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Abstract—We present reconstruction algorithms for smooth
signals with block sparsity from their compressed measurements.
We tackle the issue of varying group size via group-sparse least
absolute shrinkage selection operator (LASSO) as well as via
latent group LASSO regularizations. We achieve smoothnessin
the signal via fusion. We develop low-complexity solvers for our
proposed formulations through the alternating direction method
of multipliers.

Index Terms—Compressed sensing, block sparsity, smoothness,
signal reconstruction

I. I NTRODUCTION

Compressed sensing [1], [2] is one of the most exciting
topics of present-day signal processing. Signal reconstruction
from its low-dimensional representation becomes a possi-
bility, given the sparse nature of the signal and, incoher-
ence and/or restricted isometry property (RIP) [2] of the
sensing/measurement process. In this regard, a number of
approaches can be used, e.g., basis pursuit (BP) [3], least
absolute shrinkage and selection operator (LASSO) [4] and
greedy algorithms [5]. In order to exploit the structure of
the signal being sensed, a number of variants of LASSO
have become popular, e.g., group LASSO (G-LASSO) [6],
sparse group LASSO (SG-LASSO) [7] and fused LASSO
(F-LASSO) [8], etc. In this letter we propose new LASSO
formulations to handle block sparse smooth signals.

Smooth signals are often encountered in a wide range
of engineering and biological fields. In engineering, signals
observed in image processing, control systems and environ-
ment monitoring are often smooth or piece-wise smooth. In
biology, a similar structure is observed, e.g., in protein mass
spectroscopy [8]. The goal is to recover such structured signals
from noisy and/or under-sampled measurements. A related
topic is signal smoothing which deals with removing random
outliers. Apart from being smooth, such signals can often
be represented as sparse in some basis. This sparsity pattern
normally varies in terms of the location and block size of the
sparse coefficients. The challenge for signal reconstruction is
to exploit the block sparsity with varying block sizes, while
keeping smoothness intact and using fewer measurements, but
all at low complexity. In the CS domain, signal smoothness has
been handled by using a fusion constraint in [8]. The fusion
is also known as total variation (TV) in the image processing
literature. Apart from fusion, [8] also proposed anℓ1-norm
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penalty to cater for signal sparsity. However, since most of
the signals are block sparse, [8] cannot give efficient results.
To cater for the block sparsity, one can replace theℓ1-norm
penalty with a group penalty. Although this approach can han-
dle the block sparsity very well, it only offers fixed group sizes
and causes complete groups to be zero or nonzero. To avoid
elimination of small sets of nonzero elements, a very small
group size is opted but that can make the algorithm inefficient
in eliminating large blocks of zero elements. In this regardwe
propose to use a moderate group size along with anℓ1-norm
penalty over the signal, to create sparsity within the groups.
Thus by using fusion in combination withℓ1-norm penalty and
a moderate group size, a smooth signal can be reconstructed
with high accuracy. The problem of varying group sizes can
also be handled by using the concept of latent groups, see [9]
and references therein. These are basically overlapping groups,
with recurring signal elements in possibly multiple groups.
Thus, an element lost in one group may resurface through
another group after reconstruction. So we also propose to use
such latents groups in combination with a fusion constraint
to recover block sparse smooth signals with varying block
sizes. Note that a work on using overlapping groups over the
fusion function instead of the signal structure has appeared
in [10], which however requires complete signal samples.
Instead, we propose overlapping groups and fusion penalties
over the actual signal for the under-determined systems. Thus,
we exploit the actual structure of the signal rather than the
difference of elements. Further, in order to solve the proposed
formulations we derive low-complexity algorithms based on
the alternating direction method of multipliers (ADMM) [11].
The reason for using this version of the augmented Lagrangian
methods is primarily the non-separability of the fusion penalty
in terms of the elements of the signal. Thus, the general
convergence properties of ADMM can be used to guarantee
optimal results for our proposed algorithms.
Notations. Matrices are in upper case bold while column
vectors are in lower case bold,[X]i,j is the(i, j)th entry of the
matrixX, [x]i is theith entry of the vectorx, IN is the identity
matrix of sizeN×N , (·)T is transpose,̂x is the estimate ofx,
∆
= defines an entity,‖x‖p = (

∑N−1
i=0 |[x]i|

p
)1/p is the theℓp

norm ofx, sign(x) is the sign function which takes values−1
and1 depending on the polarity of the elementx, whereas the
function (x)+ = x if and only if x > 0 otherwise(x)+ = 0.

