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ENERGY-SAVING GOSSIP ALGORITHM FOR

COMPRESSED SENSING IN MULTI-AGENT SYSTEMS

C. Ravazzi, S. M. Fosson, E. Magli

Department of Electronics and Telecommunications (DET), Politecnico di Torino, Italy

ABSTRACT

In this paper, we present a new recovery algorithm for in-
network compressed sensing from measurements acquired in
multi-agent systems. Each agent has to recover a common
signal taking advantage of local communication and simple
computations. Such distributed problem typically incurs a
high energy cost due to inter-node communications. In this
paper we propose an iterative distributed algorithm to address
this problem, featuring pairwise gossip communications and
updates. We propose some theoretical results on its dynamics
and numerical comparisons with the most recent approaches
proposed in literature. The performance turns out to be com-
petitive in terms of reconstruction accuracy, complexity, and
energy consumption required for convergence.

1. INTRODUCTION

Compressed sensing [1] is a universal technique used to repre-
sent sparse signals. It is possible to recover the original signal
starting from few linear measurements, if they are acquired
appropriately, using powerful optimization methods and re-
construction algorithms [2].

Compressed sensing is very appealing for applications in
sensor networks and multi-agent systems, where distributed
processing of the acquired data is needed due to large cover-
age [3, 4], and to little memory and available energy. In par-
ticular, although most distributed algorithms envisage a cen-
tralized reconstruction (i.e., distributed measurements are col-
lected at a central processing unit that performs the recovery),
such solution is not always feasible, mainly for transmission
costs and privacy reasons [5–7]. In this work, we consider in-
network processing, i.e., no central unit is available and the
recovery task is performed by the agents, which can store a
limited amount of information, perform a low number of op-
erations, and communicate under some constraints.

The current literature offers various algorithms for dis-
tributed reconstruction. The most well known are the dis-
tributed subgradient algorithms (DSM [8–10]), the alternat-
ing direction method of multipliers (D-ADMM [4, 11, 12]),
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and the distributed iterative hard and soft thresholding (DIHT,
CB-DIHT [13]; DISTA and DIHTA [6, 7]). In these algo-
rithms, each agent keeps an approximation of the original sig-
nal and updates it iteratively according to both its own mea-
surements and local information received from its neighbors.
Although these methods are of significant interest, as they do
away with a centralized processing unit, they still suffer from
one or more of the following limitations [14]:

(a) Synchronous updates: the agents are assumed to send
and process signals synchronously [6, 7, 9, 15].

(b) Selection of the gradient stepsize: we distinguish be-
tween constant and diminishing stepsizes. Constant
stepsizes dot not guarantee convergence [15] or guaran-
tee convergence only to neighborhoods of the optimal
solution [7]. Larger stepsizes imply larger neighbor-
hoods, while smaller ones produce slower convergence.
On the other hand, diminishing stepsizes can ensure
convergence, but a suitable design of them is very
difficult and the convergence rate is always slow [16].

(c) Spanning tree and multi-hop transmissions: the agents
first generate a spanning tree, which implies that they
must be aware of the network’s structure, in terms of
position of the root and of their own roles (parents or
children) with respect to their neighbors. Moreover, a
routing protocol is necessary and multi-hop communi-
cation occurs at each iteration [13].

In order to overcome these limitations, in this paper we pro-
pose a gossip hard thresholding algorithm (GHT) which in-
volves, at each time step, the activation of a randomly chosen
pair of neighboring agents, requiring minimal coordination.
In particular, GHT exhibits the following features: (a) is ran-
domized and asynchronous; (b) despite being ruled by a con-
stant stepsize, it converges deterministically to the original
signal in the noise-free case, under some requirements on the
number of measurements per node; (c) at each iteration step,
it requires only local, single-hop communication.

In particular, in this paper we analyze the asymptotic be-
havior of GHT both in the noise-free and in the noisy settings.
In the noise-free case, we propose a fixed-point analysis that
provides insight into the algorithm’s dynamics. In the noisy
case, we show that the algorithm oscillates in time around a



certain limit value. Such oscillations can be smoothed by a
suitable time-averaging process, which can be performed in
an asynchronous way.

2. PROBLEM STATEMENT

We introduce some notations that we will use in this paper.
We denote column vectors with small letters, and matrices
with capital letters. If x ∈ R

n we denote its j-th element as
xj . Given a matrix X , XT denotes its transpose and X(v)

(or xv) denotes the v-th column of X . For a square ma-
trix M ∈ R

n×n, we consider the induced norm ‖M‖2 =
supz 6=0 ‖Mz‖2/‖z‖2.

