
ar
X

iv
:1

40
1.

37
53

v4
 [

cs
.IT

]
6

M
ar

 2
01

5
SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING IN SEPTEMBER 2014 – REVISED IN MARCH 2015 1

LLR-Based Successive Cancellation List Decoding
of Polar Codes

Alexios Balatsoukas-Stimming,Student Member, IEEE,Mani Bastani Parizi,Student Member, IEEE,
and Andreas Burg,Member, IEEE

Abstract—We show that successive cancellation list decoding
can be formulated exclusively using log-likelihood ratios. In
addition to numerical stability, the log-likelihood ratio based
formulation has useful properties which simplify the sorting step
involved in successive cancellation list decoding. We propose a
hardware architecture of the successive cancellation listdecoder
in the log-likelihood ratio domain which, compared to a log-
likelihood domain implementation, requires less irregular and
smaller memories. This simplification together with the gains in
the metric sorter, lead to 56% to 137% higher throughput per
unit area than other recently proposed architectures. We then
evaluate the empirical performance of the CRC-aided successive
cancellation list decoder at different list sizes using different
CRCs and conclude that it is important to adapt the CRC
length to the list size in order to achieve the best error-rate
performance of concatenated polar codes. Finally, we synthesize
conventional successive cancellation decoders at large block-
lengths with the same block-error probability as our proposed
CRC-aided successive cancellation list decoders to demonstrate
that, while our decoders have slightly lower throughput and
larger area, they have a significantly smaller decoding latency.

Index Terms—Successive Cancellation List Decoder, CRC-
Aided Successive Cancellation List Decoder, Successive Cancel-
lation Decoder, Polar Codes, Hardware Implementation

I. I NTRODUCTION

I N his seminal work [1], Arıkan constructed the first class
of error correcting codes that can achieve the capacity

of any symmetric binary-input discrete memoryless channel
(B-DMC) with efficient encodingand decodingalgorithms
based onchannel polarization. In particular, Arıkan proposed
a low-complexity successive cancellation (SC) decoder and
proved that the block-error probability ofpolar codesunder
SC decoding vanishes as their block-length increases. The SC
decoder is attractive from an implementation perspective due
to its highly structured nature. Several hardware architectures
for SC decoding of polar codes have recently been presented in
the literature [2]–[8], the first SC decoder ASIC was presented
in [9], and simplifications of Arıkan’s original SC decoding
algorithm are studied in [10]–[13].

A. Balatsoukas-Stimming and A. Burg are with the Telecommunications
Circuits Laboratory (TCL), EPFL. Their research is supported by the Swiss
National Science Foundation grant 200021149447.

M. Bastani Parizi is with the Information Theory Laboratory(LTHI), EPFL.
His research is supported by the Swiss National Science Foundation grant
200020 146832.

This work has been published in parts in the 39th International Conference
on Acoustics, Speech and Signal Processing (ICASSP’2014).

The authors would like to thank Professor Emre Telatar, Professor Ido Tal,
Jun Lin, and Bo Yuan for helpful discussions.

Even though the block-error probability of polar codes
under SC decoding decays roughly likeO(2−

√
N) as a func-

tion of the block-lengthN [14], they do not perform well
at low-to-moderate block-lengths. This is to a certain extent
due to the sub-optimality of the SC decoding algorithm. To
partially compensate for this sub-optimality, Tal and Vardy
proposed the successive cancellation list (SCL) decoder whose
computational complexity is shown to scale identically to the
SC decoder with respect to the block-length [15].

SCL decoding not only improves the block-error probability
of polar codes, but also enables one to usemodified polar
codes [16], [17] which are constructed by concatenating a
polar code with a cyclic redundancy check (CRC) code
as an outer code. Adding the CRC increases neither the
computational complexity of the encoder nor that of the
decoder by a notable amount, while reducing the block-error
probability significantly, making the error-rate performance of
the modified polar codes under SCL decoding comparable
to the state-of-the-art LDPC codes [16]. In [18] an adaptive
variant of the CRC-aided SCL decoder is proposed in order to
further improve the block-error probability of modified polar
codes while maintaining the average decoding complexity at
a moderate level.

The SCL decoding algorithm in [15] is described in terms of
likelihoods. Unfortunately, computations with likelihoods are
numerically unstable as they are prone to underflows. In recent
hardware implementations of the SCL decoder [19]–[23] the
stability problem was solved by using log-likelihoods (LLs).
However, the use of LLs creates other important problems,
such as an irregular memory with varying number of bits
per word, as well as large processing elements, making these
decoders still inefficient in terms of area and throughput.

Contributions and Paper Outline

After a background review of polar codes and SCL decoding
in Section II, in Section III we prove that the SCL decoding
algorithm can be formulated exclusively in thelog-likelihood
ratio (LLR) domain, thus enabling area-efficient and numeri-
cally stable implementation of SCL decoding. We discuss our
SCL decoder hardware architecture in Section IV and leverage
some useful properties of the LLR-based formulation in order
to prune the radix-2L sorter (implementing the sorting step
of SCL decoding) used in [19], [24] by avoiding unnecessary
comparisons in Section V. Next, in Section VI we see that
the LLR-based implementation leads to a significant reduction
of the size of our previous hardware architecture [19], as

http://arxiv.org/abs/1401.3753v4

2 SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING IN SEPTEMBER 2014 – REVISED IN MARCH 2015

well as to an increase of its maximum operating frequency.
We also compare our decoder with the recent SCL decoder
architectures of [22], [23] and show that our decoder can have
more than100% higher throughput per unit area than those
architectures.

Besides the implementation gains, it is noteworthy that most
processing blocks in practical receivers process the data in
the form of LLRs. Therefore, the LLR-based SCL decoder
can readily be incorporated into existing systems while the
LL-based decoders would require extra processing stages to
convert the channel LLRs into LLs. In fairness, we note that
one particular advantage of LL-based SCL decoders is that
the algorithmic simplifications of [10]–[13] can readily be
applied to the SCL decoder [25], while in order to apply those
simplifications to an LLR-based SCL decoder one has to rely
on approximations[26].

Finally, we show that a CRC-aided SCL decoder can be
implemented by incorporating a CRC unit into our decoder,
with almost no additional hardware cost, in order to achieve
significantly lower block-error probabilities. As we will see,
for a fixed information rate, the choice of CRC length is
critical in the design of the modified polar code to be decoded
by a CRC-aided SCL decoder. In Section VI-E we provide
simulation results showing that for small list sizes a short
CRC will improve the performance of SCL decoder while
larger CRCs will even degrade its performance compared to
a standard polar code. As the list size gets larger, one can
increase the length of CRC in order to achieve considerably
lower block-error probabilities.

An interesting question, which is, to the best of our knowl-
edge, still unaddressed in the literature, is whether it is better
to use SC decoding with long polar codes or SCL decoding
with short polar codes. In Section VIII we study two examples
of long polar codes that have the same block-error probability
under SC decoding as our(1024, 512) modified polar codes
under CRC-aided SCL decoding and compare the synthesis
results of the corresponding decoders.

II. BACKGROUND

Notation: Throughout this paper, boldface letters denote
vectors. The elements of a vectorx are denoted byxi and
xm
l means the sub-vector[xl, xl+1, . . . , xm]T if m ≥ l and

the null vector otherwise. IfI = {i1, i2, . . . } is an ordered
set of indices,xI denotes the sub-vector[xi1 , xi2 , . . .]

T . For
a positive integerm, [[m]] , {0, 1, · · · ,m − 1}. If S is
a countable set,|S| denotes its cardinality.log(·) and ln(·)
denote base-2 and natural logarithm respectively. We follow
the standard coding theory notation and denote a code of
block-lengthN and rateK

N
as an “(N,K) code.”

For N = 2n, n ≥ 1, let U be a uniformly distributed
random vector in{0, 1}N and suppose the random vectorX ∈
{0, 1}N is computed fromU through the linear transform

X = GnU , where Gn ,

[
1 1
0 1

]⊗n

Bn, (1)

where⊗n denotes thenth Kronecker power of the matrix and

Bn is the bit-reversal permutation.1

If X is transmitted viaN independent uses of the B-DMC
W : X → Y, whereX = {0, 1} is the input alphabet and
W (y|x) is the probability distribution function of the output
letterY ∈ Y whenx is transmitted, the conditional distribution
of the output vectorY ∈ YN is

WN (y|x) , Pr[Y = y|X = x] =

N−1∏

i=0

W (yi|xi), (2)

for ∀x ∈ XN andy ∈ YN . Equivalently, the distribution of
Y conditioned on{U = u} is

Wn(y|u) , Pr[Y = y|U = u] = WN (y|Gnu), (3)

for ∀u ∈ XN and∀y ∈ YN with WN (y|x) as in (2).2

‘Synthesize’N B-DMCs, W (i)
n , i ∈ [[N]] by definingW (i)

n

as the B-DMC whose input isUi and whose output is the
vector of physical channel outputsY together with all pre-
ceding elements ofU , U i−1

0 as side information, considering
all following elements ofU as i.i.d. Bernoulli noise. Thus, the
transition probabilities ofW (i)

n : X → Y × X i are

W (i)
n (y,ui−1

0 |ui) ,
∑

u
N−1
i+1 ∈XN−i−1

1

2N−1
Wn(y|u). (4)

Arıkan shows that asn → ∞, these synthetic channels
polarize to ‘easy-to-use’ B-DMCs [1, Theorem 1]. That is,
all except a vanishing fraction of them will be either almost-
noiseless channels (whose output is almost a deterministic
function of the input) or useless channels (whose output is
almost statistically independent of the input). Furthermore, the
fraction of almost-noiseless channels is equal to the symmetric
capacity of the underlying channel—the highest rate at which
reliable communication is possible throughW when the input
letters{0, 1} are used with equal frequency [27].

A. Polar Codes and Successive Cancellation Decoding

Having transformedN identical copies of a ‘moderate’ B-
DMC W into N ‘extremal’ B-DMCsW (i)

n , i ∈ [[N]], Arıkan
constructs capacity-achievingpolar codesby exploiting the
almost-noiseless channels to communicate information bits.

1) Polar Coding: In order to construct a polar code of rate
R and block lengthN for a channelW , the indices of the
NR least noisy synthetic channelsW (i)

n , i ∈ [[N]] are selected
as the information indices denoted byA ⊂ [[N]]. The sub-
vectoruA will be set to theNR data bits to be sent to the
receiver anduF , whereF = [[N]] \A, is fixed to somefrozen
vector which is known to the receiver. The vectoru is then
encoded to the codewordx through (1) usingO(N logN)
binary additions (cf. [1, Section VII]) and transmitted viaN
independent uses of the channelW .

