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Abstract—We present reconstruction algorithms for smooth penalty to cater for signal sparsity. However, since most of
signals with block sparsity from their compressed measuremnts.  the signals are block sparsg] [8] cannot give efficient tesul
We tackle the issue of varying group size via group-sparse st To cater for the block sparsity, one can replace th@orm

absolute shrinkage selection operator (LASSO) as well as i . .
latent group LASSO regularizations. We achieve smoothnesi penalty with a group penalty. Although this approach canhan

the signal via fusion. We develop low-complexity solvers foour ~ dle the block sparsity very well, it only offers fixed groupes
proposed formulations through the alternating direction method and causes complete groups to be zero or nonzero. To avoid

of multipliers. elimination of small sets of nonzero elements, a very small
Index Terms—Compressed sensing, block sparsity, smoothness,group size is opted but that can make the algorithm inefficien
signal reconstruction in eliminating large blocks of zero elements. In this regasd

propose to use a moderate group size along witlf;amorm
penalty over the signal, to create sparsity within the gsoup

_ ) ~ Thus by using fusion in combination with-norm penalty and
Compressed sensingl[1].1[2] is one of the most exciting moderate group size, a smooth signal can be reconstructed

topics of present-day signal processing. Signal recooSoni \yith high accuracy. The problem of varying group sizes can
from its low-dimensional representation becomes a posgisg pe handled by using the concept of latent groups/$ee [9]
bility, given the sparse nature of the signal and, incohegyq references therein. These are basically overlappingpgr
ence and/or restricted isometry property (RIB) [2] of thgit recurring signal elements in possibly multiple groups
sensing/measurement process. In this regard, a numberrgfis an element lost in one group may resurface through
approaches can be used, e.g., basis pursuit (BP) [3], leasbther group after reconstruction. So we also proposedo us
absolute shrinkage and selection operator (LASSO) [4] agflch latents groups in combination with a fusion constraint
greedy algorithmsL[5]. In order to exploit the structure of, recover block sparse smooth signals with varying block
the signal being sensed, a number of variants of LASSQ a5 Note that a work on using overlapping groups over the
have become popular, e.g., group LASSO (G-LASSO) [6§ysion function instead of the signal structure has appkare
sparse group LASSO (SG-LASSQ)![7] and fused LASSE [10], which however requires complete signal samples.
(F-LASSO) [8], etc. In this letter we propose new LASSQnsiead, we propose overlapping groups and fusion pesaltie
formulations to handle block sparse smooth signals. over the actual signal for the under-determined systemss,Th
Smooth signals are often encountered in a wide rangg exploit the actual structure of the signal rather than the
of engineering and biological fields. In engineering, slgnagiterence of elements. Further, in order to solve the pseplo
observed in image processing, control systems and envirggnlations we derive low-complexity algorithms based on
ment monitoring are often smooth or piece-wise smooth. {Re alternating direction method of multipliers (ADMM) [L1
biology, a similar structure is observed, e.g., in prote@s& The reason for using this version of the augmented Lagrangia
spectroscopy [8]. The goal is to recover such structurawdsy methods is primarily the non-separability of the fusion glgn
from noisy and/or under-sampled measurements. A relatgdierms of the elements of the signal. Thus, the general
topic is signal smoothing which deals with removing ra”dO’Ebnvergence properties of ADMM can be used to guarantee
outliers. Apart from being smooth, such signals can Oﬂ‘-’dbtimal results for our proposed algorithms.
be represented as sparse in some basis. This sparsitynpaiigjiations, Matrices are in upper case bold while column
normally vari_e§ in terms of the location gnd block size of th€actors are in lower case bolX ], . is the(i, j)th entry of the
sparse coefficients. The challenge for signal reconstmes matrix X x], is theith entry of tha vectok, Iy is the identity

to exploit the block sparsity with varying block sizes, véhil y,4trix of sizeN x N, ()T is transposex is the estimate of,
keeping smoothness intact and using fewer measurements, ®yqfines an entity|x||, = (ZN—l x].|")1/7 is the the,

all at low complexity. In the CS domain, signal smoothness hg ofx, sigr(z) is the sign ful:é)tion Vihich takes values