2.1. Sparse recovery problem in multi-agent systems

In our model, we consider a network of N agents, which may
be sensors or nodes that collect measurements from different
sensors. We assume that each agent v ∈ V = {1, . . . , N}
in the network senses a common signal x⋆ ∈ R

n and has
available m ≤ n linear measurements of the form

yv = Avx
⋆ + ξv, (1)

where yv ∈ R
m, Av ∈ R

m×n, and ξv ∈ R
m is a bounded, un-

known perturbation term. The agents seek to estimate x⋆ ∈
R

n under the assumption that x⋆ is k-sparse (i.e., it has at
most k nonzero entries). It is thus natural to consider the fol-
lowing optimization problem in order to approximate x⋆:

min
x∈Rn

∑

v∈V

‖yv −Avx‖22 s.t. ‖x‖0 ≤ k. (2)

It can be shown that in absence of noise (i.e. ξv = 0, ∀v ∈
V), if for every index set Γ ⊆ {1, . . . , n} with |Γ| = 2k
the columns of A = (AT

1 , . . . , A
T

N )T associated with Γ are
linearly independent, then x⋆ is the unique solution to (2) [1].

The optimization problem in (2) is NP-hard [1], and the
literature offers plenty of algorithms to approximate its so-
lution (see [2] for a survey). Among them, we now review
the iterative hard thresholding (IHT, [17, 18]), a centralized
method upon which we will build our algorithm.

2.2. Iterative hard thresholding

Let y = (yT1 , . . . , y
T

N )T and A = (AT

1 , . . . , A
T

N )T. Given an
initial estimate x(0), the IHT iterate for t = 0, 1, 2 . . . is

x(t+ 1) = σk[x(t) + τAT(y −Ax(t))] (3)

where τ > 0, and the operator σk(x) is the best-k term ap-
proximation to vector x: σk(x) = argmin{‖x−z‖2 : ‖z‖0 ≤
k}. Convergence of this algorithm to a local minimum is
proved in [17] under the assumption that ‖A‖2 < 1/τ and a
stronger recovery result has recently been shown in [18]. In
particular, if x⋆ is a k-sparse signal sensed according to (1)

and A satisfies the restricted isometry property (RIP, [19])
with δ3k < 1/

√
32, then the sequence {x(t)}t∈N generated

by (3) with τ = 1 is such that

‖x(t)− x⋆‖2 ≤ 2−t‖x⋆‖2 + 5‖ξ‖2 (4)

where ξ = (ξT1 , . . . , ξ
T

N )T. In absence of noise, (4) guarantees
the convergence to the original signal x⋆.

3. GOSSIP HARD THRESHOLDING (GHT)

3.1. Algorithm description

In this section, we introduce our proposed algorithm. From
now on, we consider a connected network and we model it by
an undirected graph G = (V, E), where E ∈ V ×V represents
the set of the available communication links. The set of neigh-
bors of v ∈ V is denoted as Nv = {w ∈ V : (v, w) ∈ E}.
We assume that (v, v) ∈ E for all v ∈ V .

Algorithm 1 GHT

1: Initialization: xv(0) = 0 ∈ R
n for any v ∈ V , τ > 0

2: for t = 0, 1, . . . , StopIter do

3: Select uniformly at random an edge (v, w) ∈ E
4: xv(t+ 1) = σk

[
xv(t)+xw(t)

2 + τAT

v (yv −Avxv(t))
]

5: xw(t+1) = σk

[
xv(t)+xw(t)

2 + τAT

w (yw −Awxw(t))
]

6: xh(t+ 1) = xh(t) for any h 6= v, w
7: end for

The GHT algorithm, which is summarized in Algorithm
1, consists of the following iterative procedure. At each time
step t = 0, 1, . . . , StopIter, each agent v ∈ V holds an
estimate xv(t) ∈ R

n of the original signal, starting from
xv(0) = 0. At time t, an edge (v, w) ∈ E is selected
according to a discrete-time random process θ(t) ∈ E .
More specifically, we assume that the sequence {θ(t)}t>0

is i.i.d., and that its probability distribution is uniform:
P(θ(t) = (v, w)) = 1/|E| (see [20]). This choice does
not entail any loss of generality; other distributions can be
considered, provided that no disconnected communication
clusters are generated. When edge (v, w) is selected, the
agents v and w can communicate and share their own es-
timates. Once communication has been completed, both v

and w compute the mean xv(t)+xw(t)
2 , and they add to it

their respective individual gradients AT

v (yv −Avxv(t)) and
AT

w (yw −Awxw(t)) (multiplied by an opportune gradient
parameter τ > 0). The new signal’s estimate for both v and
w is obtained by taking the best k-term approximation of
the result. At the same time t, all the other agents do not
wake up and do not change their own estimates (see Figure
1 for an illustrative example). The procedure is repeated for
a number of times that guarantees the complete spread of the
information over the network.
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Fig. 1. Example of a network with 5 nodes, where θ = (3, 4),
that is, the link (3, 4) is activated, and only the states of nodes
3 and 4 evolve.