II. SIGNAL RECONSTRUCTION

Let x be theN × 1 recoverable signal. GivenM measure-
ments, the sensed signal can be written as

y = Φx+ v (1)
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wherey is anM×1 measurement vector,Φ is anM×N mea-
surement matrix (M < N ) with compression ratioµ

∆
= M/N

andv is anM × 1 zero-mean additive white Gaussian noise
vector with varianceσ2

v . To recover the signal from the
compressed measurements while keeping the signal structure
in tact, we propose below, two LASSO formulations.

A. Sparse Group LASSO with Fusion

Through sparse group fused LASSO (SGF-LASSO), we can
resolve the issue of signal smoothness, as well as, that of fixed
group sizes. The optimization problem can be formulated as

x̂ = argmin
x

1

2
‖y −Φx‖22 + λe‖x‖

1
1

+λg

G−1
∑

i=0

‖xi‖
1
2 + λf

N−1
∑

j=1

‖[x]j − [x]j−1‖
1
1 (2)

where xi is an N/G × 1 sub-vector of x, represent-
ing one of G groups over the elements ofx, i.e.,
x = [xT

0 ,x
T
1 , · · · ,x

T
G−1, ]

T . We can see from (2) that
λg

∑G−1
i=0 ‖xi‖

1
2 accounts for group sparsity,λe‖x‖

1
1 for

element-wise sparsity andλf

∑N−1
j=1 ‖[x]j−[x]j−1‖

1
1 accounts

for fusion within the elements ofx, such that the effect of each
penalty becomes severe with increasing penalty parameters,
i.e., λg, λe and λf , respectively. For a moderate value of
G, the proposed formulation can tackle the varying group
size problem by creating sparsity within the group along with
fusing consecutive elements. Note that, forλg = λf = 0,
(2) reduces to the standard LASSO problem, forλf = 0, (2)
reduces to SG-LASSO, forλe = λf = 0, (2) takes the shape
of G-LASSO and forλg = 0, (2) becomes F-LASSO.

Solver for SGF-LASSO:In order to solve the SGF-LASSO
problem via ADMM, we introduce two auxiliary variablesu
andz of sizeN × 1. Thus, (2) can be written as

[x̂, û, ẑ] = argmin
x,u,z

1

2
‖y −Φx‖22 + λe‖u‖

1
1

+ λg

G−1
∑

i=0

‖ui‖
1
2 + λf‖z‖

1
1

s.t. ui = xi, 0 ≤ i ≤ G− 1, z = Dx (3)

where ui is an N/G × 1 sub-vector of u, i.e., u =
[uT

0 ,u
T
1 , · · · ,u

T
G−1, ]

T , andD is the difference matrix with
[D]j,j = −1, [D]j,j+1 = 1, for 0 ≤ j ≤ N − 2 and
[D]N−1,N−1 = 1, such that‖Dx‖11 equals the element-wise
fusion. From (3), the Lagrangian problem can be written as

L(x,u, z,ρu,ρz) =
1

2
‖y−Φx‖22 + λe‖u‖

1
1

+ λg

G−1
∑

i=0

‖ui‖
1
2 + λf

N
∑

j=2

‖z‖11

+

G−1
∑

i=0

ρ
T
ui
(ui − xi) +

cu
2

G−1
∑

i=0

‖ui − xi‖
2
2

+ ρ
T
z (z−Dx) +

cz
2
‖z−Dx‖22 (4)

whereρu (with sub-vectorsρui
, for 0 ≤ i ≤ G − 1) andρz

are Lagrange multipliers and,cu andcz are positive constants.