been handled by using a fusion constraintlih [8]. The fusiagy,q depending on the polarity of the elementwhereas the
is also known as total variation (TV) in the image processingnction ()3 = z if and only if z > 0 otherwise(z). = 0.
literature. Apart from fusion,[]8] also proposed &prnorm
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wherey is anM x 1 measurement vecto® is anM x N mea- The solution of [B) is generated by the following successive
surement matrix{/ < N) with compression ratip. = M/N  approximations

andv is an M x 1 zero-mean additive white Gaussian noise

vector with variances2. To recover the signal from the — x!™ :argminﬁ(& u["_l]vz["_llapgf_l]vP[z"_l]) ®)
compressed measurements while keeping the signal steuctur *

in tact, we propose below, two LASSO formulations. u™ = argmin £ (X["fl]ﬂL PLW”) (6)

u

n| __ : n—1 n—1
A. Sparse Group LASSO with Fusion 2" = argzmmﬁ (X[ 2. p ]) )

Through sparse group fused LASSO (SGF-LASSO), we can .
. . -and the multipliers are updated as
resolve the issue of signal smoothness, as well as, thateaf fix

group sizes. The optimization problem can be formulated as pld = pln=1l 4 ¢ (x["] — 7]y (8)
1 n n— n n
% = argminz [y — ®x[3 + Acllx| pltl = pln=t 4 ¢ (Dx" — 2l"), ©)

G-1 N—1 The closed-form solution foiX5) at theth iteration can be
Ay > Illz +Ar Y Il — X1l (2)  derived to be
i=0 j=1 1

" = (®7® + ¢, DTD + ¢,I
where x; is an N/G x 1 sub-vector of x, represent- * ( T +cul)
ing one of G groups over the elements ok, i.e., X (@Ty—DTp[Z"_l] + ¢, DTzl —pL"_” + cul" 1Y
x :G,[)fOT’XlT"” x5 1,17, We can see.fromE[Z) that (10)
Ag >y IIxi|l3 accounts for group sparsity).||x||{ for o _
element-wise sparsity ang ZN—? I[x]; — [x],_.||! accounts We can see fronﬂ’.!O) th_at the matrix inversion part does not
for fusion within the elements of, such that the effect of eachChange during the iterations so that it can be performed off-
penalty becomes severe with increasing penalty parametdf€: resulting in reduced complexity. Note that the matrix
ie., A, A and \;, respectively. For a moderate value ofnversion lemma can be used to further ease the computations
G, the proposed formulation can tackle the varying grodBVOIVed in the inversion op_ergtlo_n. . )
size problem by creating sparsity within the group alondwit For u, note that the_ optimization involves two penaltles,
fusing consecutive elements. Note that, foy = A; = 0, i.e., apart from penalizing each elementwfor sparsity, we

@) reduces to the standard LASSO problem, for= 0, @) need to op.timize on eagh of it_s sub-group§ as well. Since
reduces to SG-LASSO, fox, = A = 0, (2) takes the shape both penalues_ are non—dﬁferenugple., we utilize the fuett _
of G-LASSO and for\, = 0, @) becomes F-LASSO. _soft thresholdlng generates a minimizer for th_e cost metl
Solver for SGF-LASSOIn order to solve the SGF-LASSO MVoVIng Ac[|u; |7 [4], and for the cost function involving
problem via ADMM, we introduce two auxiliary variablas ¢llWi2, the minimizer iss, = u; /|[w|[3 in case|ju;|3 # 0

andz of size N x 1. Thus, [2) can be written as and the minimizer is a vectey, such that|s, |3 < 1 in case
1 [lu;[|2 = 0 [7]. Thus the closed-form solution of1(6) for the
[%x,0,2] = arg min§||y — ®x|)3 + Aelull; ith subgroup at thexth iteration can be written as
x,Uu,z
G-1 (=1 y A
nl _ [n=1] | Pus Ze )z - 29
+ 20 Y laall + s 2l u’ = <”3 (Xi ) e
=0
st w=x,0<i<G-1, z=Dx (3) S<X£n—11+95§”72_6>
where u; is an N/G x 1 sub-vector ofu, ie, u = X — (11)
T T T T i ; A [n—1 , P~ 9
[uj,ui, - ,us_,,]", andD is the difference matrix with IS { x; + i, 2= ) |3
[D]jJ = -1, [D]j,j+1 =1, for 0 < ] < N —2 and