The receiver observes the channel output vectory and esti-
mates the elements of theuA successivelyas follows: Suppose

1Let v andu be two lengthN = 2n vectors and index their elements using
binary sequences of lengthn, (b1, b2, . . . , bn) ∈ {0, 1}n. Thenv = Bnu

iff v(b1,b2,...,bn) = u(bn,bn−1,...,b1)
for ∀(b1, b2, . . . , bn) ∈ {0, 1}n.

2Following the convention in probability theory, we denote the realizations
of the random vectorsU , X , andY asu, x, andy respectively.

BALATSOUKAS-STIMMING et al.: LLR-BASED SUCCESSIVE CANCELLATION LIST DECODING OF POLARCODES 3

the information indices are ordered asA = {i1, i2, . . . , iNR}
(where ij < ij+1). Having the channel output, the receiver
has all the required information to decode the input of the
synthetic channelW (i1)

n as ûi1 , as, in particular,ui1−1
0 is a

part of the known sub-vectoruF . Since this synthetic channel
is assumed to be almost-noiseless by construction,ûi1 = ui1

with high probability. Subsequently, the decoder can proceed
to indexi2 as the information required for decoding the input
of W (i2)

n is now available. Once again, this estimation is with
high probability error-free. As detailed in Algorithm 1, this
process is continued until all the information bits have been
estimated.

Algorithm 1: SC Decoding [1].
1 for i = 0, 1, . . . , N − 1 do
2 if i 6∈ A then // frozen bits
3 ûi ← ui;
4 else // information bits

5 ûi ← argmaxui∈{0,1} W
(i)
n (y, ûi−1

0 |ui);

6 return ûA ;

2) SC Decoding as a Greedy Tree Search Algorithm:Let

U(uF) , {v ∈ XN : vF = uF} (5)

denote the set of2NR possible length-N vectors that the
transmitter can send. The elements ofU(uF) are in one-to-
one correspondence with2NR leaves of a binary tree of height
N : the leaves are constrained to be reached from the root by
following the directionui at all levelsi ∈ F . Therefore, any
decoding procedure is essentially equivalent to picking apath
from the root to one of these leaves on the binary tree.

In particular, an optimal ML decoder, associates each path
with its likelihood (or any otherpath metric which is a
monotone function of the likelihood) and picks the path that
maximizes this metric by exploringall possible paths:

ûML = argmax
v∈U(uF) Wn(y|v). (6)

Clearly such an optimization problem is computationally in-
feasible as the number of paths,|U(uF)|, grows exponentially
with the block-lengthN .

The SC decoder, in contrast, finds a sub-optimal solution by
maximizing the likelihood via agreedyone-time-pass through
the tree: starting from the root, at each leveli ∈ A, the decoder
extends the existing path by picking the child that maximizes
the partial likelihoodW

(i)
n (y, ûi−1

0 |ui).
3) Decoding Complexity: The computational task of

the SC decoder is to calculate the pairs of likelihoods
W

(i)
n (y, ûi−1

0 |ui), ui ∈ {0, 1} needed for the decisions in
line 5 of Algorithm 1. Since the decisions are binary, it is
sufficient to compute thedecision log-likelihood ratios (LLRs),

L
(i)
n , ln

(
W

(i)
n (y, ûi−1

0 |0)

W
(i)
n (y, ûi−1

0 |1)

)

, i ∈ [[N]]. (7)

It can be shown (see [1, Section VII] and [2]) that the

decision LLRs (7) can be computed via the recursions,

L
(2i)
s = f−

(
L
(2i−[i mod 2s−1])
s−1 , L

(2s+2i−[i mod 2s−1])
s−1

)
,

L
(2i+1)
s = f+

(
L
(2i−[i mod 2s−1])
s−1 , L

(2s+2i−[i mod 2s−1])
s−1 , u(2i)s

)
,

for s = n, n − 1, . . . , 1, wheref− : R2 → R and f+ : R2 ×
{0, 1} → R are defined as

f−(α, β) , ln
(eα+β + 1

eα + eβ

)

, (8a)

f+(α, β, u) , (−1)uα+ β, (8b)

respectively. The recursions terminate ats = 0 where

L
(i)
0 , ln

(W (yi|0)

W (yi|1)

)

, ∀i ∈ [[N]],

arechannel LLRs. Thepartial sumsu(i)s are computed starting
from u

(i)
n , ûi, ∀i ∈ [[N]] and setting

u
(2i−[i mod 2s−1])
s−1 = u

(2i)
s ⊕ u

(2i+1)
s ,

u
(2s+2i−[i mod 2s−1])
s−1 = u

(2i+1)
s ,

for s = n, n− 1, . . . , 1.
Therefore, the entire set ofN logN LLRs L

(i)
s , s ∈

{1, . . . , n}, i ∈ [[N]] can be computed usingO(N logN)
updates since from each pair of LLRs atstages, a pair of
LLRs at stages + 1 is calculated usingf− and f+ update
rules (see Figure 1). Additionally the decoder must keep track
of N logN partial sumsu(i)s , s ∈ [[n]], i ∈ [[N]] and update
them after decoding each bit̂ui.

L
(0)
0

L
(1)
0

L
(2)
0

L
(3)
0

L
(4)
0

L
(5)
0

L
(6)
0

L
(7)
0

s = 0

L
(0)
1

L
(1)
1

L
(2)
1

L
(3)
1

L
(4)
1

L
(5)
1

L
(6)
1

L
(7)
1

s = 1

L
(0)
2

L
(1)
2

L
(2)
2

L
(3)
2

L
(4)
2

L
(5)
2

L
(6)
2

L
(7)
2

s = 2

L
(0)
3

L
(1)
3

L
(2)
3

L
(3)
3

L
(4)
3

L
(5)
3

L
(6)
3

L
(7)
3

s = 3

C
hannel

L
L

R
s

–
stages

=
0

D
ec

is
io

n
L

L
R

s
–

st
ag

es
=

n

Fig. 1. The butterfly computational structure of the SC decoder for n = 3;
blue and orange arrows showf− andf+ updates respectively.

Remark.It can easily be checked that (cf. [2])

f−(α, β) ≈ f̃−(α, β) , sign(α) sign(β)min{|α|, |β|}, (9)

where f̃− is a ‘hardware-friendly’ function as it involves
only the easy-to-implementmin{·, ·} operation (compared to
f− which involves exponentiations and logarithms). For a
hardware implementation of the SC decoder the update rule
f− is replaced byf̃−. Given f+, such an approximation is
called the “min-sum approximation” of the decoder.

4 SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING IN SEPTEMBER 2014 – REVISED IN MARCH 2015

B. Successive Cancellation List Decoding

The successive cancellation list (SCL)decoding algorithm,
introduced in [15], converts the greedy one-time-pass search
of SC decoding into a breadth-first search under a complexity
constraint in the following way: At each leveli ∈ A, instead
of extending the path in only one direction, the decoder
is duplicated in two paralleldecoding threadscontinuing
in either possible direction. However, in order to avoid the
exponential growth of the number of decoding threads, as
soon as the number of parallel decoding threads reachesL,
at each stepi ∈ A, only L threads corresponding theL most
likely paths (out of2L tentatives) are retained.3 The decoder
eventually finishes with alist of L candidateŝu[ℓ], ℓ ∈ [[L]],
corresponding toL (out of 2NR) paths on the binary tree and
declares the most likely of them as the final estimate. This
procedure is formalized in Algorithm 2. Simulation resultsin
[15] show that for a(2048, 1024) polar code, a relatively small
list size ofL = 32 is sufficient to have a close-to-ML block-
error probability.

Algorithm 2: SC List Decoding [15]

1 L ← {0} ; // start with a single active thread
2 for i = 0, 1, . . . , N − 1 do
3 if i 6∈ A then // frozen bits
4 ûi[ℓ]← ui for ∀ℓ ∈ L;
5 else // information bits
6 if |L| < L then // duplicate all the threads
7 foreach ℓ ∈ L do
8 duplicatePath(ℓ);

9 else
10 ComputePℓ,u = W

(i)
n (y, ûi−1

0 [ℓ]|u), for ∀ℓ ∈ L
and∀u ∈ {0, 1};

11 τ ← the median of2L numbersPℓ,u;
12 foreach ℓ ∈ L such thatPℓ,0 < τ andPℓ,1 < τ do
13 Kill the threadℓ and setL ← L \ {ℓ};

14 for ℓ ∈ L do
15 if Pℓ,u > τ while Pℓ,u⊕1 < τ then
16 ûi[ℓ]← u;
17 else // both Pℓ,0 and Pℓ,1 are ≥ τ
18 duplicatePath(ℓ);

19 ℓ∗ ← argmaxℓ∈L W
(N−1)
n (y, ûN−1

0 [ℓ]|ûN [ℓ]);
20 return ûA[ℓ∗];
21 subroutine duplicatePath(ℓ)
22 Copy the threadℓ into a new threadℓ′ 6∈ L;
23 L ← L ∪ {ℓ′};
24 ûi[ℓ]← 0;
25 ûi[ℓ

′]← 1;

While a naive implementation of SCL decoder would have
a decoding complexity of at leastΩ(L ·N2) (due toΘ(L ·N)
duplicationsof data structures of sizeΩ(N) in lines 8 and 18
of Algorithm 2), a clever choice of data structures together
with the recursive nature of computations enables the authors
of [15] to use a copy-on-write mechanism and implement the
decoder inO(L ·N logN) complexity.

3Although it is not necessary,L is normally a power of2

C. CRC-Aided Successive Cancellation List Decoder

In an extended version of their work [16], Tal and Vardy
observe that when the SCL decoder fails, in most of the cases,
the correct path (corresponding touA) is among theL paths
the decoder has ended up with. The decoding error happens
since there exists another more likely path which is selected
in line 19 of Algorithm 2 (note that in such situations the
ML decoder would also fail). They, hence, conclude that the
performance of polar codes would be significantly improved
if the decoder were assisted for its final choice.

Such an assistance can be realized by addingr more non-
frozen bits (i.e., creating a polar code of rateR+ r/N instead
of rateR) to the underlying polar code and then setting the last
r non-frozen bits to anr-bit CRC of the firstNR information
bits (note that theeffective information rate of the code is
unchanged). The SCL decoder, at line 19, first discards the
paths that do not pass the CRC and then chooses the most
likely path among the remaining ones. Since the CRC can be
computed efficiently [28, Chapter 7], this does not notably
increase the computational complexity of the decoder. The
empirical results of [16] show that a(2048, 1024) concatenated
polar code (with a16-bit CRC) decoded using a list decoder
with list size ofL = 32, outperforms the existing state-of-the-
art WiMAX (2304, 1152) LDPC code [29].

