 2. Consider the following block partitions of p × p sym-
metric matrices Ωπ � 0 and Sπ � 0:

Ωπ =

[
V u
uT u0

]
, Sπ =

[
Γ γ
γT γ0

]
(7)

where V � 0 and Γ � 0 are (p− 1)× (p− 1) symmetric, u,γ are
(p− 1)× 1, and u0, γ0 > 0 are scalars. Denote the i-th column of

V−1 by v−i , and its i-th entry by v−ii > 0. For any i ∈ {1, . . . , p −
1}, define:

û := u−i + Tλi(zi)ei, û0 := ûTV−1û + γ−1
0 (8)

where Tλ(·) is given by (4), and:

zi := −γ0u
T
−iv

−
i + γ(i)

γ0v
−
ii

, λi :=
λ

γ0v
−
ii

(9)

Then, the following inequality holds for any 0 ≤ q < 1:

Lλ,q
([

V u
uT u0

])
≤ Lλ,q

([
V û
ûT û0

])
(10)

For the proof see the Appendix. Theorem 2 strongly motivates
the necessary optimality conditions for (2) with 0 ≤ q < 1:

Theorem 3. (lq PLL Optimality Conditions) Given a symmetric
Ωp×p � 0, define the index set of off-diagonal zero entriesZ(Ω) :=
{(i, j) : Ω(i, j) = 0}, the off-diagonal non-zero entries ZC(Ω) :=
{(i, j) : Ω(i, j) 6= 0}, and the diagonal entries D(Ω). If Ω is a
(global) solution of (2) with 0 ≤ q < 1, then:

C1 : For (i, j) ∈ Z(Ω),∣∣Ω−1(i, j)− S(i, j)
∣∣ ≤ {S(j, j)Ω/j/j

−1(i, i)
} 1−q

2−q hλ

C2 : For (i, j) ∈ ZC(Ω),

|Ω(i, j)| ≥
{
S(j, j)Ω/j/j

−1(i, i)
}− 1

2−q βλ

C3 : For (i, j) ∈ ZC(Ω),

Ω−1(i, j)− S(i, j)− λq|Ω(i, j)|q−1sgn (Ω(i, j)) = 0

C4 : For (j, j) ∈ D(Ω),

Ω−1(j, j) = S(j, j)

where βλ and hλ are from (5) in Theorem 1

For the proof see the Appendix.

Remark 1. Letting 0
0

:= 1, C1−4 reduce to the necessary optimal-
ity conditions for (2) when q = 1. In general, having optimality
conditions is useful when considering algorithm development, ini-
tialization, stopping criteria and convergence analysis, for example
see [4, 26, 27, 30]. In Section 5 we exploit some of these conditions
for initialization and reducing algorithm computation.

4. THE ALGORITHM

Inspired by Theorem 2, we state the block CD algorithm:

The lqCOV Algorithm
Initialization: Choose a diagonal Ω � 0 and compute Ω−1. Then,
for k = 1, 2, . . . , p, 1, 2, . . . , p, . . . , repeat:

(1) Let Ω be the current iterate with the k-th column denoted by
the vector [uTu0]T, where u0 = Ω(k, k). Similarly, denote
the k-th column of S by [γTγ0]T. Both u and γ are (p−1)×1.
Let V := Ω/k/k, and Γ := S/k/k.



(2) Calculate V−1, and update each u(i) = Ω(i, k), cyclically
using (8). With the updated u, lastly update u0, using (8).

(3) Using Ω with the updated k-th row/column, update Ω−1 and
V−1 using the standard formula for block matrix inversion.

Theorem 4. (lqCOV): if Ω � 0 and Ω+ is the current and the next
iterate respectively, Ω+ � 0 and Lλ,q(Ω) ≤ Lλ,q(Ω+).

Proof: Follows easily from Theorem 2.

