
APPROXIMATE LEAST SQUARES

Michael Lunglmayr† , Christoph Unterrieder†, Mario Huemer⋆

† Klagenfurt University, Embedded Systems and Signal Processing, 9020 Klagenfurt, Austria
⋆ Johannes Kepler University Linz, Institute of Signal Processing, 4040 Linz, Austria

michael.lunglmayr@aau.at

ABSTRACT

We present a novel iterative algorithm for approximating the linear least squares solution with low complexity. After a motiva-
tion of the algorithm we discuss the algorithm’s properties including its complexity, and we present theoretical results as well
as simulation based performance results. We describe the analysis of its convergence behavior and show that in the noise free
case the algorithm converges to the least squares solution.

Index Terms— least squares, approximation, iterative algorithm, complexity.

1. INTRODUCTION

The linear least squares (LS) approach is an important and extensively studied problem in many areas of signal processing with
many practical applications from localization [1] to battery state estimation [2]. In applying the linear LS approach for a vector
parameter x, we assume a signal model Hx disturbed by noise n such that

y = Hx + n, (1)

where H is a knownm×p observation matrix (m ≥ p) with full rank p, y is a knownm×1 vector (typically from measurements),
x is an unknown p×1 parameter vector that is to be estimated and n is anm×1 noise vector. For the LS approach, the statistical
properties of n need not to be known. For simplicity we only consider real vectors and matrices in this work, however, the
presented concepts can easily be extended for complex vectors and matrices. The vector x̂LS that minimizes the cost function

J(x̂) = m∑
i=1(yi − hT

i x̂)2 = (y −Hx̂)T (y −Hx̂) (2)

is the solution to the LS problem. Here hT
i is the ith row of H and yi is the ith element of y, respectively. The LS solution is

given by
x̂LS = H†y, (3)

with H† = (HTH)−1HT as the pseudoinverse of H. Numerically more stable algorithms avoiding explicitly calculating H†,
e.g. based on the QR decomposition, can for example be found in [3]. A solution as in (3) is often called batch solution in
literature [4].

For real time applications one usually wants to avoid the calculation of the batch solution due to its computational complexity
and its large memory requirements. Alternatives are sequential algorithms such as the Sequential Least Squares (SLS) algorithm
– described in the next section – or gradient based approaches such as the iterative LS (ILS) [3] algorithm. The latter algorithm
is based on the steepest descent approach and iteratively calculates

x̂(k) = x̂(k−1) − µ∇J(x̂(k−1)), (4)

for iteration k. Here ∇J(x̂(k−1)) = −2HTy + 2HTHx̂(k−1) is the gradient of J(x̂) at x̂(k−1). For k → ∞, x̂(k) converges
to x̂LS given that the iteration step width µ fulfills 0 < µ < 1/(2s2

1(H)) [3], with s1(H) as the largest singular value of H.

PREPRINT OF THE PAPER SUBMITTED TO IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING
(ICASSP) 2014

ar
X

iv
:1

31
2.

31
34

v1
 [

cs
.D

S]
 1

1
D

ec
 2

01
3

Alternatively, (4) can be written as

x̂(k) = x̂(k−1) + µ m∑
i=12hi(yi − hT

i x̂(k−1)). (5)

Analyzing the complexity of this approach one can see that 2pm+pmultiplications are required per iteration. In addition, every
iteration of ILS requires the availability of all elements of the measurement vector y.

Based on the principle of ILS we propose a novel iterative way of approximating the least squares solution that we call
approximate least squares (ALS). As we will show, the complexity of this approach is significantly lower than for ILS and it
requires only one measurement value yi per iteration.

When analyzing (5), the gradient can be interpreted as a sum of the partial gradients

di(x̂(k−1)) = −2hi(yi − hT
i x̂(k−1)) (6)

as schematically depicted in Fig. 1. The idea of ALS is to use only one of these partial gradients per iteration. Instead of moving

partial gradients:

x(k-1)^

 - J(x(k-1))^

 -di(x
(k-1))^

x^

J(x(k-1))^J(x)^

Fig. 1. Gradient and partial gradients of ILS.

a small step (due to µ) in a steepest descent way in the negative direction of the gradient as done by ILS, ALS moves a small
step in the negative direction of only a partial gradient. This has the advantage of a lower complexity, but – as we will discuss
below – also has the disadvantage of a higher noise sensitivity. Following this general idea, two issues have to be addressed.
First, the number of iterations of the algorithm to achieve satisfying performance results may be higher than the number of rows
of H. Second, the noise sensitivity has to be reduced. To cope with the first issue we suggest to re-use the rows hT

i of H in a
cyclic manner. Let the operator “ ⌝” be defined such that for a positive natural number i: i⌝ = ((i − 1) mod m) + 1. From this
it follows that i⌝ ∈ {1, . . . ,m}. For better readability we do not write the dependence of this operator on m in the operator’s
symbol. For ALS, m is always the number of rows of the matrix H. An ALS iteration is now defined as

x̂(k) = x̂(k−1) + µ2hk⌝(yk⌝ − hT
k⌝x̂(k−1)). (7)

