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ABSTRACT

In this paper, we introduce a new framework for robust multiple sig-
nal classification (MUSIC). The proposed framework, called robust
measure-transformed (MT) MUSIC, is based on applying a trans-
form to the probability distribution of the received signals, i.e., trans-
formation of the probability measure defined on their observation
space. In robust MT-MUSIC, the sample covariance is replaced
by the empirical MT-covariance. By judicious choice of the trans-
form we show that: (1) the resulting empirical MT-covariance is B-
robust, with bounded influence function that takes negligible values
for large norm outliers, and (2) under the assumption of spherical
compound Gaussian noise, the noise subspace can be determined
from the eigendecomposition of the MT-covariance. The proposed
approach is illustrated for direction-of-arrival (DOA) estimation in a
simulation example that shows its advantages as compared to other
robust MUSIC generalizations.

Index Terms— Array processing, DOA estimation, probability
measure transform, robust estimation, signal subspace estimation.

1. INTRODUCTION

The multiple signal classification (MUSIC) algorithm [1], [2] is
a well established technique for estimating direction-of-arrivals
(DOAs) of signals impinging on an array of sensors. It operates
by finding DOAs with corresponding array steering vectors that
have minimal projections onto the empirical noise subspace, whose
spanning vectors are obtained via eigendecomposition of the sample
covariance matrix (SCM) of the array outputs.

In the presence of outliers, possibly caused by heavy-tailed im-
pulsive noise, the SCM poorly estimates the covariance of the array
outputs, resulting in unreliable DOAs estimates. In order to over-
come this limitation, several MUSIC generalizations have been pro-
posed in the literature that replace the SCM with robust association
or scatter matrix estimators, for which the empirical noise subspace
can be determined from their eigendecomposition.

Under the assumption that the signal and noise components
are jointly α-stable processes [3], it was proposed in [4] to replace
the SCM with empirical covariation matrices that involve fractional
lower-order statistics. Although α-stable processes are appropriate
for modeling impulsive noise [5], the assumption that the signal and
noise components are jointly α-stable is not practical. In [6], a less
restrictive approach considering circular signals contaminated by
additive α-stable noise was developed that replaces the SCM with
matrices comprised of empirical fractional-lower-order-moments.
Although this approach is less restrictive than the one proposed in
[4], violation of the signals circularity assumption, e.g., by applying
BPSK signals, results in poor DOA estimation performance [6].
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In [7] a different MUSIC generalization was proposed that re-
places the SCM with empirical sign or rank covariances. Using only
the assumption of spherically symmetric noise, it was shown that
convergent estimates of the noise subspace can be obtained from
their eigendecomposition. The empirical sign and rank covariance
matrices have bounded influence functions [8], in other words they
are B-robust. However, it can be shown that the Frobenius norms of
their influence functions do not reject large outliers, i.e., they do not
approach zero as the magnitude of the outlier approaches infinity.
Furthermore, the emprical sign and rank covariance matrices have
influence functions with constant Frobenius norms for spherically
symmetric distributions.

In [9], robust M-estimators of scatter [10], [11], such as the
maximum-likelihood, Huber’s [11], and Tyler’s [12] M-estimators,
extended to complex elliptically symmetric (CES) distributions,
were proposed as alternatives to the SCM. Under the class of CES
distributions having finite second-order moments, these estimators
provide consistent estimation of the covariance up to a positive
scalar, resulting in consistent estimation of the noise subspace. Al-
though this approach can provide robustness against outliers with
negligible loss in efficiency when the observations are normally dis-
tributed, it may suffer from the following drawbacks. First, when the
observations are not elliptically distributed, M-estimators may loose
the consistency relation to the covariance matrix [13], which may
lead to poor estimation of the noise subspace. Second, M-estimators
of scatter are computed using iterative fixed-point algorithm that
converges to a unique solution under some regularity conditions.
Each iteration involves matrix inversion which may be computa-
tionally demanding in high dimensions, or unstable when the scatter
matrix is close to singular. Moreover, although the influence func-
tions of M-estimators may be bounded, they may not behave well
for large norm outliers which can affect the estimation performance.
Indeed, similarly to the method of [7], Tyler’s scatter M-estimator
does not reject large outliers and its influence function has constant
Frobenius norm for spherically symmetric distributions.