5. SIMULATIONS

Here we compare the quality of estimators: Ω̂ obtained by optimiz-
ing (2). For 0 ≤ q < 1, lqCOV is used, while for q = 1 we consider
the weighted GLASSO method in [4], where the diagonal weights in
the penalty are set to 0 and the rest to 1.

Initialization and Stopping using C1−4: All algorithms are
initialized with a diagonal matrix, and so, we make the diagonal en-
tries satisfy C4. Thus, they are given by 1/S(i, i).

All algorithms are terminated when C1−4 are satisfied. To mea-
sure the progress, for a particular iterate Ω, we let the “distance to
optimality” dΩ(i, j) be 1 if the optimality conditions for (i, j) in
Theorem 3 are not satisfied, and 0 otherwise. Then, the total dis-
tance is d(Ω) :=

∑
i,j dΩ(i, j).

Reducing Computation with C1: Inspired by the computation
reducing method for CD methods with q = 1 in [9, 31], we suggest
a corresponding method when 0 ≤ q < 1.

The method in [9, 31] involves updating a subset of the entries
in Ω, called “Active Entries”, in each iteration with the intent of
reducing algorithm computation. In [31], the “Active Entries” are the
non-zero entries, while in [9] they are additionally the zero entries
that do not satisfy |Ω−1(i, j) − S(i, j)| ≤ λ. This is precisely C1

when q → 1, see Remark 1. As a result, we extend this idea to
0 ≤ q < 1: In Step (2) of lqCOV, the “Active Entries” are those
for which Ω(i, j) 6= 0, or Ω(i, j) = 0 and C1 does not hold. C1

involves calculating Ω/j/j
−1 but this is already given in Step (2).

Due to lack of space, the theoretical aspects of this method will be
presented elsewhere. Fig.1 presents experimental results.

Simulations for Random & Star Graph Configurations: Two
popular types of graph configurations of size p = 50 are considered
for recovery: random and star, with corresponding precision matri-
ces respectively denoted by ΩR and ΩS . The former is constructed
randomly using the matlab function sprandsym and the latter by
using the procedure in [22, p.138]. The non-zero elements in both
ΩR and ΩS are drawn from the Gaussian distribution.

In all simulations, the corresponding S are constructed with n =
30 data instances drawn from the Gaussian distribution with mean
µ = 0 and respective covariances Ω−1

R and Ω−1
S . We constrained

‖ΩR‖00 = ‖ΩS‖00 = 0.05×p2. Fig.2 presents experimental results.
We also consider recovering Ω constructed by stochastically

combining ΩR and ΩS . In this case, Ω(i, j) 6= 0 if zij 6= 0, where
zij is a Bernoulli random variable with probability parameter:

pij = (1− α)1{ΩR(i,j)6=0} + α1{ΩS(i,j)6=0} (11)

and α ∈ (0, 1). When zij 6= 0 we let:

Ω(i, j) = (1− α)ΩR(i, j) + αΩS(i, j) (12)

Thus, ‖Ω(α)‖00 = 0.05× p2 is consistent for any α ∈ [0, 1].

Fig. 1: Examples of algorithm runs (# variables is p = 50
and # samples is n = 30): Ωp×p has random configuration and
entries, and is generated using the matlab function sprandsym
s.t. ‖Ω‖00 = 0.2 × p2. The tuning parameter λ was chosen s.t.
‖Ω̂‖00 = ‖Ω‖00. The (av.) # “Active Entries” in panel A are scaled
by ‖Ω‖00. Lλ,q(·) is normalized with its initial value. In panel B,
d(·) is scaled by the number of trials. We see from panel A that the
number of matrix entries needed to be updated in lqCOV becomes
much less than p2 for all 0 ≤ q ≤ 1. As it can be seen from panel
B, all Ω̂ end up satisfying C1−4. We found this to hold in general.
Panel C shows (av.) ‖Ω̂‖00 − p as λ changes. For a given λ we see
that Ω̂ is sparser as q → 0.