That means for ALS that if k reaches m, for the following iterations the first rows of H and the first elements of y are used
again in a cyclic manner. We will now address the second issue, namely the noise sensitivity. As we will discuss below, if
n = 0 then x̂(k) converges to x̂LS as k → ∞. For the usual case n ≠ 0, a noise dependent error remains. This error can be
greatly reduced by introducing a simple averaging process in the last m iterations. A formal justification for this averaging will
be given within the error analysis in Sect. 3. Summarizing, this leads to an overall formulation of the algorithm:

Algorithm: ALS

x̂ALS = 0
x̂(0) = 0
for k = 1 . . .N do

x̂(k) = x̂(k−1) + µ2hk⌝(yk⌝ − hT
k⌝x̂(k−1))

if k > N −m then
x̂ALS = x̂ALS + x̂(k)

end if
end for
x̂ALS = 1

m
x̂ALS

HereN denotes the number of iterations of the algorithm and x̂ALS is the approximation of x̂LS that is output by the algorithm.
When analyzing the above algorithm, and only counting the multiplications, one can see that (2p+ 1)N overall multiplications
are required to perform the algorithm. Compared to ILS a factor of around m fewer multiplications per iteration are required.
Although more iterations are usually needed for ALS its overall complexity is significantly lower as will be demonstrated in
Sect. 5. This decrease in complexity is bought with only a small degradation in performance. An additional advantage of ALS
is that per iteration only one value yi and only one row hT

i of H are required. This significantly reduces the required number of
other operations (additions, memory accesses,...) and also simplifies the memory management as well as the architecture when
thinking of a hardware implementation.

2. RELATION TO PRIOR WORK

ALS not only has similarities to ILS but also to the SLS approach [4]. For SLS the update equation

x̂(k) = x̂(k−1) +Kk(yk − hT
k x̂(k−1)) (8)

is sequentially calculated m times, requiring an update of the gain vector Kk at every iteration. Although, the algorithm
can deliver x̂LS after m iterations, the update of Kk requires significant effort, including the multiplication of full matrices
(although symmetry can be exploited to reduce the complexity). ALS uses the same update equation (usually more than m
times), with the simplified choice Kk = 2µhk⌝.

Update equation (8) is arithmetically similar to the Least Mean Squares (LMS) filter update step [5]. However, the LMS
update step uses a random (filter input) vector and one sample of a desired signal as input, whereas the ALS update step only
uses one sample yi of the measurement vector y as input. Also the original formulation of the LMS algorithm for the so-called
ADALINE [6, 7] approach was based on a random input vector, providing an adaptive approach with a potentially unlimited
set of input patterns. Instead of the random input vector in the LMS case the deterministic and fixed rows of the observation
matrix H are used in the update equation of the ALS. The row vectors hT

i and the measurement values yi are cyclically re-used.
Another difference is the averaging at the last m iterations which is unique for the ALS algorithm. And finally, the convergence
behavior of ALS can be described in a completely deterministic manner, whereas the convergence of the LMS is usually only
described in the mean. Anyhow, the authors are confident that some ideas improving LMS – e.g. adjusting the step size [8, 9]
might be also used to further improve the performance of ALS.

3. CONVERGENCE BEHAVIOR

By rewriting (7) as

x̂(k) = (I − 2µhk⌝hT
k⌝)x̂(k−1) + 2µhk⌝yk⌝ (9)

and defining the error vector of ALS e(k) = x̂(k) − x together with Mk⌝ = (I − 2µhk⌝hT
k⌝) one gets

x(k) = (I − 2µhk⌝hT
k⌝)(x + e(k−1)) + 2µhk⌝yk⌝ (10)

= x − 2µhk⌝hT
k⌝x +Mk⌝e(k−1) + 2µhk⌝(hT

k⌝x + nk⌝). (11)

Subtracting x left and right from the equation leads to

e(k) = Mk⌝e(k−1) + 2µhk⌝nk⌝. (12)

When defining ∆k⌝ = 2µhk⌝nk⌝ one can write the above equation as

e(k) = k∏
i=1 Mi⌝e(0)+

+∆k⌝ +M(k−1)⌝(∆(k−2)⌝ + . . . + (M2∆1) . . .), (13)

with e(0) as the initial error. Here the product of the matrices is defined as ∏k
i=1 Mi⌝ = Mk⌝M(k−1)⌝ . . .M1. When analyzing

the above equation one can see that the error at iteration k depends on the initial error e(0) represented in e(k) by the part e
(k)
0 =∏k

i=1 Mi⌝e(0) as well as on an error term introduced by noise represented by e
(k)
∆ = ∆k⌝+M(k−1)⌝(∆(k−2)⌝+. . .+(M2∆1) . . .).