Remark. According to [30], the empirical results of [16]
on the CRC-aided successive cancellation list decoder (CA-
SCLD) are obtained using a(2048, 1040) (outer) polar code
with the last 16 unfrozen bits being the CRC of the first
1024 information bits and the results on the non-CRC aided
(standard) SCL decoder are obtained using a(2048, 1024)
polar code—both having an effective information rate of1

2 .
In [17], [20], [23] the CA-SCLD is realized by keeping the
number of non-frozen bits fixed and setting the lastr of them
to the CRC of the precedingNR − r information bits. This
reduces the effective information rate of the code and makes
the comparison between the SCLD and the CA-SCLD unfair.4

III. LLR-B ASED PATH METRIC COMPUTATION

Algorithms 1 and 2 are both valid high-level descriptions
of SC and SCL decoding, respectively. However, for imple-
menting these algorithms, the stability of the computations
is crucial. Both algorithms summarized in Section II are
described in terms of likelihoods which arenot safe quantities
to work with; a decoder implemented using the likelihoods is
prone to underflow errors as they are typically tiny numbers.5

Considering the binary tree picture that we provided in Sec-
tion II-A2, the decision LLRsL(i)n (7) summarize all the nec-
essary information for choosing the most likely child among
two children of the same parent at leveli. In Section II-A3
we saw that having this type of decisions in the conventional
SC decoder allows us to implement the computations in the
LLR domain using numerically stable operations. However, in
the SCL decoder, the problem is to choose theL most likely

4In [18] this discrepancy is not clarified. However, this workfocuses only
on CA-SCLD without comparison of the performance of a SCLD toa CA-
SCLD.

5As noticed in [16], it is not difficult to see thatW (i)
n (y,ui−1

0 |ui) ≤ 2−i.

BALATSOUKAS-STIMMING et al.: LLR-BASED SUCCESSIVE CANCELLATION LIST DECODING OF POLARCODES 5

children out of2L children of L different parents (lines 10
to 18 of Algorithm 2). For these comparisons the decision
log-likelihood ratios L

(i)
n alone are not sufficient.

Consequently, the software implementation of the decoder
in [15] implements the decoder in the likelihood domain
by rewriting the recursions of Section II-A3 for computing
pairs of likelihoodsW (i)

n (y, ûi−1
0 |ui), ui ∈ {0, 1} from pairs

of channel likelihoodsW (yi|xi), xi ∈ {0, 1}, i ∈ [[N]]. To
avoid underflows, at each intermediate step of the updates the
likelihoods are scaled by a common factor such thatPℓ,u in
line 10 of Algorithm 2 is proportional toW (y, ûi−1

0 [ℓ]|u) [16].
Alternatively, such a normalization step can be avoided

by performing the computations in the log-likelihood (LL)
domain, i.e., by computing the pairsln

(
W

(i)
n (y, ûi−1[ℓ]|u)

)
,

u ∈ {0, 1} for i ∈ [[N]] as a function of channel log-likelihood
pairsln(W (yi|xi)), xi ∈ {0, 1}, i ∈ [[N]] [19]. Log-likelihoods
provide some numerical stability, but still involve some issues
compared to the log-likelihoodratios as we shall discuss in
Section IV.

Luckily, we shall see that the decoding paths can still be
ordered according to their likelihoods using all of the past
decision LLRsL(j)n , j ∈ {0, 1 · · · , i} and the trajectory of
each path as summarized in the following theorem.

Theorem 1. For each pathℓ and each leveli ∈ [[N]] let the
path-metricbe defined as:

PM
(i)
ℓ ,

i∑

j=0

ln
(
1 + e−(1−2ûj [ℓ])·L(j)

n [ℓ]
)
, (10)

where

L
(i)
n [ℓ] = ln

(
W

(i)
n (y, ûi−1[ℓ]|0)

W
(i)
n (y, ûi−1[ℓ]|1)

)

,

is the log-likelihood ratio of bitui given the channel output
y and the past trajectory of the patĥui−1

0 [ℓ].
If all the information bits are uniformly distributed in{0, 1},

for any pair of pathsℓ1, ℓ2,

W (i)
n (y, ûi−1[ℓ1]|ûi[ℓ1]) < W (i)

n (y, ûi−1[ℓ2]|ûi[ℓ2])

if and only if

PM
(i)
ℓ1

> PM
(i)
ℓ2
.

In view of Theorem 1, one can implement the SCL decoder
using L parallel low-complexityand stableLLR-based SC
decoders as the underlying building blocks and, in addition,
keep track ofL path-metrics. The metrics can be updated
successively as the decoder proceeds by setting

PM
(i)
ℓ = φ

(
PM

(i−1)
ℓ , L(i)n [ℓ], ûi[ℓ]

)
, (11a)

where the functionφ : R2
+ × {0, 1} → R+ is defined as

φ(µ, λ, u) , µ+ ln
(
1 + e−(1−2u)λ

)
. (11b)

As shown in Algorithm 3, the paths can be compared based on
their likelihood using the values of the associated path metrics.

Algorithm 3: LLR-based formulation of SCL Decoding

1 L ← {0} ; // start with a single active thread

2 PM
(0)
0 ← 0 ;

3 for i = 0, 1, . . . , N − 1 do
4 ComputeL(i)

n [ℓ] for ∀ℓ ∈ L ; // parallel SC decoders
5 if i 6∈ A then // frozen bits

6
(

ûi[ℓ],PM
(i)
ℓ

)

←
(

ui, φ(PM
(i−1)
ℓ , L

(i)
n [ℓ], ui)

)

for
∀ℓ ∈ L ; // cf. (11b)

7 else // information bits

8 SetPℓ,u ← φ(PM
(i−1)
ℓ , L

(i)
n , u) for ∀ℓ ∈ L and

∀u ∈ {0, 1} ; // cf (11b)
9 if |L| < L then // duplicate all the threads

10 foreach ℓ ∈ L do
11 duplicatePath(ℓ);

12 else
13 τ ← the median of2L numbersPℓ,u;
14 foreach ℓ ∈ L such thatPℓ,0 > τ andPℓ,1 > τ do
15 Kill the threadℓ and setL ← L \ {ℓ};

16 for ℓ ∈ L do
17 if Pℓ,u > τ while Pℓ,u⊕1 < τ then
18

(

ûi[ℓ],PM
(i)
ℓ

)

← (u, Pℓ,u);
19 else // both Pℓ,0 and Pℓ,1 are ≤ τ
20 duplicatePath(ℓ);

21 ℓ∗ ← argminℓ∈L PM
(N)
ℓ ;

22 return ûA[ℓ∗];
23 subroutine duplicatePath(ℓ)
24 Copy the threadℓ into a new threadℓ′ 6∈ L;
25 L ← L ∪ {ℓ′};
26

(

ûi[ℓ],PM
(i)
ℓ

)

← (0, Pℓ,0);
27

(

ûi[ℓ
′],PM

(i)
ℓ′

)

← (1, Pℓ,1);

Before proving Theorem 1 let us provide an intuitive
interpretation of our metric. Since

ln(1 + ex) ≈

{

0 if x < 0,

x if x ≥ 0,

the update rule (11) is well-approximated if we replaceφ with
φ̃ : R2

+ × {0, 1} → R+ defined as

φ̃(µ, λ, u) ,

{

µ if u = 1
2 [1− sign(λ)],

µ+ |λ| otherwise.
(12)

We also note that12 [1− sign(L
(i)
n [ℓ])] is the direction that the

LLR (given the past trajectorŷui−1
0 [ℓ]) suggests. This is the

same decision that a SC decoder would have taken if it was to
estimate the value ofui at stepi given the past set of decisions
û
i−1
0 [ℓ] (cf. line 5 in Algorithm 1). Equation (12) shows that

if at stepi theℓth path does not follow the direction suggested
by L

(i)
n [ℓ] it will be penalized by an amount≈ |L

(i)
n [ℓ]|.

Having such an interpretation, one might immediately con-
clude that the path that SC decoder would follow will always
have the lowest penalty hence is always declared as the output
of the SCL decoder. So why should the SCL decoder exhibit a
better performance compared to the SC decoder? The answer
is that such a reasoning is correct only ifall the elements of
u are information bits. As soon as the decoder encounters a

6 SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING IN SEPTEMBER 2014 – REVISED IN MARCH 2015

frozen bit, the path metric is updated based on the likelihood
of that frozen bit, given the past trajectory of the path and the
a-priori known value of that bit (cf. line 6 in Algorithm 3).
This can penalize the SC path by a considerable amount, if the
value of that frozen bit does not agree with the LLR given the
past trajectory (which is an indication of a preceding erroneous
decision), while keeping some other paths unpenalized.

We devote the rest of this section to the proof of Theorem 1.

Lemma 1. If Ui is uniformly distributed in{0, 1}, then,

W
(i)
n (y,ui−1

0 |ui)

Pr[U i
0 = ui

0|Y = y]
= 2Pr[Y = y].

Proof: SincePr[Ui = ui] =
1
2 for ∀ui ∈ {0, 1},

W
(i)
n (y,ui−1

0 |ui)

Pr[U i
0 = ui

0|Y = y]
=

Pr[Y = y,U i
0 = ui

0]

Pr[Ui = ui] Pr[U
i
0 = ui

0|Y = y]

=
Pr[Y = y] Pr[U i

0 = ui
0|Y = y]

Pr[Ui = ui] Pr[U
i
0 = ui

0|Y = y]
= 2Pr[Y = y].

Proof of Theorem 1: It is sufficient to show

PM
(i)
ℓ = − ln

(

Pr[U i
0 = û

i
0[ℓ]|Y = y]

)

. (13)

Having shown (13), Theorem 1 will follow as an immediate
corollary to Lemma 1 (since the channel outputy is fixed for
all decoding paths). Since the path indexℓ is fixed on both
sides of (10) we will drop it in the sequel. Let

Λ(i)
n ,

W
(i)
n (y, ûi−1

0 |0)

W
(i)
n (y,ui−1

0 |1)
=

Pr[Y = y,U i−1
0 = û

i−1
0 , Ui = 0]

Pr[Y = y,U i−1
0 = û

i−1
0 , Ui = 1]

(the last equality follows sincePr[Ui = 0] = Pr[Ui = 1]), and
observe that showing (13) is equivalent to proving

Pr[U i = û
i|Y = y] =

i∏

j=0

(
1 + (Λ(j)

n)−(1−2ûj)
)−1

. (14)

Since

Pr[Y = y,U i−1
0 = û

i−1
0] =

∑

ûi∈{0,1}
Pr[Y = y,U i

0 = û
i
0]

= Pr[Y = y,U i
0 = û

i
0]
(
1 + (Λ(i)

n)−(1−2ûi)
)
,

Pr[Y = y,U i
0 = û

i
0]

=
(
1 + (Λ(i)

n)−(1−2ûi)
)−1

Pr[Y = y,U i−1
0 = û

i−1
0]. (15)

Repeated application of (15) (fori− 1, i− 2, . . . , 0) yields

Pr[Y = y,U i
0 = û

i
0] =

i∏

j=0

(
1+(Λ(j)

n)−(1−2ûi)
)−1

Pr[Y = y].