Fig. 2: (av.) ROC (Receiver Operating Characteristic) curves for
(left) Ω̂R and, (right) Ω̂S . The ROC measures structure, and we see
that the best structure is convincingly achieved when (left) q = 0,
and (right) q = 1. The (av.) minλ Kullback-Leibler (KL(λ, q)) loss
is also achieved when (left) q = 0, and (right) q = 1.



The ROC results were similar to those in Fig.2, i.e., we also
found that the curves favoured q = 0 and q = 1 when α < 0.5
and α > 0.5 respectively. However, they approached each other as
α→ 0.5. For α < 0.5, the (av.) minλ Kullback-Leibler (KL(λ, q))
loss is achieved when q = 0, while for α > 0.5, it is achieved when
q = 1. Fig.3 summarizes this.

Fig. 3: (left) Structurally (ROC) and in terms of KL, as it can be
seen, the best Ω̂(α)’s are obtained only with binary values of q.
(right) q vs. (av.) minλ KL((λ, q)). When α = 0.4, we see that
the smallest KL is achieved when q = 0.

Fig. 4: We noticed that for each α considered, the ROC curves for
Ω̂(α) were approximately equal for all 0 ≤ q ≤ 1. As a result,
this implies equal quality in terms of estimator structure (since ROC
measures only structure), and so, we can not reject the hypothesis
that the optimal q is again either 0 or 1. Thus, to distinguish the
estimators, we further looked at the KL measure, which takes into
account not only structure but estimator values. In this case, we
noticed that the best quality Ω̂(α) is achieved with 0 ≤ q < 1.
(left) The optimal q based on the KL loss as α varies. We see that
as sparsity decreases (α → 1) the optimal q increases. (right) q vs.
(av.) minλ KL(λ, q) for α = 0.5, corresponding to ‖Ω(α)‖00 =
0.15× p2. For this example, the optimal q = 0.4.

Simulations for Random Graph Configurations: Here we re-
place ΩS with a less sparse ΩR, denoted by Ω′R, where ‖Ω′R‖00 =
0.2 × p2. With this change we use ΩR and Ω′R in (11) and (12) to
stochastically construct Ω(α), except this time α varies the sparsity
in Ω(α) between 5% and 20%. Fig.’s 4 and 5 present the experi-
mental results.

6. CONCLUSION

We introduced the non-concave lq penalized log-likelihood problem
(0 ≤ q < 1) for Gaussian graphical models, and derived the cor-
responding optimality conditions. A novel coordinate descent algo-
rithm was given, and we showed how the derived conditions can be
used to reduce computation. Simulations showed that 0 ≤ q < 1
can be used to improve on q = 1.

Fig. 5: For α = 0.5, we show the size of entries in (left) Ω(α),
and (centre) Ω̂(α) with q = 0.4, and (right) Ω̂(α) with q = 1.
The penalty parameter λ is tuned s.t. both Ω̂(α)’s have an FP rate
of 0.02. Both Ω̂(α)’s have an approximately equal number of non-
zeros too, but despite this, we see that LASSO (q = 1) produces non-
zero entries that are severely shrunken towards zero, unlike the lq-
penalized reconstruction with q = 0.4. The same phenomenon was
observed for a wide range of the FP rate, and confirms the negative
bias of the l1 norm. This difference between l1 and lq is due to the
magnitude over-penalization by the linear l1 penalty as compared to
the sub-linear l1 penalty for q = 0.4.

7. APPENDIX

Proof of Theorem 2: By the properties of the determinant and trace
for block matrices, Lλ,q(Ωπ) = Lλ,q(V)+log

(
u0 − uTV−1u

)
−

2γTu−γ0u0−2λ‖u‖qq , which is differentiable w.r.t. u0. So, setting
its derivative to zero and solving for u0 we obtain that û0 is the
maximizer. Substituting û0 in for u0, it can easily be shown that:
Lλ,q(Ωπ) ≤ Lλ,q(V) − c − 2J(u), where c = log (γ0) + 1 and
J(u) = 1

2
γ0u

TV−1u + γTu + λ‖u‖qq . To obtain an additional
inequality for Lλ,q(·) we derive an inequality for J(·).