With this one can write

e(k) = e
(k)
0 + e

(k)
∆ . (14)

If no noise is present then

e(k) = e
(k)
0 = k∏

i=1 Mi⌝e(0). (15)

When choosing k as an integer multiple of m and defining M = ∏m
i=1 Mi one obtains

e(k) = k∏
i=1 Mi⌝e(0) = M

k
m e(0). (16)

In [10] we show that for the choice

0 < µ < 1

2 max
i=1...m∥hT

i ∥2
2

, (17)

the matrix M has a 2-norm smaller than one (although the proof is not complicated it is omitted here due to length constraints).
This implies that all eigenvalues of M have absolute values smaller than one. From this it directly follows that e

(k)
0 converges

to zero as k → ∞, i.e. x̂ALS = x̂LS = x. This means that if no noise is present x̂(k) converges to x. However if n ≠ 0

a persistent error e
(k)
∆ remains. In [10] we will give a more detailed analysis of e

(k)
∆ , showing that e(k) features almost a

periodic behavior from an index kp on, wherefrom e
(k)
0 can be considered negligible. This particular index kp, which can also

be specified analytically, can be used to define N e.g. as N = kp +m.
By analyzing the ALS algorithm one can see the importance of the averaging in the final m iterations. As we already noted

e(k) is highly dependent on the noise for large k (e(k)0 vanishes with increasing k). The averaging over the last x̂(k) vectors
yields

eALS = x̂ALS − x = (1

m

N∑
k=N−m+1

x̂(k)) − x (18)

= 1

m
(N∑
k=N−m+1

x̂(k) −mx) (19)

= 1

m

N∑
k=N−m+1

(x̂(k) − x) (20)

= 1

m

N∑
k=N−m+1

e(k). (21)

That means by averaging over the last m vectors x̂(k) an averaging over the corresponding error vectors occurs. Since for a
practical application it is highly unlikely that all these error vectors have equal length and point in the same direction (in this
case averaging would have no effect) this averaging step typically significantly reduces the error norm. The averaging only has
to be done once, it therefore presents only a minor complexity increase (overall only pm additions and p multiplications with
the constant 1/m).

0 100 200 300 400 500

10−2

10−1

100

15

Iteration

∥x̂(k
) −x

∥ 2,∥
x̂
A
L
S
−x∥

2 x̂(k) of ALS
x̂(k) of ILS
x̂ALS

Fig. 2. Example of errors of ILS and ALS

4. SIMULATION RESULTS

We first show simulation results of a typical example of least squares estimation: the estimation of amplitudes of sine signals in
noise. For this demonstration example we chose H as a 100×8 matrix with elementsHn,k = cos(2πnTsfk). The frequencies fk
are not necessarily integer multiples of a base frequency. The elements of the noise vector have been sampled indepentently from
a normal distribution with zero mean and a standard deviation σ = 10−2. The amplitudes x have been estimated using 100 values,
forming the vector y. The step size for ILS was chosen as µ = 1/(2.05 s2

1(H)) and for ALS as µ = 1/(2.05maxi=1...m∥hT
i ∥2

2).
The estimation performance has been measured by calculating the norm of the difference vector between the true vector x
and the estimated vectors, respectively. Fig. 2 shows a typical simulation result for ILS and ALS. In this figure, x̂ALS is the
estimated parameter vector resulting after averaging the final m out of N vectors x̂(k), represented as a horizontal line for
illustration purposes. As one can see, ILS requires significantly less iterations than ALS, but with about m = 100 times more
multiplications per iteration. The performance of ALS is only slightly worse than the performance of ILS but ALS features a
significantly lower overall complexity. In this figure one can observe an interesting behavior of ALS. After a certain number
of iterations the influence of e

(k)
0 becomes negligible. This reflects in an oscillatory behavior of the error norm as can be seen

in Fig. 2. This oscillatory behavior comes from the fact that the values yi are cyclically re-used in the N ALS iterations. As a
consequence also the noise values appear in a cyclic manner. The averaging at the end of ALS is most effective if N is chosen
large enough so that the effects of e