Dividing both sides byPr[Y = y] proves (14).

IV. SCL DECODERHARDWARE ARCHITECTURE

In this section, we show how the LLR-based path metric
which we derived in the previous section can be exploited
in order to derive a very efficient LLR-based SCL decoder
hardware architecture. More specifically, we give a detailed
description of each unit of our LLR-based SCL decoder ar-
chitecture, which essentially consists ofL parallel SC decoders
along with a path management unit which coordinates the
tree search. Moreover, we highlight the advantages over our
previous LL-based architecture described in [19]. Our SCL
decoder consists of five units: thememories unit, the metric
computation unit(MCU), the metric sorting unit, the address
translation unit, and thecontrol unit. An overview of the SCL
decoder is shown in Figure 2.

A. LLR and Path Metric Quantization

All LLRs are quantized using aQ-bit signed uniform quan-
tizer with step size∆ = 1. The path metrics are unsigned num-
bers which are quantized usingM bits. Since the path metrics
are initialized to0 and, in the worst case, they are incremented
by 2Q−1−1 for each bit indexi, the maximum possible value
of a path metric isN(2Q−1 − 1) = 2n+Q−1 − 2n < 2n+Q−1.
Hence, at mostM = n + Q − 1 bits are sufficient to ensure
that there will be no overflows in the path metric. In practice,
any path that gets continuously harshly penalized will most
likely be discarded. Therefore, as we will see in Section VI,
much fewer bits are sufficient in practice for the quantization
of the path metrics.

B. Metric Computation Unit

The computation of the LLRs (line 4 of Algorithm 3) can
be fully parallelized. Consequently, the MCU consists ofL
parallel SC decoder cores which implement the SC decoding
update rules and compute theL decision LLRs using the
semi-parallel SC decoder architecture of [5] withP processing
elements (PEs). These decision LLRs are required to update
the path metricsPM(i)

ℓ . Whenever theL decision LLRs have
been computed, the MCUs wait for one clock cycle. During
this single clock cycle, the path metricsPM(i)

ℓ are updated
and sorted. Moreover, based on the result of metric sorting,
the partial sum, path, and pointer memories are also updated
in the same clock cycle, as described in the sequel.

Each decoder core reads its input LLRs from one of theL
physical LLR memory banks based on an address translation
performed by the pointer memory (described in more detail in
Section IV-D).

C. Memory Unit

1) LLR Memory: The channel LLRs are fixed during the
decoding process of a given codeword, meaning that an SCL
decoder requires only one copy of the channel LLRs. These
are stored in a memory which isN

P
words deep andQP bits

wide. On the other hand, the internal LLRs of the intermediate
stages of the SC decoding (metric computation) process are
different for each pathℓ ∈ [[L]]. Hence we requireL physical
LLR memory banks withN − 1 memory positions per bank.

BALATSOUKAS-STIMMING et al.: LLR-BASED SUCCESSIVE CANCELLATION LIST DECODING OF POLARCODES 7

Fig. 2. Overview of the SCL decoder architecture. Details onthe i, s, ps, as well as the func & stage and
MemAddr components inside the control unit, which are not described in this paper, can be found in [19].
The dashed green and the dotted red line show the critical paths forL = 2 andL = 4, 8 respectively.

Fig. 3. Bit-cell copying mechanism con-
trolled by the metric sorter.

All LLR memories have two reads ports, so that allP PEs can
read their twoQ-bit input LLRs simultaneously. Here, register
based storage cells are used to implement all the memories.

2) Path Memory: The path memory consists ofL N -bit
registers, denoted bŷu[ℓ], ℓ ∈ [[L]]. When a pathℓ needs
to be duplicated, the contents of̂u[ℓ] are copied toû[ℓ′],
where ℓ′ corresponds to an inactive path (cf. line 25 of
Algorithm 3). The decoder is stalled for one clock cycle in
order to perform the required copy operations by means ofN
L × L crossbars which connect eacĥu[ℓ], ℓ ∈ [[L]] with all
other û[ℓ′], ℓ′ ∈ [[L]]. The copy mechanism is presented in
detail in Figure 3, where we show how each memory bit-cell
is controlled based on the results of the metric sorter. After
pathℓ has been duplicated, one copy is extended with the bit
valueûi[ℓ] = 0, while the other is updated witĥui[ℓ

′] = 1 (cf.
lines 26 and 27 of Algorithm 3).

3) Partial Sum Memory:The partial sum memory consists
of L PSNs, where each PSN is implemented as in [5]. When
a pathℓ ∈ [[L]] needs to be duplicated, the contents of the
PSN ℓ are copied to another PSNℓ′, where ℓ′ corresponds
to an inactive path (cf. line 25 of Algorithm 3). Copying is
performed in parallel with the copy of the path memory in a
single clock cycle by usingN L×L crossbars which connect
each PSNℓ ∈ [[L]] with all other PSNsℓ′ ∈ [[L]]. If PSN ℓ was
duplicated, one copy is updated with the bit valueûi[ℓ] = 0,
while the other copy is updated witĥui[ℓ

′] = 1. If a single
copy of PSNℓ was kept, then this copy is updated with the
value of ûi[ℓ] that corresponds to the surviving path.

D. Address Translation Unit

The copy-on-write mechanism used in [15] (which is fully
applicable to LLRs) is sufficient to ensure that the decoding
complexity isO(LN logN), but it is not ideal for a hardware
implementation as, due to the recursive implementation of
the computations, it still requires copying the internal LLRs
which is costly in terms of power, decoding latency, and silicon
area. On the other hand, a sequential implementation of the

computations enables a more hardware-friendly solution [19],
where each path has its own virtual internal LLR memory,
the contents of which are physically spread across all of the
L LLR memory banks. The translation from virtual memory
to physical memory is done using a smallpointer memory.
When a pathℓ needs to be duplicated, as with the partial
sum memory, the contents of rowℓ of the pointer memory are
copied to some row corresponding to a discarded path through
the use ofL× L crossbars.

E. Metric Sorting Unit

The metric sorting unit contains apath metric memoryand a
path metric sorter. The path metric memory stores theL path
metricsPM(i)

ℓ usingM bits of quantization for each metric.
In order to find the medianτ at each bit indexi (line 13
of Algorithm 3), the path metric sorter sorts the2L candidate
path metricsPℓ,u, ℓ ∈ [[L]], u ∈ {0, 1} (line 8 of Algorithm 3).
The path metric sorter takes the2L path metrics as an input
and produces the sorted path metrics, as well as the path
indicesℓ and bit valuesu which correspond to the sorted path
metrics as an output. Since decoding can not continue before
the surviving paths have been selected, the metric sorter isa
crucial component of the SCL decoder. Hence, we will discuss
the sorter architecture in more detail in Section V.

F. Control Unit

The control unit generates all memory read and write
addresses as in [5]. Moreover, the control unit contains the
codeword selection unit and the optional CRC unit.

The CRC unit containsL r-bit CRC memories, wherer
is the number of CRC bits. A bit-serial implementation of a
CRC computation unit is very efficient in terms of area and
path delay, but it requires a large number of clock cycles to
produce the checksum. However, this computation delay is
masked by the bit-serial nature of the SCL decoder itself and,
thus, has no impact on the number of clock cycles required

8 SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING IN SEPTEMBER 2014 – REVISED IN MARCH 2015

to decode each codeword. Before decoding each codeword,
all CRC memories are initialized tor-bit all-zero vectors. For
each ûi[ℓ], i ∈ A, the CRC unit is activated to update the
CRC values. When decoding finishes, the CRC unit declares
which pathsℓ ∈ [[L]] pass the CRC. When a path is duplicated
the corresponding CRC memory is copied by means ofL×L
crossbars (like the partial sums and the path memory).

If the CRC unit is present, the codeword selection unit
selects the most likely path (i.e., the path with the lowest
metric) out of the paths that pass the CRC. Otherwise, the
codeword selection unit simply chooses the most likely path.

G. Clock Cycles Per Codeword

Let the total number of cycles required for metric sorting
at all information indicesi ∈ A be denoted byDMS(A). As
we will see in Section V-C, the sorting latency depends on the
number of information bits and may depend on the pattern of
frozen and information bits as well (both of these parameters
can be deduced givenA). Then, our SCL decoder requires

DSCL(N,P,A) = 2N +
N

P
log

N

4P
+DMS(A) (16)

cycles to decode each codeword.

H. Advantages Over LL-based SCL Decoder Implementation

The LLs in the SCL decoders of [19]–[23] are all posi-
tive numbers and the corresponding LL-domain update rules
involve only additions and comparisons. This means that, as
decoding progresses through the decoding stages, the dynamic
range of the LLs is increased. Thus, in order to avoid catas-
trophic overflows, all LLs in stages are quantized usingQ+s
bits. In the LLR-based implementation of this paper, the LLRs
of all stages can be quantized using the same number of bits
since the update rules involve both addition and subtraction
and the dynamic range of the LLRs in different stages is
smaller than that of the LLs. This leads to a regular memory
where all elements have the same bit-width. Hence, as we will
see in Section VI, using LLRs significantly reduces the total
size of the decoder. In addition, the PEs in the LL-based SCL
decoder architectures of [19], [20] must support computations
with a much larger bit-width than the ones in our LLR-based
SCL decoder architecture. Moreover, it turns out that the path
metric in the LLR-based decoder can be quantized using much
fewer bits than in the LL-based decoder, hence decreasing
the delay and the size of the comparators in the metric
sorting unit. Finally, the LLR-based formulation enables us
to significantly simplify the metric sorter, as explained inthe
following section.

V. SIMPLIFIED SORTER

For large list sizes (L ≥ 4), the maximum (critical)
delay path passes through the metric sorter, thus reducing the
maximum operating frequency of the decoder in [19], [24].
It turns out that the LLR-based path metric we introduced
in Theorem 1 has some properties (which the LL-based path
metric lacks) that can be used to simplify the sorting task.