[D]_N—1,N_1 =1, such that||D?c|\} equals the elemer_lt-wisefOr 0<i<G-1, whereS(s,\) 2 signx)(x — A); is
fusion. From [[B), the Lagrangian problem can be written agpe soft thresholding operator. Thus the estimateraan be

1 obtained as
L0617 p,0p.) =5y — ®xI3 + Aclul}

G-1 N [n]T [n]T]T (12)
+2g > wills +Ar Y Nzl
=0 j=2

’ul 7...7141G_1

which along withx[™ is used to updatell” in (8).

G-1 . G-l Now from (1), the closed-form expression for the estimate
+ pfi (w; —x;) + 7“ Z |lu; — x;]|5 of z at thenth iteration can be derived as
1=0 =0
[n—1] A
+pl(z=Dx)+ Tlz-Dx} (@ A= s (Dx[”” +& C—f> (13)

wherep,, (with sub-vectorsp,,., for 0 <i < G —1) andp,
are Lagrange multipliers and, andc, are positive constants. which subsequently updateé”] in @).



Lx [ x [ x | oxs [ xs | for the solution of [(IB) w.r.tx, & and p; can be written as

W W | W Wox <[ —argmmﬁ(x a1l =1, gz—ﬂ’p[zn—l]) (17)
[ Wox | Wyx | Wix Wix
al = argmmL( " a p[" 1]) (18)
Fig. 1. Above Disjoint groups.Below Overlapping groups. u
Pl = plt Y ey (xl7] — al) (19)

B. Latent Group LASSO with Fusion whereas, _the expressions for th_e estimates afid p, are the
same as in[{7) and(9), respectively.
For the latent group fused LASSO (LGF-LASSO), the From [I7), the closed-form expression for the estimate of

signal is segmented into many overlapping groups of certainat the nth iteration can be derived as
sizel. In contrast to the disjoints groups, overlapping groups =
can reselect the elements from other groups. We cré‘atex[ nl = (‘PT(I’ +¢.D'D + CuWTW)
oyerlapplng groups through aN/G x N sub. sele_ctlon ma- (cI,Ty _ DTp[anl] + e, DTzl _ WT(anfl] -~ cuu["*”)
trices W; which selectN/G rows from an identity matrix (20)
In. An overlapping group can then be obtained by the
relation, W;x, for 0 < i« < G — 1, whereW; is such that where we can see that & is already known, the matrix
W= (Wl WT ... ,Wg]T. Each sub-selection matri¥; inversion part of the estimate can again be obtained off-lin
repeatsiK rows of W,;_;, where K is the overlapping factor and does not need to be estimated for each iteration.

and1 < K < N — 1. Figure[1 schematically shows the From [I8), the closed-form expression for the estimate of
difference between disjoint’{ = 0) and overlapping groups u;, for 0 < i < G — 1, at thenth iteration can be derived as
(for K = N/(2@G)). We can see that the overlapping groups [n—1]
can solve the problem of the fixed group size but the price to be ﬁ <|W [n—1) 4 Tas Pu; 12— ﬁ)
paid is in terms of computational complexity which increase Cy Cu ),
excessively with the factok’ due to the related increase in pl

G. Now, the optimization problem for LGF-LASSO can be Wx[n=1 4 +

% u
formulated as [n—1]
i

(21)
[Wixln=1l 4

G-1
1 .
X = argmin §||y —®x[5+ A Y _ [[Wix|l5+ A\s|Dx[;  and the estimate fon! can be obtained as
x i=0

(14) ﬁ[n] _ [~["]T’ ﬁ[ln]T7 . ~["]T]T (22)
which does not contain an element-wise sparsity term a
required in [(2).