In this paper, we introduce a new non-iterative framework for
robust MUSIC. The proposed framework, called robust measure-
transformed MUSIC (MT-MUSIC), is inspired by a measure trans-
formation approach that was recently applied to canonical correla-
tion analysis [14] and independent component analysis [15]. Robust
MT-MUSIC is based on applying a transform to the probability dis-
tribution of the data. The proposed transform is structured by a non-
negative function, called the MT-function, and maps the probability
distribution into a set of new probability measures on the observation
space. By modifying the MT-function, classes of measure transfor-
mations can be obtained that have different useful properties. Under
the proposed transform we define the measure-transformed (MT) co-
variance and derive its strongly consistent estimate, which is also
shown to be Fisher consistent [16]. Robustness of the empirical MT-
covariance is established in terms of boundedness of its influence
function. A sufficient condition on the MT-function that guarantees



B-robustness of the empirical MT-covariance is obtained.
In robust MT-MUSIC, the SCM is replaced by the empirical MT-

covariance. The MT-function is selected such that the resulting em-
pirical MT-covariance is B-robust, and the noise subspace can be
determined from the eigendecomposition of the MT-covariance. By
modifying the MT-function such that these conditions are satisfied a
class of robust MT-MUSIC algorithms can be obtained.

Selection of the MT-function under the family of zero-centered
Gaussian functions, parameterized by a scale parameter, results in a
new algorithm called Gaussian MT-MUSIC. We show that the em-
pirical Gaussian MT-covariance is B-robust with influence function
that approaches zero as the outlier magnitude approaches infinity.
Under the additional assumption that the noise component has a
spherical compound Gaussian distribution, we show that the noise
subspace can be determined from the eigendecomposition of Gaus-
sian MT-covariance. The family of compound Gaussian distributions
encompasses common heavy-tailed distributions, such as the Cauchy
distribution, and has been widely used for modeling radar clutter
[17]-[20]. We propose a data-driven procedure for selecting the
Gaussian MT-function scale parameter. This procedure has the prop-
erty that it prevents significant transform-domain Fisher-information
loss when the observations are normally distributed.

The Gaussian MT-MUSIC is evaluated by simulation to illus-
trate its advantages relative to other robust MUSIC algorithms.

The paper is organized as follows. In section 2, the robust MT-
MUSIC framework is developed. In Section 3, the Gaussian MT-
MUSIC algorithm is derived from the proposed framework. This
algorithm is illustrated in a simulation example in Section 4. In Sec-
tion 5, the main points of this contribution are summarized. Proofs
for the propositions stated throughout the paper will be provided in
the full length journal version.

2. ROBUST MEASURE-TRANSFORMED MUSIC

In this section, the robust MT-MUSIC procedure is presented. First,
the sensor array model is introduced. Second, a general trans-
formation on probability measures is established. Under the pro-
posed transform, we define the MT-covariance matrix and derive
its strongly consistent estimate. Robustness of the empirical MT-
covariance is studied by analyzing its influence function. Finally,
based on the assumed array model, we propose a robust MT-MUSIC
procedure that replaces the SCM with the empirical MT-covariance
of the received signals.

2.1. Array model

Consider an array of p sensors that receive signals generated by
q < p narrowband incoherent far-field point sources with distinct
azimuthal DOAs θ1, . . . , θq . Under this model, the array output sat-
isfies [2]:

Xn = A (θ)Sn + Wn, (1)

where n ∈ N is a discrete time index, Xn ∈ Cp is the vector of
received signals, Sn ∈ Cq is a zero-mean latent random vector,
comprised of the emitted signals, with non-singular covariance, and
Wn ∈ Cp is an additive zero-mean spatially white noise. The ma-
trix A (θ) , [a (θ1) , . . . ,a (θq)] ∈ Cp×q is the array steering ma-
trix, where θ , [θ1, . . . , θq]

T and a (θ) is the steering vector of the
array toward direction θ. We assume that the array is unambiguous,
i.e., any collection of p steering vectors corresponding to distinct
DOAs forms a linearly independent set. Therefore, A (θ) has full
column rank, and identification of its column vectors is equivalent to

the problem of identifying the DOAs. We also assume that Sn and
Wn are statistically independent and first-order stationary. To sim-
plify notation, the time index n will be omitted in the sequel except
where noted.

2.2. Probability measure transform

We define the measure space (X ,SX , PX), where X is an observa-
tion space of a random vector X ∈ Cp, SX is a σ-algebra over X ,
and PX is a probability measure on SX .

Definition 1. Given a non-negative function u : Cp → R+ satisfy-
ing 0 < E [u (X) ;PX] < ∞, where E [·;PX] denotes the expecta-
tion under PX, a transform on PX is defined via the relation:

Q
(u)
X (A) , Tu [PX] (A) =

∫
A

ϕu (x) dPX (x) , (2)

where A ∈ SX , x ∈ X , and

ϕu (x) , u (x)/E [u (X) ;PX]. (3)

The function u (·) is called the MT-function.