The solution of (3) is generated by the following successive
approximations

x[n] = argmin
x

L
(

x,u[n−1], z[n−1],ρ[n−1]
u ,ρ[n−1]

z

)

(5)

u[n] = argmin
u

L
(

x[n−1],u,ρ[n−1]
u

)

(6)

z[n] = argmin
z

L
(

x[n−1], z,ρ[n−1]
z

)

(7)

and the multipliers are updated as

ρ
[n]
u = ρ

[n−1]
u + cu(x

[n] − u[n]) (8)

ρ
[n]
z = ρ

[n−1]
z + cz(Dx[n] − z[n]). (9)

The closed-form solution for (5) at thenth iteration can be
derived to be

x[n] =
(

ΦTΦ+ czD
TD+ cuIN

)−1

×
(

ΦTy −DT
ρ
[n−1]
z + czD

T z[n−1] − ρ
[n−1]
u + cuu

[n−1]
)

.

(10)

We can see from (10) that the matrix inversion part does not
change during the iterations so that it can be performed off-
line, resulting in reduced complexity. Note that the matrix
inversion lemma can be used to further ease the computations
involved in the inversion operation.

For u, note that the optimization involves two penalties,
i.e., apart from penalizing each element ofu for sparsity, we
need to optimize on each of its sub-groups as well. Since
both penalties are non-differentiable, we utilize the factthat
soft thresholding generates a minimizer for the cost function
involving λe‖ui‖

1
1 [4], and for the cost function involving

λg‖ui‖
1
2, the minimizer issu = ui/‖ui‖

2
2 in case‖ui‖

2
2 6= 0

and the minimizer is a vectorsu such that‖su‖12 < 1 in case
‖ui‖

2
2 = 0 [7]. Thus the closed-form solution of (6) for the

ith subgroup at thenth iteration can be written as

u
[n]
i =

(

‖S

(

x
[n−1]
i +

ρ
[n−1]
ui

cu
,
λe

cu

)

‖22 −
λg

cu

)

+

×

S

(

x
[n−1]
i +

ρ[n−1]
ui

cu
, λe

cu

)

‖S

(

x
[n−1]
i +

ρ
[n−1]
ui

cu
, λe

cu

)

‖22

(11)

for 0 ≤ i ≤ G − 1, whereS(s, λ)
∆
= sign(x)(x − λ)+ is

the soft thresholding operator. Thus the estimate ofu can be
obtained as

u[n] = [u
[n]T
0 ,u

[n]T
1 , · · · ,u

[n]T
G−1]

T (12)

which along withx[n] is used to updateρ[n]
u in (8).

Now from (7), the closed-form expression for the estimate
of z at thenth iteration can be derived as

z[n] = S

(

Dx[n−1] +
ρ
[n−1]
z

cz
,
λf

cz

)

(13)

which subsequently updatesρ[n]
z in (9).
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Fig. 1. Above: Disjoint groups.Below: Overlapping groups.

B. Latent Group LASSO with Fusion

For the latent group fused LASSO (LGF-LASSO), the
signal is segmented into many overlapping groups of certain
sizes1. In contrast to the disjoints groups, overlapping groups
can reselect the elements from other groups. We createG̃
overlapping groups through anN/G × N sub-selection ma-
trices Wi which selectN/G rows from an identity matrix
IN . An overlapping group can then be obtained by the
relation,Wix, for 0 ≤ i ≤ G̃ − 1, whereWi is such that
W

∆
= [WT

0 ,W
T
1 , · · · ,W

T
G̃
]T . Each sub-selection matrixWi

repeatsK rows ofWi−1, whereK is the overlapping factor
and 1 ≤ K ≤ N − 1. Figure 1 schematically shows the
difference between disjoint (K = 0) and overlapping groups
(for K = N/(2G)). We can see that the overlapping groups
can solve the problem of the fixed group size but the price to be
paid is in terms of computational complexity which increases
excessively with the factorK due to the related increase in
G̃. Now, the optimization problem for LGF-LASSO can be
formulated as

x̂ = argmin
x

1

2
‖y −Φx‖22 + λg

G̃−1
∑

i=0

‖Wix‖
1
2 + λf‖Dx‖11

(14)
which does not contain an element-wise sparsity term as
required in (2).