Solver for LGF-LASSO:To solve the LGF-LASSO prob-
lem, we again turn to ADMM. By introducing a new auxiliary
variableu of size GN/G, (I3) can be written as In this section, we present some simulation results to com-

pare the performance of our proposed algorithms. We com-
. pare the performance of SGF-LASSO, LGF-LASSO and G-
x,u,z] = rgmm—HY ®x|f5 + Ay Z Iaillz + Arllzlli  LASSO. We consider a random test signal of lendyth= 140,
ow which is composed of a couple of blocks of exponentially
st.ou;=Wix, 0<i< G —1, z=Dx (15) decaying elements, a step signal block and a lone small group
of nonzero elements, along with multiple zero blocks. Such
a mixture is mostly expected in smooth signals. The noise

{ich is then used to update the multipligrs in (@9).

Il. SIMULATIONS

where u; is an N/G x 1 sub-vector ofu, ie., u

[ug’ulT"" ug 1’] - Now the Lagrangian foil{15) can bevariance has been considered a3, = 0.25. The signal is
written as sensed through the measurement mafixwhich has been
1 G-1 N drawn from a zero-mean Gaussian distribution with variance
L(x, 0,2, p5, p.) =5lly = ®x[3+ Ay > lwlls+As > [lz[l11/M. We have further orthogonalized the rows of matiix
i=0 j=2 The penalty parameters for the simulations have been con-
G-1 G- sidered as\. = 0.5, A, = 5.0 and A\; = 3.0. In general,
+ Zpa( _“ Z |i; — W,x||2 these parameters can be selected from a given range in a
i—0 2 i—0 cross-validation manner, by varying one of the parametads a
+ ol (z — Dx) + —HZ — Dx|2 (16) keeping others fixed [7]. Further, since all of these paramset

are sparsity promoting, and can possibly affect each oither,

Wherepu collects the Lagrangian multipliers with sub-vector§XPected that the search of the optimal set of parametersiwou

_ for 0 < i < G — 1. Now the successive apprommaﬂon@e restricted to a smaller range. The parametgrandc, are
“ positive numbers and may affect the convergence rate. Vée tak

_ initi it 0
1n this paper we consider overlapplng groups of fixed sizesthHe concept them asc, [a Cz [0]— 2. As initial conditions, the vectors! ]*

can easily be extended to varying sizes as well. ul, 20 pi pt?, 4l and p%)], have all been considered as
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Fig. 2. Comparison of SGF-LASSO, LGF-LASSO and G-LASSO Fig. 3. MSE comparison of SGF-LASSO, LGF-LASSO and G-LASSO

] ) IV. CONCLUSIONS
zero vectors, respectively. Note that, a least-squaregicol

of x, can also be considered as a warm-start to speed up thgl1 Fh|s letter, \I/ve have propose(f:i twé) C,iVSVSI(_)ASSc? Ifor-
convergence rate. mulations, namely, sparse group fuse and latent

, group fused LASSO. The former uses element-wise sparsity,

The group size for SGF-LASSO, LGF-LASSO and Ggq,, sparsity (over disjoint groups) and fusion penalties
LASSO has been taken a8. Therefore, the number of groups hereas the latter combines the fusion penalty with a latent
in SGF-LASSO and G'LA_SSO are the same, ié= 14. For group penalty. Both formulations can be used to reconstruct
LGF-LASSO, an overlapping factor dt - 5 has been uged, smooth signals from their compressed measurements. We also
and therefore the number of overlapping groups of dige . q\iqe |ow-complexity solvers for the proposed formuas,
are G = 27. We use a maximum of50 iterations for ea?():h based on the alternating direction method of multipliere W
algorithm. We have observed that a tolerance level®f” ;416 the performance of our proposed algorithms with
between consecutive updates is reached much earlier tfsan . | 14,4 group LASSO over a smooth test signal. The simu-
limit, and therefore we stop the algorithm at this stage. lation results confirm the better performance of the progose

Figure[2 shows the reconstruction performance of SGRigorithms for signal reconstruction against group LASSO.
LASSO, LGF-LASSO and G-LASSO when the signal waSimilar results were obtained for the mean squared error
sensed with a compression rafio= 0.5. We can see that the metric, for varying compression ratios.
performance of SGF-LASSO and LGF-LASSO is very close to
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