(a) Full Radix-2L Sorter (b) Pruned Radix-2L Sorter

Fig. 4. Radix-2L sorters forL = 2

To this end, we note that the2L real numbers that have
to be sorted in line 13 of Algorithm 3 are not arbitrary; half
of them are the previously existing path-metrics (which can
be assumed to be already sorted as a result of decoding the
preceding information bit) and the rest are obtained by adding
positive real values (the absolute value of the corresponding
LLRs) to the existing path metrics. Moreover, we do not need
to sortall these2L potential path metrics; a sorted list of the
L smallest path metrics is sufficient.

Hence, the sorting task of the SCL decoder can be formal-
ized as follows: Given a sorted list ofL numbers

µ0 ≤ µ1 ≤ · · · ≤ µL−1

a list of size2L, m = [m0,m1, · · · ,m2L−1] is created by
setting

m2ℓ := µℓ and m2ℓ+1 := µℓ + aℓ, ℓ ∈ [[L]],

whereaℓ ≥ 0, for ∀ℓ ∈ [[L]]. The problem is to find a sorted
list of L smallest elements ofm when the elements ofm
have the following two properties: for∀ℓ ∈ {0, 1, · · · , L−2},

m2ℓ ≤ m2(ℓ+1), (17a)

m2ℓ ≤ m2ℓ+1. (17b)

A. Full Radix-2L Sorter

The most straightforward way to solve our problem is to
sort the listm up to theL-th element. This can be done using
a simple extension of the radix-2L sorter described in [31],
which blindly compares every pair of elements(mℓ,mℓ′) and
then combines the results to find the firstL smallest elements.
This is the solution we used in [19], which requires

(
2L
2

)
=

L(2L− 1) comparators together withL 2L-to-1 multiplexers
(see Figure 4a). Thesorting logiccombines the results of all
comparators in order to generate the control signal for the
multiplexers (cf. [31] for details). The maximum path delay
of the radix-2L sorter is mainly determined by the complexity
of the sorting logic, which in turn depends on the number of
comparator results that need to be processed.

B. Pruned Radix-2L Sorter

Thepruned radix-2L sorter presented in this section reduces
the complexity of the sorting logic of the radix-2L sorter

BALATSOUKAS-STIMMING et al.: LLR-BASED SUCCESSIVE CANCELLATION LIST DECODING OF POLARCODES 9

and, thus, also the maximum path delay, by eliminating some
pairwise comparisons whose results are either already known
or irrelevant.

Proposition 1. It is sufficient to use a pruned radix-2L sorter
that involves only(L−1)2 comparators to find theL smallest
elements ofm. This sorter is obtained by

(a) removing the comparisons between every even-indexed
element ofm and all following elements, and

(b) removing the comparisons betweenm2L−1 and all other
elements ofm.

Proof: Properties (17a) and (17b) implym2ℓ ≤ mℓ′ for
∀ℓ′ > 2ℓ. Hence, the outputs of these comparators are known.
Furthermore, as we only need the firstL elements of the list
sorted andm2L−1 is never among theL smallest elements
of m, we can always replacem2L−1 by +∞ (pretending the
result of the comparisons involvingm2L−1 is known) without
affecting the output of the sorter.

In step (a) we have removed
∑L−1

ℓ=0 (2L − 1 − 2ℓ) = L2

comparators and in step (b)(L− 1) comparators (note that in
the full sorterm2L−1 is compared to all(2L − 1) preceding
elements butL of them correspond to even-indexed elements
whose corresponding comparators have already been removed
in step (a)). Hence we haveL(2L−1)−L2−(L−1) = (L−1)2

comparators.
Besides the(L−1)2 comparators, the pruned radix-2L sorter

requiresL− 1 (2L− 2)-to-1 multiplexers (see Figure 4b).
The pruned radix-2L sorter is derived based on the as-

sumption that the existing path metrics are already sorted.
This assumption is violated when the decoder reaches the
first frozen bit after the first cluster of information bits; at
each frozen index, some of the path-metrics are unchanged
and some are increased by an amount equal to the absolute
value of the LLR. In order for the assumption to hold when
the decoder reaches the next cluster of information bits, theL
existing path metrics have to be sorted before the decoding of
this cluster starts. The existing pruned radix-2L sorter can be
used for sortingL arbitrary positive numbers as follows.

Proposition 2. Let a0, a1, . . . , aL−1 beL non-negative num-
bers. Create a list of size2L as

b , [0, a0, 0, a1, . . . , 0, aL−2, aL−1,+∞].

Feeding this list to the pruned radix-2L sorter will result in
an output list of the form

[0, 0, . . . , 0
︸ ︷︷ ︸

L − 1 zeros

, a(0), a(1), . . . , a(L−1),+∞]

wherea(0) ≤ a(1) ≤ · · · ≤ a(L−1) is the ordered permutation
of a0, a1, . . . , aL−1.

Proof: It is clear that the assumptions (17a) and (17b)
hold forb. The proof of Proposition 1 shows if the last element
of the list is additionally known to be the largest element, the
pruned radix-2L sorter sorts the entire list.

Note that while the same comparator network of a pruned
radix-2L sorter is used for sortingL numbers,L separateL-
to-1 multiplexers are required to output the sorted list.

C. Latency of Metric Sorting

We assume that the sorting procedure is carried out in a
single clock cycle. A decoder based on the full radix-2L sorter,
only needs to sort the path metrics for the information indices,
hence, the total sorting latency of such an implementation is

DMS(A) = |A| = NR cycles. (18)

Using the pruned radix-2L sorter, additional sorting steps
are required at the end of each contiguous set of frozen indices.
Let FC(A) denote the number ofclustersof frozen bits for
a given information setA.6 The metric sorting latency using
the pruned radix-2L sorter is then

DMS(A) = |A|+ FC(A) = NR+ FC(A) cycles. (19)

VI. I MPLEMENTATION RESULTS

In this section, we present synthesis results for our SCL
decoder architecture. For fair comparison with [23], we usea
TSMC 90 nm technology with a typical timing library (1 V
supply voltage,25◦C operating temperature) and our decoder
of [19] is re-synthesized using this technology. All synthesis
runs are performed with timing constraints that are not achiev-
able, in order to assess the maximum achievable operating
frequency of each design, as reported by the synthesis tool.
For our synthesis results, we have usedP = 64 PEs per
SC decoder core, as in [5], [19]. The hardwareefficiencyis
defined as the throughput per unit area and it is measured in
Mbps/mm2. The decoding throughput of all decoders is:

TSCL(N,P,A, f) =
f ·N

DSCL(N,P,A)
, (20)

wheref is the operating frequency of the decoder.
We first compare the LLR-based decoder of this work with

our previous LL-based decoder [19], in order to demonstrate
the improvements obtained by moving to an LLR-based for-
mulation of SCL decoding. Then, we examine the effect of
using the pruned radix-2L sorter on our LLR-based SCL
decoder. Finally, we compare our LLR-based decoder with the
LL-based decoder of [23] (since [23] is an improved version
of [20], we do not compare directly with [20]) and [22]. A
direct comparison with the SCL decoders of [21], [26] is
unfortunately not possible, as the authors do not report their
synthesis results in terms of mm2. Finally, we provide some
discussion on the effectiveness of a CA-SCLD.

A. Quantization Parameters

In Figure 5, we present the FER of floating-point and fixed-
point implementations of an LL-based and an LLR-based SCL
decoder for a(1024, 512) polar code as a function of SNR.7

For the floating-point simulations we have used the exact
implementation of the decoder, i.e., for computing the LLRs

6 More precisely we assumeF =
⋃FC(A)

j=1 Fj such that (i)Fj ∩Fj′ = ∅
if j 6= j′, i.e.,{Fj : j = 1, . . . , FC(A)} is a partition ofF ; (ii) for every j,
Fj is a contiguous subset of[[N]]; and (iii) for every pairj 6= j′, Fj ∪Fj′ is
not a contiguous subset of[[N]]. It can be easily checked that such a partition
always exists and is unique.

7The code is optimized forEb/N0 = 2dB and constructed using the
Monte-Carlo method of [1, Section IX].

10 SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING IN SEPTEMBER 2014 – REVISED IN MARCH 2015

1.5 2 2.5 3 3.5 4

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

F
E

R
SC Decoder,Q = 6
SC Decoder, Floating-Point
L = 2, LLR-based,Q = 6
L = 2, LL-based,Q = 4 [19]
L = 2, Floating-Point

L = 4, LLR-based,Q = 6
L = 4, LL-based,Q = 4 [19]
L = 4, Floating-Point
L = 8, LLR-based,Q = 6
L = 8, LL-based,Q = 4 [19]
L = 8, Floating-Point

Fig. 5. The performance of floating-point vs. fixed-point SCLdecoders.M =
8 quantization bits are used for the path metric in fixed-pointSCL decoders.

the update rulef− of (8a) is used and the path metric is
iteratively updated according to (11). In contrast, for thefixed-
point simulations we have used the min-sum approximation
of the decoder (i.e., replacedf− with f̃− as in (9)) and the
approximated path metric update rule of (12).

We observe that the LL-based and the LLR-based SCL have
practically indistinguishable FER performance when quantiz-
ing the channel LLs and the channel LLRs withQ = 4 bits
and Q = 6 bits respectively. Moreover, in our simulations
we observe that the performance of the LL and the LLR-
based SCL decoder is degraded significantly whenQ < 6 and
Q < 4, respectively. As discussed in Section IV-A, metric
quantization requires at mostM = n+Q− 1 bits. However,
in practice, much fewer bits turn out to be sufficient. For
example, in our simulations forN = 1024 and Q = 6,
settingM = 8 leads to the same performance as the worst-
caseM = 15, while settingM = 7 results in a significant
performance degradation due to metric saturation. Thus, all
synthesis results of this section are obtained forQ = 4 for
the LL-based decoder of [19], andQ = 6 andM = 8 for the
LLR-based decoder for a fair (i.e., iso-FER) comparison.