Substituting u = u−i + u(i)ei in J(u), and using Theorem 1
it is easy to obtain Tλi(zi) = arg minu(i) J(u). So, J(û) ≤ J(u),
which finally gives (10). By Sylvester’s criterion, û0 > 0 implies
the matrix with V, û and û0 is positive definite.

Proof of Theorem 3: Let Ωπ and Sπ denote the respective π-
permutations of Ω and S, i.e., having the j-th row and column of
Ω and S placed last, see [4, 6, 13, 22]. Then, in Theorem 2, we
have: V = Ω/j/j and Γ = S/j/j , and u and γ become the respec-
tive j-th columns of Ω and S truncated not to include the j-th entry.
Also, u0 = Ω(j, j) and γ0 = S(j, j). Since the log-likelihood
and the lq penalty are invariant under this π-permutation, we have
Lλ,q(Ω) = Lλ,q(Ωπ). Thus, we can use (10): since Ωπ maximizes
Lλ,q(·), we must have (i) u0 = û0, and u = u−i + Tλi (zi) ei that
reduces to (ii) u(i) = Tλi(zi) for each i 6= j. So, using (i) in the
block matrix inversion formula to invert Ωπ , we obtain that:

(Ωπ)−1 =

[
. . . −γ0V−1u

−γ0uTV−1 γ0

]
(13)

Since (Ωπ)−1 = (Ω−1)π , in (13) we firstly see that Ω−1(j, j) =
γ0, giving C4, and secondly, that −γ0V−1u is the j-th column of
Ω−1 truncated not to include Ω−1(j, j). Its i-th entry is −γ0uTv−i ,
which is thus Ω−1(i, j). Since u(i) = Ω(i, j), this allows us to
re-write the numerator in zi as Ω−1(i, j)− S(i, j) + γ0v

−
iiΩ(i, j).

So, to derive C1−3, we use (ii), Theorem 1 and the definition
of zi. When u(i) = 0 we have: |zi| ≤ hλi , which simplifies to
C1. When u(i) 6= 0, we have |zi| ≥ hλi implying |u(i)| ≥ βλi ,
which simplifies to C2. Using (6) we obtain C3 after re-arranging
and simplifying.



8. REFERENCES

[1] A. Dempster, “Covariance selection,” Biometrics, vol. 28, pp.
157–175, 1972.

[2] J. Whittaker, Graphical Models in Applied Mathematical Anal-
ysis. New York: Wiley, 1990.

[3] S. Lauritzen, Graphical Models. Oxford: Oxford University
Press, 1996.

[4] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse co-
variance estimation with the graphical LASSO,” Biostatistics,
vol. 9, no. 3, pp. 432–441, 2008.

[5] M. Yuan and Y. Lin, “Model selection and estimation in the
Gaussian graphical model,” Biometrika, vol. 94, no. 1, pp. 19–
35, 2007.

[6] O. Banerjee, L. Ghaoui, and A. dAspremont, “Model selection
through sparse maximum likelihood estimation for multivari-
ate gaussian or binary data,” J. Mach. Learn. Res., vol. 9, pp.
485–516, 2008.

[7] A. Rothman, P. Bickel, E. Levina, and J. Zhu, “Sparse permuta-
tion invariant covariance estimation,” Electron. J. Stat., vol. 2,
pp. 494–515, 2008.

[8] K. Scheinberg, S. Ma, and D. Goldfarb, “Sparse inverse co-
variance selection via alternating linearization methods,” 2010,
http://books.nips.cc/papers/files/nips23/NIPS2010 0109.pdf.

[9] C. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar,
“Sparse inverse covariance matrix estimation using quadratic
approximation,” 2013, arXiv: http://arxiv.org/abs/1306.3212.

