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ABSTRACT

This paper studies the optimization of zero-delay analog
mappings in a network setting that involves distributed cod-
ing. The cost surface is known to be non-convex, and known
greedy methods tend to get trapped in poor locally optimal
solutions that depend heavily on initialization. We derive an
optimization algorithm based on the principles of “determin-
istic annealing”, a powerful global optimization framework
that has been successfully employed in several disciplines,
including, in our recent work, to a simple zero-delay analog
communications problem. We demonstrate strict superiority
over the descent based methods, as well as present example
mappings whose properties lend insights on the workings of
the solution and relations with digital distributed coding.

Index Terms— Zero-delay, distributed coding, analog
networks, deterministic annealing

1. INTRODUCTION

It is well known that in the case of a memoryless Gaussian
source and an additive white Gaussian noise channel, under
the mean squared error distortion, the asymptotic information
theoretic bound is achievable by a zero-delay scheme [1]. Al-
though this property does not apply to general sources and
channels [2], the simple structure of a coding scheme without
long delays has made joint source-channel coding an attrac-
tive problem of practical importance.

Zero-delay coding problems have been studied exten-
sively in the literature (see eg. [3–6]), but optimal coding
schemes for zero delay distributed coding problems are not
known in general. The non-convex cost surface renders
greedy descent methods [7] inefficient. In prior work [8] we
proposed a method based on deterministic annealing [9] to
optimize zero delay codes for a point-to-point communication
setting where the decoder has access to additional side infor-
mation. The method presented here extends the approach to
distributed settings, where optimization of multiple encoders
poses significant additional challenges. The hidden interac-
tion between separate encoders leads to interesting coding

Fig. 1. Problem Setting

schemes, which may be interpreted as some or all encoders
acting as side information for the others.

In Section 2, we state the problem and briefly summa-
rize the descent-based algorithm. The proposed approach is
described in Section 3. Numerical results and examples are
presented in Section 4, and conclusion in Section 5.

2. PROBLEM DEFINITION AND THE GREEDY
APPROACH

2.1. Problem Definition

Let E{·}, P{·} denote the expectation and probability opera-
tors, let R be the set of real numbers, andH(·) be the Shannon
entropy. The probability density function of the random vari-
able X is fX(x), where upper case letters are used to denote
random variables and lower case letters for their realizations.
∇ and ∇x denote the gradient and partial gradient with re-
spect to x, respectively. Logarithms in this paper are natural
logarithms.

The problem setting is given in Figure 1, where two scalar
sources X1 ∈ R and X2 ∈ R are drawn from joint den-
sity fX1,X2(·, ·) and mapped to channel input by the encod-
ing functions g1, g2 : R → R. Both channels have addi-
tive noises N1, N2 ∈ R not necessarily independent from
the sources and distributed according to fN1,N2

(·, ·). The de-
coders w1 and w2 map the received channel outputs Y1 =
g1(X1) + N1 and Y2 = g2(X2) + N2 to the estimates X1

and X2. The problem is to find optimal mapping functions
g1(·), g2(·), w1(·, ·), w2(·, ·) that minimize the mean squared
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error (MSE) distortion

D = E{(X1 − X̂1)
2 + (X2 − X̂2)

2}, (1)

subject to power constraints on the encoders:

Pi , E{g2i (Xi)} ≤ P ′i , for i = 1, 2. (2)

We formulate the problem as minimizing the Lagrangian cost
given by

J = D + λ1P1 + λ2P2 (3)

where λ1 and λ2 are Lagrange multipliers. Note that setting
λ1 = λ2 = λ would yield

J = D + λ(P1 + P2) (4)

which can be interpreted as the “total power constraint” vari-
ant of the problem, where the constraint is given by P1+P2 <
P ′. Although we focus on scalar sources and noises, our
method can be extended to vector spaces albeit with more in-
volved expressions.

2.2. Greedy Algorithm

The optimal decoders given the encoders are the MSE estima-
tors and given in closed form as:

wi(y1, y2) = E{Xi|y1, y2}, for i = 1, 2. (5)

The necessary conditions for optimality of encoders (given
the decoders) are derived by requiring the functional deriva-
tive of the cost (3) to vanish:

∇g1J [g1, g2] = ∇g2J [g1, g2] = 0, ∀x1, x2 (6)

We omit detailed expressions for brevity, see [7] for full de-
scription. A greedy descent algorithm based on iterative im-
position of necessary conditions for optimality was proposed
in [7]. Since descent-based algorithms of this type are highly
susceptible to getting trapped in poor local minima and heav-
ily dependent on initialization, performance was improved
by employing noisy channel relaxation (NCR) [10, 11]. As
demonstrated in this work, NCR results are nevertheless sub-
optimal and further improvements are achievable.