Proposition 1 (Properties of the transform). Let Q(u)
X be defined by

relation (2). Then

1. Q(u)
X is a probability measure on SX .

2. Q(u)
X is absolutely continuous w.r.t. PX, with Radon-Nikodym

derivative [21]:

dQ
(u)
X (x)/dPX (x) = ϕu (x) . (4)

3. Assume that the MT-function u (·) is strictly positive, and let
g : X → Cm denote an integrable function over X . If the
covariance of g (X) under PX is non-singular, then it is non-
singular under the transformed probability measure Q(u)

X .

4. Assume that the MT-function u (·) is Gaussian. The probabil-
ity measure PX is proper complex normal if and only if Q(u)

X

is proper complex normal.

2.3. The measure-transformed covariance

According to (4) the covariance of X under Q(u)
X is given by

Σ
(u)
X = E

[
XXHϕu (X) ;PX

]
− µ(u)

X µ(u)H
X , (5)

where µ
(u)
X , E [Xϕu (X) ;PX] is the expectation of X under

Q
(u)
X . Equation (5) implies that Σ

(u)
X is a weighted covariance ma-

trix of X under PX, with weighting function ϕu (·). Hence, Σ
(u)
X

can be estimated using only samples from the distribution PX. By
modifying the MT-function u (·), such that the condition in defini-
tion 1 is satisfied, the MT-covariance matrix under Q(u)

X is modified.
In particular, by choosing u (x) ≡ 1, we haveQ(u)

X = PX, for which
the standard covariance matrix ΣX is obtained.

Proposition 2 (Strongly consistent estimate of the MT-covariance).
Let Xn, n = 1, . . . , N denote a sequence of i.i.d. samples from PX,
and define the empirical covariance estimate

Σ̂
(u)

X ,
N∑
n=1

XnXH
n ϕ̂u (Xn)− µ̂(u)

x µ̂(u)H
x , (6)



where µ̂
(u)
X ,

∑N
n=1 Xnϕ̂u (Xn), and ϕ̂u (Xn) , u(Xn)∑N

n=1 u(Xn)
.

If E
[
‖X‖22 u (X) ;PX

]
< ∞, then Σ̂

(u)

X → Σ
(u)
X almost surely as

N →∞.

Note that for u(X) ≡ 1 the estimator N
N−1

Σ̂
(u)

X reduces to the

standard unbiased SCM. Also notice that Σ̂
(u)

X can be written as a
statistical functional Ψ

(u)
X [·] of the empirical probability measure

P̂X , 1
N

∑N
n=1 δXn , where δXn is the Dirac probability measure

at Xn , i.e.,

Σ̂
(u)

X =
E[XXHu (X) ; P̂X]

E[u (X) ; P̂X]
− η(u)

X [P̂X]η
(u)H
X [P̂X] , Ψ

(u)
X [P̂X],

(7)
where η

(u)
X [P̂X] , E[Xu (X) ; P̂X]/E[u (X) ; P̂X]. By (3), (5) and

(7), when P̂X is replaced by PX we have Ψ
(u)
X [PX] = Σ

(u)
X , which

implies that Σ̂
(u)

X is Fisher consistent [16].

2.4. Robustness of the empirical MT-covariance

Here, we study the robustness of the empirical MT-covariance Σ̂
(u)

X

using its influence function [8]. Define the probability measure Pε ,
(1−ε)PX+εδy, where 0 ≤ ε ≤ 1, y ∈ Cp, and δy is the Dirac prob-
ability measure at y. The influence function of a Fisher consistent
estimator with statistical functional H[·] at probability distribution
PX is defined as [8]:

IFH (y;PX) , lim
ε→0

H [Pε]− H [PX]

ε
=

∂H [Pε]

∂ε

∣∣∣∣
ε=0

. (8)

The influence function describes the effect on the estimator of an
infinitesimal contamination at the point y. An estimator is said to be
B-robust if its influence function is bounded. Using (7) and (8) one
can verify that the influence function of Σ̂

(u)

X is given by

IF
Ψ

(u)
x

(y;PX) =
u (y)[(y − µ

(u)
X )(y − µ

(u)
X )H −Σ

(u)
X ]

E[u(X);PX]
. (9)

The following proposition states a sufficient condition for bounded-
ness of (9). This condition is satisfied for the Gaussian MT-function
proposed in Section 3.

Proposition 3. The influence function (9) is bounded if the MT-
function u(y) and the product u(y)‖y‖22 are bounded over Cp.