3.2. Limit behavior

3.2.1. Noise-free case

If ξv = 0 for any v ∈ V , simulation results show that if
the number of total measurements is large enough, then for
any v ∈ V , xv(t) asymptotically converges, in a deterministic
sense, to the original signal x⋆. In Figure 2 we show such
behavior in an example with n = 150, k = 15, m = 10,
N = 10, over a complete graph.

Fig. 2. Noise-free example (n = 150, k = 15, m = 10,
N = 10, complete graph): for any v ∈ V , the estimates
xv(t) converge to x⋆ (whose components are marked by blue
circles).

Let us consider for each (v, w) ∈ E the map f(v,w) :
R

n×N → R
n×N which acts on X = (x1, . . . , xN ) as in Al-

gorithm 1, the set of maps F = {f(v,w) : (v, w) ∈ E} and
the set of fixed points of Γ(F) = {X ∈ R

n×N : f(v,w)(X) =
X, (v, w) ∈ E}. It should be noticed that x⋆ ∈ Γ(F). We now
provide the conditions to guarantee that x⋆ is the unique fixed
point of F. The proof is omitted for brevity.

Theorem 1 (Fixed points). If G is connected, then for any

X = Γ(F), there exists x ∈ R
n such that X = x1T, and

x = σk

(
x+

τ

N
AT(y −Ax)

)
. (5)

Theorem 2 (Uniqueness of fixed point). If G is connected and

A/
√
N satisfies the RIP [19] with restricted isometry con-

stant δ2k < 1/3 and 2(1 + δ2k) < τ−1 < 8
3 (1 − δ2k) then

Γ(F) = {x⋆
1
T}.

3.2.2. Noisy case

When noise occurs, i.e., ξv 6= 0, the dynamics in Algorithm
1 oscillates and does not converge in a deterministic sense.
This is not surprising, as x⋆ is no more a fixed point of F.
However, the oscillations seem to asymptotically concentrate
about a mean value, that approximates x⋆. These oscillations
can be smoothed out by performing a time-averaging opera-
tion as in [21], which is reported in Algorithm 2 and must be
applied after instruction 6 of Algorithm 1. This inner-loop
just requires that each agent individually stores the number of
times it has woken up in the variable κv(t) and uses it to con-
struct a time-averaged estimate x̃v(t); no knowledge of global
clocks or any other global variables is needed.

We show an example in Figure 3, where the smoothing
effect can be appreciated: for any v, x̃v(t) converges in a
neighborhood of x⋆. The analysis of the ergodicity of the dy-
namics Algorithm 1 in case of noisy measurements and, con-
sequently, the convergence of x̃v(t) is left for future research.
We refer to [22] for an overview of ergodic dynamics over
networks.

Algorithm 2 Smoothing procedure

Require: θ(t) = (v, w), xv(t+ 1), xw(t+ 1)
1: κv(t+ 1) = κv(t) + 1
2: κw(t+ 1) = κw(t) + 1
3: κh(t+ 1) = κh(t) for any h 6= v, w
4: x̃v(t+ 1) = 1

κv(t+1) (κv(t)x̃v(t) + xv(t+ 1))

5: x̃w(t+ 1) = 1
κw(t+1) (κw(t)x̃w(t) + xw(t+ 1))

6: x̃h(t+ 1) = x̃h(t) for any h 6= v, w

4. PERFORMANCE ANALYSIS

In this section, we present some experimental results that
describe the performance of GHT in terms of reconstruc-
tion, convergence times and energy consumption. In the
first case, the signal x⋆ to be recovered is generated choos-
ing k = 15 nonzero components uniformly at random
among the n = 150 elements and drawing the amplitude
of each nonzero component from a standard Gaussian dis-
tribution. The sensing matrices {Av}v∈V are sampled from
the Gaussian ensemble with m rows, n with zero mean