[10] C. Hsieh, I. S. Dhillon, P. Ravikumar, and A. Banerjee, “A
divide-and-conquer method for sparse inverse covariance esti-
mation,” NIPS, vol. 24, 2012.

[11] K. Scheinberg and I. Rish, “Learning sparse Gaussian Markov
networks using a greedy coordinate ascent approach,” Lect.
Notes Comput. Sc., vol. 6323, pp. 196–212, 2010.

[12] R. Tibshirani, “Regression shrinkage and selection via the
LASSO,” J. R. Statist. Soc. B, vol. 58, no. 1, pp. 267–288, 1996.

[13] G. Marjanovic and V. Solo, “l0 sparse graphical modeling,”
IEEE ICASSP, pp. 2084–2087, 2011.

[14] J. Fan and R. Li, “Variable selection via nonconcave penalized
likelihood and its oracle properties,” J. Amer. Statist. Assoc.,
vol. 96, pp. 1348–1360, 2001.

[15] G. Marjanovic and V. Solo, “On lq optimization and matrix
completion,” IEEE T. Signal Proces., vol. 60, no. 11, pp. 5714–
5724, 2012.

[16] ——, “lq matrix completion,” IEEE ICASSP, pp. 3885–3888,
2012.

[17] J. Fan, Y. Feng, and Y. Wu, “Network exploration via the adap-
tive LASSO and SCAD penalties,” Ann. Appl. Stat., vol. 3,
no. 2, pp. 521–541, 2009.

[18] G. Marjanovic and V. Solo, “On exact lq denoising,” IEEE
ICASSP, pp. 6068–6072, 2013.

[19] C. Lam and J. Fan, “Sparsistency and rates of convergence in
large covariance matrix estimation,” Ann. Appl. Stat., vol. 37,
no. 6, pp. 4254–4278, 2009.

[20] A. Seneviratne and V. Solo, “On vector l0 penalized multivari-
ate regression,” IEEE ICASSP, pp. 3613–3616, 2012.

[21] R. Mazumder, T. Hastie, and R. Tibshirani, “Spectral regular-
ization algorithms for learning large incomplete matrices,” J.
Mach. Learn. Res., vol. 11, pp. 2287–2322, 2010.

[22] G. Marjanovic, “lq sparse signal estimation with applications,”
PhD Thesis, 2013, http://www.unsworks.unsw.edu.au.

[23] B. D. Rao and K. K. Delgado, “An affine scaling methodology
for best basis selection,” IEEE T. Signal Proces., vol. 47, no. 1,
pp. 187–200, 1999.

[24] G. Marjanovic and V. Solo, “lq sparsity penalized linear re-
gression with cyclic descent,” IEEE T. Signal Proces., vol. 62,
no. 6, pp. 1464–1475, 2014.

[25] X. Chen, F. Xu, and Y. Ye, “Lower bound theory of nonzero en-
tries in solutions of l2-lp minimization,” SIAM J. Sci. Comput.,
vol. 32, pp. 2832–2852, 2010.

[26] J. J. Fuchs, “Convergence of a sparse representations algorithm
applicable to real or complex data,” IEEE J. Sel. Top. Signa.,
vol. 1, no. 4, pp. 598–605, 2007.

[27] S. Alliney and S. Ruzinsky, “An algorithm for the minimisation
of mixed l1 and l2 norms with application to Bayesian estima-
tion,” IEEE T. Signal Proces., vol. 42, pp. 618–627, 1994.

[28] D. Luenberger and Y. Ye, Linear and Nonlinear Programming.
Springer Science, 2008.

[29] P. Huard, Mathematical Programming Study 10. North-
Holland Publishing Company, 1979.

[30] M. Schmidt, G. Fung, and R. Rosales, “Fast optimization meth-
ods for l1 regularization: A comparative study and two new
approaches,” Lect. Notes Comput. Sc., pp. 286–297, 2007.

[31] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization
paths for generalized linear models via coordinate descent,” J.
Stat. Soft., vol. 33, no. 1, pp. 1–22, 2010.