2.5. The robust MT-MUSIC procedure

In robust MT-MUSIC the measure transformation (2) is applied to
the probability distribution PX of the array output Xn (1). we pro-
pose selecting the MT-function u (·) such that: (1) the resulting em-

pirical MT-covariance Σ̂
(u)

X is B-robust, and (2) the p − q eigen-
vectors of Σ

(u)
X corresponding to its smallest eigenvalues span the

null-space of AH (θ), also called the noise subspace. Let V̂(u) ∈
Cp×(p−q) denote the matrix comprised of p − q eigenvectors of
Σ̂

(u)

X corresponding to its smallest eigenvalues. The DOAs are esti-
mated by finding the q maxima of the measure-transformed pseudo-
spectrum:

P̂ (u)(θ) , ‖V̂(u)Ha(θ)‖−2. (10)
By modifying the MT-function u(·) such that the stated conditions
are satisfied a family of robust MT-MUSIC algorithms can be ob-
tained. A particular choice of MT-function leading to the Gaussian
MT-MUSIC algorithm is discussed in the following section.

3. THE GAUSSIAN MT-MUSIC

In this section, we parameterize the MT-function u (·; τ), with scale
parameter τ ∈ R∗+ under the Gaussian family of functions centered
at the origin. This results in a B-robust empirical MT-covariance ma-
trix. Under the assumption of spherical compound Gaussian noise,
we show that the noise subspace can be determined from the eigen-
decomposition of the MT-covariance. Choice of the scale parameter
τ is also discussed.

3.1. The Gaussian MT-function

We define the Gaussian MT-function uG (·; ·) as

uG (x; τ) ,
(
πτ2

)−p
exp

(
−‖x‖22/τ

2) , τ ∈ R∗+. (11)

One can verify that uG (·; ·) satisfies the condition in proposi-
tion 3, resulting in a B-robust empirical Gaussian MT-covariance
Σ̂

(uG)

X (τ). Using (9) and (11) it can be shown that the corre-
sponding influence function satisfies ‖IF

Ψ
(uG)
x

(y;PX) ‖Fro → 0

as ‖y‖2 → ∞, where ‖ · ‖Fro denotes the Frobenius norm, i.e.,
unlike the SCM and other robust covariance approaches, the empir-
ical Gaussian MT-covariance rejects large outliers. This property is
illustrated in Fig. 1 for a bivariate standard complex normal distri-
bution, as compared to the empirical sign-covariance, Tyler’s scatter
M-estimator, and the SCM.
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Fig. 1. Frobenius norms of the influence functions associated with
the empirical Gaussian MT-covariance for τ = 1, Tyler’s scatter M-
estimator, the empirical sign-covariance, and the SCM, versus the
contamination norm, for a bivariate standard complex normal distri-
bution. Notice that the influence function approaches zero for large
‖y‖ only for the proposed Gaussian MT-covariance estimator.

3.2. The Gaussian MT-covariance for compound Gaussian noise

We assume that the noise component in (1) is compound Gaussian
with the following stochastic representation

Wn = νnZn, (12)

where νn ∈ R∗+ is a first-order stationary process, and Zn ∈ Cp is a
proper-complex wide-sense stationary Gaussian process with zero-
mean and unit covariance, which is statistically independent of νn.
Using (3), (5), (11) and (12), the Gaussian MT-covariance of Xn

under the model (1) has the following structure:

Σ
(uG)
X (τ) = A (θ)Σ

(g)

α2S
(τ)AH (θ) + σ

2(h)
αW (τ) I, (13)

where Σ
(g)

α2S
(τ) is the covariance of the scaled signal compo-

nent α2
nSn, αn ,

√
τ2/(τ2 + ν2n), under the transformed joint



probability measure Q
(g)
α,S with the MT-function g (α,S; τ) ,

(πτ2/α2)−p exp(−α2‖AS‖22/τ2). Since g(·, ·; ·) is strictly pos-
itive and α2

nSn has a non-singular covariance, by Property 3 in
Proposition 1 the MT-covariance Σ

(g)

α2S
(τ) must be non-singular.

The term σ
2(h)
αW (τ) that multiplies the identity matrix I in the second

summand of (13) is the variance of the scaled noise component
αnWn under the transformed joint probability measure Q(h)

α,W with
the MT-function h (α; τ) = E [g (α,S; τ) ;PS].

Thus, using the structure (13), it can be shown that since A (θ)

has full column rank, and Σ
(g)

α2S
(τ) is non-singular, the p− q small-

est eigenvalues of Σ
(uG)
X (τ) are equal to σ2(h)

αW (τ) and their corre-
sponding eigenvectors span the null space of AH (θ).