Fig. 3. Noisy case (n = 150, k = 15, m = 10, N = 10,
ξv is a white Gaussian noise with variance 0.01, complete
graph): the dynamics of one agent’s estimate is depicted; the
oscillations are ergodic and the estimates x̃v(t) converge to a
neighborhood of x⋆ (marked by blue circles).

and variance 1/m. We evaluate the performance of GHT
in a noise-free setting, in terms of empirical recovery suc-
cess rate, averaged over 800 experiments, as a function of
the total number of measurements (see Figure 4). The re-
covery is considered successfully when the reconstruction

error E :=
√∑N

v=1 ‖xv − x⋆‖22
/(√

N‖x⋆‖2
)

(where xv ,

v = 1 . . . , N , are the estimates given by GHT) is below the
threshold 10−5. We select a complete topology with network
size N ∈ {1, 2, 4, 8, 12} and set the stepsize τ approximately
to ‖Av‖−2

2 . If N = 1, clearly GHT coincides with the IHT.
Figure 4 shows a slight loss of performance as the network
size increases. This suggests that, in addition to Theorem 2,
some conditions on the number of measurements per sensor
should hold to allow convergence to x⋆. We however observe
that success rates are achieved by GHT even when the total
number of measurements is very small; if mN ≈ 2n/3, then
successful recovery is achieved in 90% of cases.

As a second experiment, based on the recent study in [13],
we consider the problem Sparco 7 [23], [13, Section V],
where the signal to be estimated is a sign spike of length
n = 2560, sparsity level k = 20, in a network of size N = 40
with m = 15 measurements per node (see [13, Table I]). GHT
is implemented on different random graph topologies: Erdos-
Rényi (ER, [24]) graphs with parameter p = 0.25, 0.75,
and random geometric (RG, [24]) graphs with diameter 0.5
and 0.75. We fix τ = 0.05 for ER, and τ = 0.07 for RG.
In Tables 1 and 2 we show the total number of transmis-
sions required to achieve an accuracy level E < ǫ, where
ǫ = 10−2, 10−5, respectively. It is worth remarking that the
number of transmission is directly related to energy consump-
tion, since in sensor networks most of the energy is spent in
over-the-air transmission. GHT is here compared with the
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Fig. 4. Complete graph: empirical recovery success as a func-
tion of total number of measurements available in the net-
work.

state-of-the-art distributed methods: DIHT, CB-DIHT [13],
D-ADMM [11, 12], and DSM [25] (the results of these meth-
ods are drawn from [13, Tables II and II]). We can notice that
GHT significantly outperforms the other methods in terms of
number of transmissions and hence energy consumption.

Graph GHT DIHT D-ADMM CB-DIHT DSM
ER p = 0.25 3.2 · 104 1.6 · 107 3.1 · 108 1.2 · 1010 > 3 · 1011
ER p = 0.75 3.9 · 104 1.6 · 107 1.8 · 109 3.8 · 1010 > 9 · 1011
RG d = 0.5 2.8 · 104 1.6 · 107 1.2 · 108 5.8 · 1010 > 1 · 1011
RG d = 0.75 3.1 · 104 1.6 · 107 7.5 · 108 2.6 · 1010 > 1 · 1012

Table 1. Sparco 7: Total number of transmissions to get ac-
curacy level 10−5.

Graph GHT DIHT D-ADMM CB-DIHT DSM
ER p = 0.25 2.4 · 104 6.1 · 106 2.5 · 107 3.8 · 109 > 3 · 1011
ER p = 0.75 3.0 · 104 6.1 · 106 9.3 · 108 1.2 · 1010 3.6 · 1010
RG d = 0.5 2.4 · 104 6.1 · 106 1.2 · 108 7.4 · 109 > 1 · 1011
RG d = 0.75 2.8 · 104 6.1 · 106 4.5 · 108 8.0 · 109 6.2 · 1010

Table 2. Sparco 7: Total number of transmissions to get ac-
curacy level 10−2.

5. CONCLUDING REMARKS

In this paper, we have presented a distributed, gossip algo-
rithm for in-network compressed sensing, which dramatically
reduces the number of necessary transmissions and over-
comes synchronization issues. The algorithm is shown to
deterministically converge to the right solution under some
conditions, which have been investigated in a number of sim-
ulations. Some analytical observations about the fixed points
of the procedure have been provided, while a deeper insight
on the convergence properties is the focus of our current
research.
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[9] S. Sundhar Ram, A. Nedić, and V. V. Veeravalli, “Dis-
tributed stochastic subgradient projection algorithms for
convex optimization,” Journal of Optimization Theory

and Applications, pp. 516 – 545, 2010.
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