The authors of [22] do not provide the FER curves for
their fixed-point implementation of SCLD and the authors of
[23] only provide the FERs for a CA-SCLD [23, Figure 2].
Nevertheless, we assume their quantization schemes will not
result in a better FER performance for astandard SCLD
than that of [19] since they both implement exactly the same
algorithm as in [19] (using a differentarchitecturethan [19]),

B. Gains due to LLR-based Formulation of SCL Decoding

Our previous LL-based architecture of [19] and the LLR-
based architecture with a radix-2L sorter presented in this
paper are identical except that the former uses LLs while
the latter uses LLRs. Therefore, by comparing these two

TABLE I
COMPARISON WITH LL- BASED IMPLEMENTATION

LL-Based [19] LLR-Based
L = 2 L = 4 L = 8 L = 2 L = 4 L = 8

Freq. (MHz) 794 730 408 847 758 415
Lat. (Cyc./bit) 2.53 2.53 2.53 2.53 2.53 2.53
T/P (Mbps) 314 288 161 335 299 164
Area (mm2) 1.38 2.62 5.38 0.88 1.75 3.87
Efficiency 227 110 30 380 171 42

TABLE II
CELL AREA BREAKDOWN FOR THELL-B ASED AND THE RADIX -2L

LLR-BASED SCL DECODERS(R = 1
2

, N = 1024)

LL-Based [19] LLR-Based Reduction
List Size L = 2

Total Area (mm2) 1.38 0.88 36%
Memory (mm2) 1.07 0.80 25%

MCU (mm2) 0.28 0.06 79%
Metric Sorter (mm2) 1.34 × 10−3 0.75× 10−3 44%

Other (mm2) 0.03 0.02 50%
List Size L = 4

Total Area (mm2) 2.62 1.75 33%
Memory (mm2) 1.92 1.57 18%

MCU (mm2) 0.54 0.11 80%
Metric Sorter (mm2) 13.92× 10−3 9.23× 10−3 33%

Other (mm2) 0.15 0.06 60%
List Size L = 8

Total Area (mm2) 5.38 3.87 28%
Memory (mm2) 4.08 3.46 15%

MCU (mm2) 0.82 0.18 78%
Metric Sorter (mm2) 70.65× 10−3 54.05× 10−3 24%

Other (mm2) 0.41 0.18 56%

architectures we can specifically identify the improvements
in terms of area and decoding throughput that arise directly
from the reformulation of SCL decoding in the LLR domain.

The cycle count for our SCL decoder using the radix-
2L sorter when decoding a(1024, 512) polar code is
DSCL(N,P,A) = 2592 cycles (see (16) and (18)).

From Table I, we see that our LLR-based SCL decoder
occupies36%, 33%, and 28% smaller area than our LL-
based SCL decoder of [19] forL = 2, L = 4, andL = 8,
respectively. We present the area breakdown of the LL-based
and the LLR-based decoders in Table II in order to identify
where the area reduction mainly comes from and why the
relative reduction in area decreases with increasing list size
L. The memoryarea corresponds to the combined area of
the LLR (or LL) memory, the partial sum memory, and the
path memory. We observe that, in absolute terms, the most
significant savings in terms of area come from the memory,
where the area is reduced by up to0.62 mm2 for L = 8.
On the other hand, in relative terms, the biggest savings in
terms of area come from the MCU with an average area
reduction of79%. The relative reduction in the memory area
decreases with increasing list sizeL. This happens because
each bit-cell of the partial sum memory and the path memory
containsL-to-L crossbars, whose size grows quadratically
with L, while the LL (and LLR) memory grows only linearly
in size withL. Thus, the the size of the partial sum memory
and the path memory, which are not affected by the LLR-
based reformulation, becomes more significant as the list size
is increased, and the relative reduction due to the LLR-based

BALATSOUKAS-STIMMING et al.: LLR-BASED SUCCESSIVE CANCELLATION LIST DECODING OF POLARCODES 11

TABLE III
RADIX -2L VS. PRUNED RADIX -2L SORTER

Radix-2L Sorter Pruned Radix-2L Sorter
L = 2 L = 4 L = 8 L = 2 L = 4 L = 8

Freq. (MHz) 847 758 415 848 794 637
Lat. (Cyc./bit) 2.53 2.53 2.53 2.59 2.59 2.59
T/P (Mbps) 335 299 164 328 307 246
Area (mm2) 0.88 1.75 3.87 0.9 1.78 3.85
Efficiency 380 171 42 364 172 64

formulation is decreased. Similarly, the relative reduction in
the metric sorter area decreases with increasingL, because
the LLR-based formulation only decreases the bit-width of
theL(2L− 1) comparators of the radix-2L sorter but it does
not affect the size of the sorting logic, which dominates the
sorter area as the list size is increased.

From Table I, we observe that the operating frequency (and,
hence, the throughput) of our LLR-based decoder is7%, 3%,
and2% higher than that of our LL-based SCL decoder of [19]
for L = 2, L = 4, andL = 8, respectively.

Due to the aforementioned improvements in area and decod-
ing throughput, the LLR-based reformulation of SCL decoding
leads to hardware decoders with67%, 55%, and40% better
hardware efficiency than the corresponding LL-based decoders
of [19], for L = 2, L = 4, andL = 8, respectively.

C. Radix-2L Sorter versus Pruned Radix-2L Sorter

One may expect the pruned radix-2L sorter to always out-
perform the radix-2L sorter. However, the decoder equipped
with the pruned radix-2L sorter needs to stall slightly more
often to perform the additional sorting steps after groups of
frozen bits. In particular, a(1024, 512) polar code contains
FC(A) = 57 groups of frozen bits. Therefore, the total
sorting latency for the pruned radix-2L sorter isDMS(A) =
|A| + FC(A) = 569 cycles (see (19)). Thus, we have
DSCL(N,P,A) = 2649 cycles, which is an increase of
approximately2% compared to the decoder equipped with a
full radix-2L sorter. Therefore, if using the pruned radix-2L
does not lead to a more than2% higher clock frequency, the
decoding throughput will actually be reduced.

As can be observed in Table III, this is exactly the case for
L = 2, where the LLR-based SCL decoder with the pruned
radix-2L sorter has a2% lower throughput than the LLR-
based SCL decoder with the full radix-2L sorter. However,
for L ≥ 4 the metric sorter starts to lie on the critical path
of the decoder and therefore using the pruned radix-2L sorter
results in a significant increase in throughput of up to50% for
L = 8.

To provide more insight into the effect of the metric sorter
on our SCL decoder, in Table IV we present the metric sorter
delay and the critical path start- and endpoints of each decoder
of Table III. The critical paths forL = 2 andL = 4, 8, are also
annotated in Figure 2 with green dashed lines and red dotted
lines, respectively. We denote the register of the controller
which stores the internal LLR memory read address byRIM .
Moreover, letD

Ûs
andDM denote a register of the partial sum

memory and the metric memory, respectively. From Table IV,
we observe that, forL = 2, the radix-2L sorter does not lie

TABLE IV
METRIC SORTERDELAY AND CRITICAL PATH START- AND ENDPOINTS

FOR OURLLR-BASED SCL DECODERUSING THE RADIX -2L AND THE

PRUNED RADIX -2L SORTERS.

Radix-2L Sorter Pruned Radix-2L Sorter
L = 2 L = 4 L = 8 L = 2 L = 4 L = 8

Delay (ns) 0.50a 0.80 1.83 0.50a 0.54 1.09
CP Startpoint RIM DM DM RIM RIM DM

CP Endpoint DM D
Ûs

D
Ûs

DM DM D
Ûs

a Note that the true delay of the pruned radix-2L sorter is always smaller
than the delay of the radix-2L sorter. However, forL = 2, both sorters
meet the synthesis timing constraint, which was set to0.50 ns.

on the critical path of the decoder, which explains why using
the pruned radix-2L sorter does not improve the operating
frequency of the decoder. ForL ≥ 4 the metric sorter does
lie on the critical path of the decoder and using the pruned
radix-2L sorter results in a significant increase in the operating
frequency of up to53%. It is interesting to note that using the
pruned radix-2L sorter eliminates the metric sorter completely
from the critical path of the decoder forL = 4. For L = 8,
even the pruned radix-2L sorter lies on the critical path of the
decoder, but the delay through the sorter is reduced by40%.

D. Comparison with LL-based SCL Decoders

In Table V, we compare our LLR-based decoder with the
LL-based decoders of [23] and [22] along with our LL-
based decoder of [19]. For the comparisons, we pick our SCL
decoder with the best hardware efficiency for each list size,
i.e., for L = 2 we pick the SCL decoder with the radix-2L
sorter, while forL = 4, 8, we pick the SCL decoder with
the pruned radix-2L sorter. Moreover, we pick the decoders
with the best hardware efficiency from [22], i.e., the4b-rSCL
decoders.

1) Comparison with [23]: From Table V we observe that
our LLR-based SCL decoder has an approximately28%
smaller area than the LL-based SCL decoder of [23] for all
list sizes. Moreover, the throughput of our LLR-based SCL
decoder is up to70% higher than the throughput achieved by
the LL-based SCL decoder of [23], leading to a137%, 118%,
and 120% better hardware efficiency forL = 2, L = 4 and
L = 8, respectively.

2) Comparison with [22]:The synthesis results of [22] are
given for a65nm technology, which makes a fair comparison
difficult. Nevertheless, in order to enable as fair a comparison
as possible, we scale the area and the frequency to a90nm
technology in Table V (we have also included the original
results for completeness). Moreover, the authors of [22] only
provide synthesis results forL = 2 and L = 4. In terms
of area, we observe that our decoder is approximately57%
smaller than the decoder of [22] for all list sizes. We also
observe that forL = 2 our decoder has a7% lower throughput
than the decoder of [22], but forL = 4 the throughput of our
decoder is6% higher than that of [22]. Overall, the hardware
efficiency of our LLR-based SCL decoder is115% and142%
better than that of [22] forL = 2 andL = 4 respectively.

12 SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING IN SEPTEMBER 2014 – REVISED IN MARCH 2015

TABLE V
SCL DECODERSYNTHESISRESULTS(R = 1

2
, N = 1024)

LLR-Based LL-Based [19] LL-Based [23]a LL-Based [22]b

L = 2 L = 4 L = 8 L = 2 L = 4 L = 8 L = 2 L = 4 L = 8 L = 2 L = 4 L = 2 L = 4
Technology TSMC 90nm TSMC 90nm TSMC 90nm Scaled to 90nmc ST 65nm
Freq. (MHz) 847 794 637 794 730 408 507 492 462 361 289 500 400
Lat. (Cycles/bit) 2.53 2.59 2.59 2.53 2.53 2.53 2.53 2.53 3.03 1.00 1.00 1.00 1.00
T/P (Mbps) 335 307 246 314 288 161 200 194 153 362 290 501 401
Area (mm2) 0.88 1.78 3.58 1.38 2.62 5.38 1.23 2.46 5.28 2.03 4.10 1.06 2.14
Efficiency 380 172 69 227 110 30 163 79 29 178 71 473 187
a The synthesis results in [23] are provided with up to16 PEs per path. The reported numbers in this table are the corresponding synthesis results

using64 PEs per path and are courtesy of the authors of [23].
b The authors of [22] use3 quantization bits for the channel LLs and a tree SC architecture, while [19], [23] use4 quantization bits for the channel

LLs and a semi-parallel architecture withP = 64 PEs per path.
c We use the standard assumption that area scales ass2 and frequency scales as1/s, wheres is the feature size.