(k)
0 are negligible. Such a value for N can be found with simulations or based on analytical

results as will be presented in [10]. To provide a fair comparison, in Fig. 3 we compared ALS, ILS and SLS in terms of its
error norms over the number of calculated multiplications. As one can see, if the error performance of ALS is sufficient for a
given application, its complexity is significantly lower. In this example ILS needs about 3 times more multiplications than ALS
to obtain the same error norm. But as stated above, this complexity analysis is only based on the number of multiplications
per iteration. Including other operations (additions, memory accesses) would furthermore favor ALS. Due to page constraints
we omitted a more detailed complexity analysis in this paper. If the error performance of ALS is not sufficient for a given
application one could choose a different approach, but extended variants of the ALS, e.g. with adjusting µ during the iterations
show promising first results towards further reducing the error norm. One can immediately see the benefits of such an approach
in (12) because the noise dependent part of the error vector scales with µ, as will be described in detail in [10]. But as extensive
performance simulations showed, ALS’ performance is on average very close to the LS solution. Table. 1 shows performance
results for random H matrices. The entries of these matrices have been sampled from a uniform distribution out of [0,1].
Every simulation has been done for white Gaussian noise with σ ∈ S = {10−5,10−4,10−3,10−2,10−1,1}, respectively, with
100 random matrices H per σ value and 100 random vectors x (with random entries also sampled from a uniform distribution
out of [0,1]) per H matrix. For every σ value the averages ∣∣x̂ALS − x∣∣2 and ∣∣x̂LS − x∣∣2 over the simulated results have been
calculated. Table. 1 shows the maximum relative increase of ALS’ averaged error norm over the averaged error norms of LS,

whereas the maximization has been done over the elements of S: rmax = maxS (1 − ∣∣x̂ALS−x∣∣2∣∣x̂LS−x∣∣2). We furthermore want to note

0 5000 10000 15000 20000 25000
10−3

10−1

101

103

105

Multiplications

∥x̂(k
) −x

∥ 2,∥
x̂
A
L
S
−x∥

2 x̂(k) of ALS
x̂(k) of ILS
x̂(k) of SLS
x̂ALS

Fig. 3. Error norms over to the number of multiplications

that the relative increase of the averaged error norms remained nearly constant over all simulated σ values. As one can see in
this table, the performance of ALS shows on average only a minor degradation compared to the LS solution.

dim(H) rmax dim(H) rmax

100 × 1 9.3% 1000 × 1 9.5%
100 × 2 9.7% 1000 × 2 9.5%
100 × 3 11.2% 1000 × 3 10.7%
100 × 5 11.3% 1000 × 5 12.8%
100 × 10 16% 1000 × 10 15.3%

Table 1. Performance results for random matrices.

5. CONCLUSION

We presented a novel algorithm for approximating the solution of the linear least squares problem. We discussed its convergence
behavior and demonstrated that the algorithm provides a close solution to the least squares solution with low complexity. The
presented algorithm shows promising potential for further extension in theory and implementation as well for use in a variety
of applications.

6. REFERENCES

[1] Choi, K.H.; Ra, W.-S., Park, S.-Y.; Park, J.B., “Robust Least Squares Approach to Passive Target Localization Using
Ultrasonic Receiver Array,” IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1993-2002, Apr. 2014.

[2] Unterrieder, C., Lunglmayr, M., Marsili, S., Huemer, M., “Battery state-of-charge estimation using polynomial enhanced
prediction,” IET Electronics Letters, vol. 48, no. 21, pp. 1363-1365, Oct. 2012.

[3] A. Björck (1996), Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.

[4] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall, 2005.

[5] B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Heam, J. R. Zeidler, E. Dong, and R. C. Goodlin,
“Adaptive noise cancelling: Principles and applications,” Proc. IEEE, vol. 63, pp. 1692-1716, Dec. 1975.

[6] Widrow, B., Hoff M. E., “Adaptive Switching Circuits,” IRE WESCON Convention Record, Part 4, pp. 96-104, 1960.

[7] Widrow, B., “Thinking about thinking: the discovery of the LMS algorithm,” IEEE Signal Processing Magazine, vol. 22,
no. 1, pp. 100-106, Jan. 2005.

[8] R. Harris, D. Chabries, P. Bishop, “A variable step (VS) adaptive filter algorithm,” IEEE Trans. Acoust. Speech Signal
Processing, vol. ASSP-34, pp. 309-316, Apr. 1986.

[9] Bhotto, M.Z.A.; Antoniou, A., “A Family of Shrinkage Adaptive-Filtering Algorithms,” IEEE Transactions on Signal
Processing, vol. 61, no. 7, pp. 1689-1697, Apr. 2013.

[10] M. Lunglmayr, C. Unterrieder, M. Huemer, “Approximate Least Squares: Convergence and Performance Analysis,” in
preparation.

	1 Introduction
	2 Relation to prior work
	3 Convergence Behavior
	4 Simulation Results
	5 Conclusion
	6 References