Solver for LGF-LASSO:To solve the LGF-LASSO prob-
lem, we again turn to ADMM. By introducing a new auxiliary
variableũ of size G̃N/G, (14) can be written as

[x̂, ˆ̃u, ẑ] = argmin
x,ũ,z

1

2
‖y−Φx‖22 + λg

G̃−1
∑

i=0

‖ũi‖
1
2 + λf‖z‖

1
1

s.t. ũi = Wix, 0 ≤ i ≤ G̃− 1, z = Dx (15)

where ũi is an N/G × 1 sub-vector of ũ, i.e., ũ =
[ũT

0 , ũ
T
1 , · · · , ũ

T
G̃−1

, ]T . Now the Lagrangian for (15) can be
written as

L(x, ũ, z,ρũ,ρz) =
1

2
‖y−Φx‖22 + λg

G̃−1
∑

i=0

‖ũi‖
1
2 + λf

N
∑

j=2

‖z‖11

+
G̃−1
∑

i=0

ρ
T
ũi
(ũi −Wix) +

cu
2

G̃−1
∑

i=0

‖ũi −Wix‖
2
2

+ ρ
T
z (z−Dx) +

cz
2
‖z−Dx‖22 (16)

whereρũ collects the Lagrangian multipliers with sub-vectors
ρũi

for 0 ≤ i ≤ G̃ − 1. Now the successive approximations

1In this paper we consider overlapping groups of fixed sizes, but the concept
can easily be extended to varying sizes as well.

for the solution of (16) w.r.t.x, ũ andρũ can be written as

x[n] = argmin
x

L
(

x, ũ[n−1], z[n−1],ρ
[n−1]
ũ ,ρ[n−1]

z

)

(17)

ũ[n] = argmin
u

L
(

x[n−1], ũ,ρ
[n−1]
ũ

)

(18)

ρ
[n]
ũ = ρ

[n−1]
ũ + cu(x

[n] − ũ[n]) (19)

whereas, the expressions for the estimates ofz andρz are the
same as in (7) and (9), respectively.

From (17), the closed-form expression for the estimate of
x at thenth iteration can be derived as

x[n] =
(

ΦTΦ+ czD
TD+ cuW

TW
)−1

×
(

ΦTy −DT
ρ
[n−1]
z + czD

T z[n−1] −WT (ρ[n−1]
u − cuu

[n−1])
)

.

(20)

where we can see that asW is already known, the matrix
inversion part of the estimate can again be obtained off-line
and does not need to be estimated for each iteration.

From (18), the closed-form expression for the estimate of
ũi, for 0 ≤ i ≤ G̃− 1, at thenth iteration can be derived as

ũ
[n]
i =

(

‖Wix
[n−1] +

ρ
[n−1]
ũi

cu
‖22 −

λg

cu

)

+

×
Wix

[n−1] +
ρ

[n−1]
ũi

cu

‖Wix[n−1] +
ρ

[n−1]
ũi

cu
‖22

(21)

and the estimate foru[n] can be obtained as

ũ[n] = [ũ
[n]T
0 , ũ

[n]T
1 , · · · , ũ

[n]T
G−1]

T (22)

which is then used to update the multipliersρũ in (19).

III. S IMULATIONS

In this section, we present some simulation results to com-
pare the performance of our proposed algorithms. We com-
pare the performance of SGF-LASSO, LGF-LASSO and G-
LASSO. We consider a random test signal of lengthN = 140,
which is composed of a couple of blocks of exponentially
decaying elements, a step signal block and a lone small group
of nonzero elements, along with multiple zero blocks. Such
a mixture is mostly expected in smooth signals. The noise
variance has been considered as,σ2 = 0.25. The signal is
sensed through the measurement matrixΦ, which has been
drawn from a zero-mean Gaussian distribution with variance
1/M . We have further orthogonalized the rows of matrixΦ.