3. PROPOSED METHOD

In our method we optimize encoders within a class of struc-
tured mappings that are defined in a piecewise manner via a
space partition and a local model for each partition cell. We
use affine mappings for each local model, which results in a
piecewise linear function that approximates the desired opti-
mal mapping. Note here that the choice of affine model is
for simplicity and other, richer, local models (such as higher
order polynomial) are possible.

DA introduces randomness into the optimization process
by randomizing the partition, i.e., points are associated in
probability to partition cells and hence to local models. The
randomness is measured by the Shannon entropy and is con-
strained while minimizing the expected cost. The resulting
Lagrangian functional is referred to as “free energy” and La-
grange multiplier T that controls the entropy term is called
“temperature”, to emphasize an insightful analogy to statisti-
cal physics. The optimization process is akin to annealing of
a physical system, starting at high temperature, where the cost
is convex, and gradually lowering it to zero while minimizing
the free energy at each temperature.

3.1. Encoder Mappings

We approximate the encoders as piecewise linear mappings,
where the first encoder is defined as g1(x) = g1,k1(x) for
x ∈ R1,k1 and for k1 ∈ {1, ...,K1,max}. Here the regions
denoted as R1,k1 define the space partition, and g1,k1 are the
parametric local models given by g1,k1(x) = a1,k1x + b1,k1 .
One can define g1,k1 differently to obtain different structures.
The second encoder is defined similarly as g2(x) = g2,k2(x)
for x ∈ R2,k2 and k2 ∈ {1, ...,K2,max}.

Note that in the preceding definition, every input point is
associated with one local model and the association is defined
by the partitioning regions, hence the encoder outputs are de-
terministic. We now randomize the encoders by defining the
following probabilities:

p(ki|xi) , P{xi ∈ Ri,ki}, ∀ki, xi, for i = 1, 2. (7)

We write the cost in (1) accounting for the random en-
coders as:

D = E{DK1,K2
(X1, X2)} (8)

where expectation is taken over {X1, X2,K1,K2} and
Dk1,k2(x1, x2) is given by

Dk1,k2(x1, x2)

=E{(x1−w1(g1,k1(x1)+N1, g2,k2(x2)+N2))
2

+(x2−w2(g1,k1(x1)+N1, g2,k2(x2)+N2))
2} (9)

Power constraints for encoders are written as:

Pi =
∑
ki

∫
R

g2i,ki(xi)pXi
(xi)p(ki|xi)dxi, for i = 1, 2.

(10)

3.2. Entropy Constraint

Note that if we minimize an unconstrained J with respect to
the association probabilities, the solution will be determinis-
tic such that every input point is associated with probability
one to the model that contributes the least to the cost. How-
ever, to mitigate local minima, we minimize J subject to a



constraint on the joint entropy of the system. We construct
the Lagrangian

F = J − TH (11)

or “free energy” to be minimized, with T (temperature) the
Lagrange multiplier controlling the entropy constraint. Not-
ing the (by construction) Markov chain K1 → X1 → X2 →
K2, we can express the joint entropy as

H(X1,K1, X2,K2) = H(X,Y )+H(K1|X1)+H(K2|X2)
(12)

Since H(X,Y ) is a constant determined by the sources, we
define H , H(K1|X1) +H(K2|X2) where

H(Ki|Xi) = −
∫
R

pXi
(xi)

∑
ki

p(ki|xi) log(p(ki|xi))dxi

(13)
for i = 1, 2.

3.3. Minimization of F

We optimize the free energy (11) of the system with respect
to encoders (association probabilities and local models) and
decoders. It is easy to verify that optimal association proba-
bilities are given by Gibbs distribution:

p(k1|x1) =
e−[E{Dk1,K2

(x1,X2)}+λ1g
2
1,k1

(x1)]/T∑
k1

e−[E{Dk1,K2
(x1,X2)}+λ1g21,k1

(x1)]/T
∀x

(14)

p(k2|x2) =
e−[E{DK1,k2

(X1,x2)}+λ2g
2
2,k2

(x2)]/T∑
k2

e−[E{DK1,k2
(X1,x2)}+λ2g22,k2

(x2)]/T
∀x.