E. CRC-Aided SCL Decoder

As discussed in Section II-C, the performance of the SCL
decoder can be significantly improved if it is assisted for its
final choice by means of a CRC which rejects some incorrect
codewords from the final set ofL candidates. However, there is
a trade-off between the length of the CRC and the performance
gain. A longer CRC, rejects more incorrect codewords but,
at the same time, it degrades the performance of the inner
polar code by increasing its rate. Hence, the CRC improves
the overall performance if the performance degradation of the
inner polar code is compensated by rejecting the incorrect
codewords in the final list.

1) Choice of CRC:We picked three different CRCs of
lengthsr = 4, r = 8 and r = 16 from [32] with generator
polynomials:

g(x) = x4 + x+ 1, (21a)

g(x) = x8 + x7 + x6 + x4 + x2 + 1, and (21b)

g(x) = x16 + x15 + x2 + 1, (21c)

respectively and evaluated the empirical performance of the
SCL decoders of list sizes ofL = 2, L = 4, L = 8, aided by
each of these three CRCs in the regime ofEb/N0 = 1.5 dB
to Eb/N0 = 4 dB.

For L = 2 it turns out that the smallest CRC, represented
by the generator polynomial in (21a), is the best choice. Using
longer CRCs atEb/N0 ≤ 3 dB, the performance degradation
of the polar code is dominant, causing the CRC-aided SCL
decoder to performworse than the standard SCL decoder.
Furthermore, at higher SNRs, longer CRCs do not lead to
a significantly better performance than the CRC-4.

ForL = 4, allocatingr = 8 bits for the CRC of (21b) turns
out to be the most beneficial option. CRC-4 and CRC-8 will
lead to almost identical FER atEb/N0 < 2.25 dB while CRC-
8 improves the FER significantly more than CRC-4 at higher
SNRs. Furthermore, CRC-16 leads to the same performance
as CRC-8 at high SNRs and worse performance than CRC-8
in low-SNR regime.

Finally, for L = 8 we observe that CRC-16 of (21c) is the
best candidate among the three different CRCs in the sense
that the performance of the CRC-aided SCL decoder which
uses this CRC is significantly better than that of the decoders
using CRC-4 or CRC-8 for Eb/N0 > 2.5 dB, while all three

TABLE VI
THROUGHPUTREDUCTION IN CRC-AIDED SCL DECODERS

L = 2 L = 4 L = 8
Freq. (MHz) 847 794 637

SCLD

|A| 512 512 512
FC(A) 57 57 57

Lat. (Cycles) 2592 2649 2649
T/P (Mbits/s) 335 307 246

CA-SCLD

|A| 516 520 528
FC(A) 55 54 52

Lat. (Cycles) 2596 2654 2660
T/P (Mbits/s) 334 306 245

Reduction (%) 0.2 0.2 0.4

decoders have almost the same FER at lower SNRs (and they
all perform better than a standard SCL decoder).

In Figure 6, we compare the FER of the SCL decoder with
that of the CA-SCLD for list sizes ofL = 2, L = 4 and
L = 8, using the above-mentioned CRCs. We observe that the
CRC-aided SCL decoders perform significantly better than the
standard SCL decoders.

2) Throughput Reduction:Adding r bits of CRC increases
the number of information bits byr, while reducing the
number of groups of frozen channels byat most r. As a
result, the sorting latency is generally increased, resulting in
a decrease in the throughput of the decoder. In Table VI we
have computed this decrease in the throughput for different
decoders and we see that the CRC-aided SCL decoders have
slightly (at most0.4%) reduced throughput. For this table,
we have picked the best decoder at each list size in terms of
hardware efficiency from Table III.

3) Effectiveness of CRC:The area of the CRC unit for all
synthesized decoders is in less than1 µm2 for the employed
TSMC 90 nm technology. Moreover, the CRC unit does not
lie on the critical path of the decoder. Therefore, it does not
affect the maximum achievable operating frequency. Thus the
incorporation of a CRC unit is a highly effective method of
improving the performance of an SCL decoder. For example,
it is interesting to note that the CA-SCLD withL = 2 has
a somewhat lower FER than the standard SCL decoder with
L = 8 (in both floating-point and fixed-point versions) in the
regime ofEb/N0 > 2.5 dB. Therefore, if a FER in the range
of 10−3 to 10−6 is required by the application, using a CA-
SCLD with list sizeL = 2 is preferable to a standard SCL
decoder with list sizeL = 8 as the former has more than five

BALATSOUKAS-STIMMING et al.: LLR-BASED SUCCESSIVE CANCELLATION LIST DECODING OF POLARCODES 13

1.5 2 2.5 3 3.5 4

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

F
E

R
SCLD + CRC-16, Floating-Point
SCLD + CRC-8, Floating-Point

SCLD, Q = 6
SCLD, Floating-Point
SCLD + CRC-4, Q = 6
SCLD + CRC-4, Floating-Point

(a) L = 2

1.5 2 2.5 3 3.5 4

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

F
E

R

SCLD + CRC-4, Floating-Point
SCLD + CRC-16, Floating-Point

SCLD, Q = 6

SCLD, Floating-Point
SCLD + CRC-8, Q = 6
SCLD + CRC-8, Floating-Point

(b) L = 4

1.5 2 2.5 3 3.5 4

10−8

10−7

10−6

10−5

10−4

10−3

10−2

Eb/N0 (dB)

F
E

R

SCLD + CRC-4, Floating-Point
SCLD + CRC-8, Floating-Point

SCLD, Q = 6
SCLD, Floating-Point
SCLD + CRC-16, Q = 6
SCLD + CRC-16, Floating-Point

(c) L = 8

Fig. 6. The performance of LLR-based SCL decoders compared to that of
CRC-Aided SCL decoders forL = 2, 4, 8. M = 8 quantization bits are used
for the path metric in fixed-point simulations.

times higher hardware efficiency.

VII. D ISCUSSION

A. SC Decoding or SCL Decoding?

Modern communication standards sometimes allow very
long block-lengths to be used. The error-rate performance of
polar codes under conventional SC decoding is significantly

1.5 2 2.5 3 3.5 4
10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

F
E

R

N = 2048, SC,Q = 6
N = 2048, SC, Floating Point

N = 1024, CA-SCLD,Q = 6, M = 8
N = 1024, CA-SCLD, Floating-Point

(a) (2048, 1024) polar code under SC decoding versus(1024, 512) modified
polar code under CA-SCLD withL = 2 and CRC-4 with generator
polynomial (21a)

1.5 2 2.5 3 3.5 4

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

F
E

R

N = 4096, SC,Q = 6
N = 4096, SC, Floating Point

N = 1024, CA-SCLD,Q = 6, M = 8
N = 1024, CA-SCLD, Floating-Point

(b) (4096, 2048) polar code under SC decoding versus(1024, 512) mod-
ified polar code under CA-SCLD withL = 4 and CRC-8 with generator
polynomial (21b)

Fig. 7. CA-SCLD withL = 2, 4, results in the same performance at block-
length N = 1024 as the conventional SC decoding withN = 2048 and
N = 4096, respectively.

improved if the block-length is increased. However, a long
block-length implies long decoding latency and large decoders.
Thus, an interesting question is whether it is better to use
a long polar code with SC decoding or a shorter one with
SCL decoding, for a given target block-error probability. In
order to answer this question, we first need to find some pairs
of short and long polar codes which have approximately the
same block-error probability under SCL and SC decoding,
respectively to carry out a fair comparison.

In Figure 7a we see that a(2048, 1024) polar code has
almost the same block-error probability under SC decoding
as a(1024, 512) modified polar code under CA-SCLD with
list sizeL = 2 and CRC-4 of (21a). Similarly, in Figure 7b
we see that a(4096, 2048) polar code has almost the same
block-error probability under SC decoding as an(1024, 512)
modified polar code decoded under CA-SCLD with list size
L = 4 and CRC-8 of (21b).

As mentioned earlier, our SCL decoder architecture is based
on the SC decoder of [5]. In Table VII we present the synthesis
results for the SC decoder of [5] at block lengthsN = 2048
andN = 4096 and compare them with that of our LLR-based

14 SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING IN SEPTEMBER 2014 – REVISED IN MARCH 2015

TABLE VII
LLR-BASED SC DECODER VS. SCL DECODERSYNTHESISRESULTS

SC
CA-SCLD

SC
CA-SCLD

L = 2, CRC-4 L = 4, CRC-8
N 2048 1024 4096 1024

Freq. (MHz) 870 847 806 794
Lat. (Cyc./bit) 2.05 2.54 2.06 2.59

Lat. (Cyc.) 4192 2596 8448 2654
T/P (Mbps) 425 334 391 306

Area (mm2) 0.78 0.88 1.51 1.78

SCL decoder, when using the same TSMC90nm technology
and identical operating conditions. For all decoders, we use
P = 64 PEs per path andQ = 6 bits for the quantization of
the LLRs.

First, we see that the SCL decoders occupy an approxi-
mately 15% larger area than their SC decoder counterparts.
This may seem surprising, as it can be verified that an SC
decoder for a code of lengthLN requires more memory (LLR
and partial sum) than the memory (LLR, partial sum, and path)
required by an SCL decoder with list sizeL for a code of
lengthN , and we know that the memory occupies the largest
fraction of both decoders. This discrepancy is due to the fact
that the copying mechanism for the partial sum memory and
the path memory still usesL × L crossbars, which occupy
significant area. It is an interesting open problem to develop
an architecture that eliminates the need for these crossbars.

Moreover, we observe that both SC decoders can achieve
a slightly higher operating frequency than their correspond-
ing SCL decoders, although the difference is less than3%.
However, the per-bit latency of the SC decoders is about20%
smaller than that of the SCL decoders, due to the sorting step
involved in SCL decoding. The smaller per-bit latency of the
SC decoders combined with their slightly higher operating
frequency, make the SC decoders have an almost27% higher
throughput than their corresponding SCL decoders.

However, from Table VII we see that the SCL decoders have
a significantly lower per-codeword latency. More specifically,
the SCL decoder withN = 1024 andL = 2 has a38% lower
per-codeword latency than the SC decoder withN = 2048,
and the SCL decoder withN = 1024 andL = 4 has a68%
lower per-codeword latency than the SC decoder withN =
4096. Thus, for a fixed FER, our LLR-based SCL decoders
provide a solution of reducing the per-codeword latency at a
small cost in terms of area, rendering them more suitable for
low-latency applications than their corresponding SC decoders.