The penalty parameters for the simulations have been con-
sidered asλe = 0.5, λg = 5.0 and λf = 3.0. In general,
these parameters can be selected from a given range in a
cross-validation manner, by varying one of the parameters and
keeping others fixed [7]. Further, since all of these parameters
are sparsity promoting, and can possibly affect each other,it is
expected that the search of the optimal set of parameters would
be restricted to a smaller range. The parameterscu andcz are
positive numbers and may affect the convergence rate. We take
them ascu = cz = 2. As initial conditions, the vectorsx[0],
u[0], z[0], ρ[0]

u , ρ[0]
z , ũ[0] andρ[0]

ũ , have all been considered as
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Fig. 2. Comparison of SGF-LASSO, LGF-LASSO and G-LASSO

zero vectors, respectively. Note that, a least-squares solution
of x, can also be considered as a warm-start to speed up the
convergence rate.

The group size for SGF-LASSO, LGF-LASSO and G-
LASSO has been taken as10. Therefore, the number of groups
in SGF-LASSO and G-LASSO are the same, i.e.,G = 14. For
LGF-LASSO, an overlapping factor ofK = 5 has been used,
and therefore the number of overlapping groups of size10
are G̃ = 27. We use a maximum of150 iterations for each
algorithm. We have observed that a tolerance level of10−3

between consecutive updates is reached much earlier than this
limit, and therefore we stop the algorithm at this stage.

Figure 2 shows the reconstruction performance of SGF-
LASSO, LGF-LASSO and G-LASSO when the signal was
sensed with a compression ratioµ = 0.5. We can see that the
performance of SGF-LASSO and LGF-LASSO is very close to
each other and both are able to recover the smooth transitions
of the original signal. SGF-LASSO has an edge over LGF-
LASSO, as it better reconstructs even a very small group of
nonzero elements. On the other hand, the performance of G-
LASSO deteriorates both on the front of smoothness as well
as block size. Note that in contrast to SGF-LASSO and LGF-
LASSO, λg is the only sparsity creating parameter for G-
LASSO. Therefore, we increase its value to12.5, which is
the minimum to recreate the actual zero blocks.

Figure 3 shows the performance comparison of the pro-
posed algorithms through the mean squared error (MSE)
metric against varying compression ratios, where MSE

∆
=

‖x − x̂‖22/N . We can see that the performance improves
in general with increasing value ofµ, for 0.1 ≤ µ ≤ 0.9.
Nonetheless, the difference in performance follows the previ-
ously observed pattern. SGF-LASSO keeps an edge over LGF-
LASSO, whereas G-LASSO remains quite far away. Here we
would like to mention that SGF-LASSO has an edge over
LGF-LASSO with a lower number of groups. LGF-LASSO
can have improved performance by increasing the overlapping
factor but that would cause a subsequent increase in the
computational complexity.
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Fig. 3. MSE comparison of SGF-LASSO, LGF-LASSO and G-LASSO

IV. CONCLUSIONS

In this letter, we have proposed two new LASSO for-
mulations, namely, sparse group fused LASSO and latent
group fused LASSO. The former uses element-wise sparsity,
group sparsity (over disjoint groups) and fusion penalties,
whereas the latter combines the fusion penalty with a latent
group penalty. Both formulations can be used to reconstruct
smooth signals from their compressed measurements. We also
provide low-complexity solvers for the proposed formulations,
based on the alternating direction method of multipliers. We
compared the performance of our proposed algorithms with
standard group LASSO over a smooth test signal. The simu-
lation results confirm the better performance of the proposed
algorithms for signal reconstruction against group LASSO.
Similar results were obtained for the mean squared error
metric, for varying compression ratios.
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