(15)

The local models can be optimized through gradient descent
search, and the optimal decoders are given by (5). Explicit
expressions are omitted for brevity.

3.4. Algorithm

The annealing process starts at a high temperature where the
free energy (11) is minimized through maximizing the en-
tropy, which is achieved by uniform distribution. This means
that all points are equally assigned to all models, which are
therefore identical, and for each encoder we effectively have
a single model. Note that, in agreement with this observa-
tion, as T →∞ in (15) the associations probabilities become
uniform.

As we lower T , a temperature is reached where the present
solution is no longer a minimum but a saddle point. A bifur-
cation occurs such that the local models are divided into two
or more groups, the entropy is traded for reduction in the cost
(J) and a lower free energy is obtained. Such bifurcations are
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Fig. 2. Illustration of the method. The evolution of the first
encoder is shown.

referred to as “phase transitions” and the particular tempera-
ture that they occur are called the “critical temperatures”. As
T → 0, minimizing the free energy is equivalent to minimiz-
ing J , which is achieved through deterministic encoders. At
this point, the algorithm is equivalent to the greedy method
described in Section 2.2.

An illustration of the method is given in Figure 2 where
we show how one of the encoders evolves during annealing.
Initially the 4 local models are coincident. Entropy is maxi-
mum at this temperature. Around T = 0.011, the first criti-
cal temperature, the local models start dividing into two sub-
groups. At T = 0.009, the second critical temperature (for
this encoder), we see the first subgroup splits into two sub-
groups as well. Another phase transition is observed around
T = 0.0006. Further phase transitions can be obtained by
creating duplicates of the local models. Note that we reduce
the temperature in a geometric fashion, in Figure 2 only the
critical temperatures are shown. Moreover, in order to trigger
a phase transition, the local models are perturbed slightly at
every temperature. They split when we reach a new critical
temperature and join back at others.

4. EXPERIMENTAL RESULTS

In our experiments we used jointly Gaussian sources with unit
variance and a correlation coefficient ρ = 0.995. Noises are
independent Gaussians with variance σ2 = 0.1.



Performance comparisons for individual power alloca-
tion case (different λ) and for total power allocation case
(same λ) are provided in Figure 3 where we define SNR =
10 log10(1/D) and CSNR = 10 log10((P1 + P2)/0.1). We
also included various results from the greedy algorithm us-
ing different initial conditions in order to illustrate the non-
convexity of the cost surface.
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Fig. 3. Performance comparison plots. (a) Individual power
constraints. (b) Total power constraint.

Encoder mappings for two example settings are given in
Figure 4. In the first example we have individual power con-
straints. Note the similarity of this coding scheme to those
found in prior work [8], in the sense that the first encoder is
a many-to-one mapping and the first source is recovered by
using the output of the second channel. Intuitively, the sec-
ond channel is used as side information since it is much more
reliable due to higher power allocation. The second example
in Figure 4 is obtained from a total power allocation setting.
In this case, the powers of two encoders are close but not the
same. Both encoders are many-to-one mappings in this case,
that is, both channels are used as side information for each
other in different source intervals.

5. CONCLUSIONS

In this paper we proposed an optimization method based
on deterministic annealing ideas for optimizing analog dis-

−3 −2 −1 0 1 2 3

−5

0

5

g
1
(x)

−3 −2 −1 0 1 2 3

−5

0

5

g
2
(x)

(a)

−3 −2 −1 0 1 2 3

−5

0

5

g
1
(x)

−3 −2 −1 0 1 2 3

−5

0

5

g
2
(x)

(b)

Fig. 4. Obtained encoders. (a) Individual power constraints,
P1 = 3.36, P2 = 5.57. (b) Total power constraint, P1 =
3.41, P2 = 3.78.

tributed zero delay codes. Our method is independent of
initialization and provides results superior to the more ad hoc
of noisy channel relaxation. The obtained mappings exhibit
properties that are similar to digital Wyner-Ziv mappings. As
part of future work, we seek to further investigate the theo-
retical properties of optimal mappings, as well as application
of the proposed ideas to related zero-delay analog coding
problems such as multiple access channels.
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