B. Simplified SC and SCL Decoders

There has been significant work done to reduce the latency
of SC decoders [10]–[13] by pruning the decoding graph,
resulting in simplified SC(SSC) decoders. The SC decoder
architecture of [5], used in our comparison above, does not
employ any of these techniques. Since our SCL decoder
usesL SC decoders, it seems evident that any architectural
and algorithmic improvements made to the SC decoder itself
will be beneficial to the LLR-based SCL decoder as well.
However, the family of SSC decoders does not seem to
be directly applicable to our LLR-based SCL decoder. This

happens because, in order to keep the path metric updated,
we need to calculate the LLRs even for the frozen bits. As
discussed in Section III, it is exactly these LLRs that lead to
the improved performance of the SCL decoder with respect to
the SC decoder. However, alternative and promising pruning
approaches which have been recently introduced in the context
of LL-based SCL decoding [22], [33], are fully applicable to
LLR-based SCL decoding.

VIII. C ONCLUSION

In this work, we introduced an LLR-based path metric
for SCL decoding of polar codes, which enables the imple-
mentation of a numerically stable LLR-based SCL decoder.
Moreover, we showed that we can simplify the sorting task of
the SCL decoder by using a pruned radix-2L sorter which
exploits the properties of the LLR-based path metric. The
LLR-based path metric is not specific to SCL decoding and
can be applied to any other tree-search based decoder (e.g.,
stack SC decoding [34]).

We implemented a hardware architecture for an LLR-based
SCL decoder and we presented synthesis results for various
list sizes. Our synthesis results clearly show that our LLR-
based SCL decoder has a significantly higher throughputand
lower area than all existing decoders in the literature, leading
to a substantial increase in hardware efficiency of up to137%.

Finally, we showed that adding the CRC unit to the de-
coder and using CA-SCLD is an easy way of increasing the
hardware efficiency of our SCL decoder at a given block-error
probability as the list size can be decreased. Specifically,our
CA-SCLD at list sizeL = 2 has somewhat lower block-error
probabilityandmore than five times better hardware efficiency
than our standard SCLD at list sizeL = 8.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, Jul.
2009.

[2] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures
for successive cancellation decoding of polar codes,” inProceedings of
2011 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), May 2011, pp. 1665–1668.

[3] A. J. Raymond and W. J. Gross, “Scalable successive-cancellation
hardware decoder for polar codes,” inProceedings of 2013 IEEE Global
Conference on Signal and Information Processing (GlobalSIP), Dec.
2013, pp. 1282–1285.

[4] A. Pamuk and E. Arıkan, “A two phase successive cancellation decoder
architecture for polar codes,” inProceedings of 2013 IEEE International
Symposium on Information Theory (ISIT), Jul. 2013, pp. 957–961.

[5] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,”IEEE Transactions on
Signal Processing, vol. 61, no. 2, pp. 289–299, Jan. 2013.

[6] C. Zhang and K. K. Parhi, “Low-latency sequential and overlapped archi-
tectures for successive cancellation polar decoder,”IEEE Transactions
on Signal Processing, vol. 61, no. 10, pp. 2429–2441, Mar. 2013.

[7] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar
decoders: Algorithm and implementation,”IEEE Journal on Selected
Areas in Communications, vol. 32, no. 5, pp. 946–957, May 2014.

[8] Y. Fan and C.-Y. Tsui, “An efficient partial-sum network architecture for
semi-parallel polar codes decoder implementation,”IEEE Transactions
on Signal Processing, vol. 62, no. 12, pp. 3165–3179, Jun. 2014.

[9] A. Mishra, A. J. Raymond, L. Amaru, G. Sarkis, C. Leroux, P. Mein-
erzhagen, A. Burg, and W. J. Gross, “A successive cancellation decoder
ASIC for a 1024-bit polar code in 180nm CMOS,” inProceedings of
2012 IEEE Asian Solid State Circuits Conference (A-SSCC), Nov. 2012,
pp. 205–208.

BALATSOUKAS-STIMMING et al.: LLR-BASED SUCCESSIVE CANCELLATION LIST DECODING OF POLARCODES 15

[10] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-
cancellation decoder for polar codes,”IEEE Communications Letters,
vol. 15, no. 12, pp. 1378–1380, Oct. 2011.

[11] C. Zhang, B. Yuan, and K. K. Parhi, “Reduced-latency SC polar decoder
architectures,” inProceedings of 2012 IEEE International Conference
on Communications (ICC), Jun. 2012, pp. 3471–3475.

[12] G. Sarkis and W. J. Gross, “Increasing the throughput ofpolar decoders,”
IEEE Communications Letters, vol. 17, no. 4, pp. 725–728, Apr. 2013.

[13] C. Zhang and K. K. Parhi, “Latency analysis and architecture design
of simplified SC polar decoders,”IEEE Transactions on Circuits and
Systems—Part II: Express Briefs, vol. 61, no. 2, pp. 115–119, Feb. 2014.

[14] E. Arıkan and E. Telatar, “On the rate of channel polarization,” in
Proceedings of 2009 IEEE International Symposium on Information
Theory (ISIT), Jul. 2009, pp. 1493 –1495.

[15] I. Tal and A. Vardy, “List decoding of polar codes,” inProceedings of
2011 IEEE International Symposium on Information Theory (ISIT), Jul.
2011, pp. 1–5.

[16] ——, “List decoding of polar codes,”arXiv e-prints, vol. abs/1206.0050,
2012. [Online]. Available: http://arxiv.org/abs/1206.0050

[17] K. Niu and K. Chen, “CRC-aided decoding of polar codes,”IEEE
Communications Letters, vol. 16, no. 10, pp. 1668–1671, Oct. 2012.

[18] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation
list decoder for polar codes with cyclic redundancy check,”IEEE
Communications Letters, vol. 16, no. 12, pp. 2044–2047, Dec. 2012.

[19] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg,
“Hardware architecture for list successive cancellation decoding of polar
codes,” IEEE Transactions on Circuits and Systems—Part II: Express
Briefs, vol. 61, no. 8, pp. 609–613, May 2014.

[20] J. Lin and Z. Yan, “Efficient list decoder architecture for polar codes,”
in Proceedings of 2014 IEEE International Symposium on Circuits and
Systems (ISCAS), Jun. 2014, pp. 1022–1025.

[21] C. Zhang, X. You, and J. Sha, “Hardware architecture forlist successive
cancellation polar decoder,” inProceedings of 2014 IEEE International
Symposium on Circuits and Systems (ISCAS), Jun. 2014, pp. 209–212.

[22] B. Yuan and K. K. Parhi, “Low-latency successive-cancellation list
decoders for polar codes with multibit decision,”IEEE Transactions

on Very Large Scale Integration (VLSI) Systems (to appear), 2014.
[Online]. Available: http://dx.doi.org/10.1109/TVLSI.2014.2359793

[23] J. Lin and Z. Yan, “An efficient list decoder architecture
for polar codes,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems (to appear), 2015. [Online]. Available:
http://dx.doi.org/10.1109/TVLSI.2014.2378992

[24] A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, “LLR-based
successive cancellation list decoding of polar codes,” inProceedings of
2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), May 2014, pp. 3903–3907.

[25] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Increasing
the speed of polar list decoders,” inProceedings of 2014 IEEE Workshop
on Signal Processing Systems (SiPS), Oct. 2014, pp. 1–6.

[26] J. Lin, C. Xiong, and Z. Yan, “A reduced latency list decoding algorithm
for polar codes,” inProceedings of 2014 IEEE Workshop on Signal
Processing Systems (SiPS), Oct. 2014, pp. 1–6.

[27] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423, 623–656, 1948.

[28] F. J. MacWilliams and N. J. A. Sloane,The Theory of Error Correcting
Codes, ser. North-Holland Mathematical Library. North-Holland, 1978.

[29] “IEEE standard for air interface for broadband wireless access systems,”
IEEE Std 802.16TM-2012, Aug. 2012.

[30] I. Tal, “Private communication,” Aug. 2014.
[31] L. G. Amaru, M. Martina, and G. Masera, “High speed architectures for

finding the first two maximum/minimum values,”IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 20, no. 12, pp. 2342–
2346, Dec. 2012.

[32] Wikipedia. (2014, Sep.) Polynomial representations of cyclic redundancy
checks — wikipedia, the free encyclopedia. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Polynomial representationsof cyclic redundanc

[33] C. Xiong, J. Lin, and Z. Yan, “Symbol-decision successive cancellation
list decoder for polar codes,”arXiv e-prints, vol. abs/1501.04705, Jan.
2015. [Online]. Available: http://arxiv.org/abs/1501.04705

[34] K. Chen, K. Niu, and J. Lin, “Improved successive cancellation decoding
of polar codes,”IEEE Transactions on Communications, vol. 61, no. 8,
pp. 3100–3107, Aug. 2013.

http://arxiv.org/abs/1206.0050
http://dx.doi.org/10.1109/TVLSI.2014.2359793
http://dx.doi.org/10.1109/TVLSI.2014.2378992
http://en.wikipedia.org/w/index.php?title=Polynomial_representations_of_cyclic_redundancy_checks&oldid=620254949
http://arxiv.org/abs/1501.04705

	I Introduction
	II Background
	II-A Polar Codes and Successive Cancellation Decoding
	II-A1 Polar Coding
	II-A2 SC Decoding as a Greedy Tree Search Algorithm
	II-A3 Decoding Complexity

	II-B Successive Cancellation List Decoding
	II-C CRC-Aided Successive Cancellation List Decoder

	III LLR-Based Path Metric Computation
	IV SCL Decoder Hardware Architecture
	IV-A LLR and Path Metric Quantization
	IV-B Metric Computation Unit
	IV-C Memory Unit
	IV-C1 LLR Memory
	IV-C2 Path Memory
	IV-C3 Partial Sum Memory

	IV-D Address Translation Unit
	IV-E Metric Sorting Unit
	IV-F Control Unit
	IV-G Clock Cycles Per Codeword
	IV-H Advantages Over LL-based SCL Decoder Implementation

	V Simplified Sorter
	V-A Full Radix-2L Sorter
	V-B Pruned Radix-2L Sorter
	V-C Latency of Metric Sorting

	VI Implementation Results
	VI-A Quantization Parameters
	VI-B Gains due to LLR-based Formulation of SCL Decoding
	VI-C Radix-2L Sorter versus Pruned Radix-2L Sorter
	VI-D Comparison with LL-based SCL Decoders
	VI-D1 Comparison with Lin15
	VI-D2 Comparison with Yuan14

	VI-E CRC-Aided SCL Decoder
	VI-E1 Choice of CRC
	VI-E2 Throughput Reduction
	VI-E3 Effectiveness of CRC

	VII Discussion
	VII-A SC Decoding or SCL Decoding?
	VII-B Simplified SC and SCL Decoders

	VIII Conclusion
	References