3.3. The Gaussian MT-MUSIC algorithm

The empirical Gaussian MT-covariance is B-robust, and, under the
compound Gaussian noise assumption (12), the noise subspace can
be determined from the Gaussian MT-covariance eigendecomposi-
tion. The Gaussian MT-MUSIC algorithm is implemented by re-
placing the MT-function in (10) with the Gaussian MT-function (11).

3.4. Choosing the scale parameter of the Gaussian MT-function

While de-emphasizing non-informative outliers, e.g., caused by
heavy-tailed distributions, the empirical Gaussian MT-covariance
is less informative than the standard sample-covariance when the
observations are normally distributed. This is seen in the follow-
ing proposition that follows from the Gaussian Fisher information
formula [22], Property 4 in Proposition 1, and elementary trace
inequalities [23].

Proposition 4. Assume that the probability distribution PX of the
array outputs (1) is proper complex normal. The ratio between
the Fisher information for estimating θk ∈ {θ1, . . . , θq} under the
transformed probability measure Q(uG)

X (with the MT-function (11))
and the corresponding Fisher information under PX satisfy:(

τ2

tr−1
[
Σ−1

X

]
+ τ2

)2

≥ F (θk;Q
(uG)
x )

F (θk;PX)
≥
(

τ2

tr [ΣX] + τ2

)2

.

(14)

Therefore, in order to prevent a significant information loss
when the observations are normally distributed, we propose to
choose a safe-guard τs =

√
ctr [ΣX], where c is some positive con-

stant that guarantees that the Fisher information ratio (14) is greater
than (c/(1 + c))2. Since in practice ΣX is unknown, its trace is
replaced by an empirical estimate of the sum of variances.

4. NUMERICAL EXAMPLE
In this example, the performance of Gaussian MT-MUSIC is com-
pared to the standard SCM-based MUSIC (SCM-MUSIC) [1] and to
its robust generalizations based on the empirical sign-covariance
(SGN-MUSIC) [7], and Tyler’s scatter M-estimator (TYLER-
MUSIC) [9], [12]. We consider two independent 4-QAM signals
with equal power σ2

S impinging on a 16-element uniform linear
array with λ/2 spacing (Rayleigh resolution limit [24] of 7.162◦)
from DOAs θ1 = −2◦ and θ2 = 2◦. Two noise scenarios are
tested: (1) Zero-mean proper complex Gaussian noise with scaled
identity covariance σ2

WI, and (2) complex Cauchy noise with i.i.d.
margins having zero location parameter and dispersion σ2

W. In
both settings N = 1000 snapshots were used. Following the ap-
proach proposed in subsection 3.4, the scale parameter τ of the

MT-function (11) is set to τ =
√∑p

k=1 σ̂
2
Xk

, where σ̂2
Xk

=

γ−2[(IQR({Re(Xk,n)}Nn=1))
2 + (IQR({Im(Xk,n)}Nn=1))

2], γ ,
1/(2
√
2erf−1(1/2)), is a robust interquartile range (IQR) estimate

of variance. The generalized signal-to-noise-ratio (GSNR) is defined
as GSNR , 10 log10 σ

2
S/σ

2
W and is used to index the performance

shown in Fig. 2.
The RMSE performances versus GSNR and the pseudo-spectra

corresponding to GSNR = 2 [dB] averaged over 1000 Monte-Carlo
simulations are depicted in Fig. 2. Note that for the Gaussian noise
case all algorithms perform similarly. For the Cauchy noise case, the
Gaussian MT-MUSIC outperforms all other robust MUSIC general-
izations with significantly lower GSNR threshold region. This may
be attributed to the fact that unlike the empirical sign-covariance and
Tyler’s scatter M-estimator, the influence function of the empirical
Gaussian MT-covariance is negligible for large norm outliers (as il-
lustrated in Fig. 1), which are likely in low GSNRs.
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Fig. 2. RMSE for θ1 (top) and θ2 (middle) versus GSNR, and the
pseudo-spectra corresponding to GSNR = 2 [dB] (bottom) for the
Gaussian (left) and Cauchy (right) noise scenarios. Note that for the
Cauchy noise case, the proposed Gaussian MT-MUSIC estimator has
lower MSE than the other methods, and its corresponding pseudo-
spectrum has more highly resolved peaks at the true directions of
arrival at angles −2◦ and +2◦.

5. CONCLUSION

In this paper a new framework for robust MUSIC was derived by ap-
plying a transform to the probability distribution of the data. Under
the assumption of compound Gaussian noise, a new robust MUSIC
algorithm, called Gaussian MT-MUSIC, was obtained by specifying
the MT-function in the Gaussian family. Exploration of other classes
of MT-functions may result in additional robust MUSIC algorithms.
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