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ABSTRACT

We propose a hybrid approach to foreign accent recognition
combining both phonotactic and spectral based systems by
treating the problem as a spoken language recognition task.
We extract speech attribute features that represent speech and
acoustic cues reflecting foreign accents of a speaker to obtain
feature streams that are modeled with the i-vector method-
ology. Testing on the Finnish Language Proficiency exam
corpus, we find our proposed technique to achieve a signif-
icant performance improvement over the state-of-the-art sys-
tems using only spectral based features.

Index Terms— Speech attributes, i-vector, foreign accent
recognition, language recognition

1. INTRODUCTION

In automatic foreign accent recognition, we aim to detect
speaker’s mother tongue (L.1) when he or she is speaking
in another language (L2) [1]. When speaking in L2, the
speaker’s accent is usually colored by the learned patterns in
L1 [2]. When the native language is spoken instead, it can
be said to vary in terms of its regional dialects and accents.
Dialect refers to linguistic variations of a language, while
accent refers to different ways of pronouncing a language
within a community [3]. In the NIST language recognition
evaluation (LRE) scenarios, dialect and accent recognition
have been included as sub-tasks. As an example, the most
recent LRE 2011 covered four different Arabic dialects as
target languages [4]. Foreign accent recognition, however,
differs from common accent recognition in two major dis-
tinctions. Firstly, non-native speaker’s accentedness partly
depends on the language proficiency [2]. Secondly, the L2
is a noisy channel through which the identity of the mother
tongue is transmitted.

In this study we treat foreign accent recognition as a
language recognition task typically accomplished via ei-
ther acoustic or phonotactic modeling [5]. In the former
approach, acoustic features, such as shifted delta cepstra
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(SDC), are used with bag-of-frames models, such as univer-
sal background model (UBM) with adaptation [6, 7]. The
latter is based on the hypothesis that dialects or accents differ
in terms of their phone sequence distributions. It uses phone
recognizer outputs, such as n-gram statistics, together with a
language modeling back-end [8, 9].

Among the choices for acoustic modeling, the recent i-
vector paradigm [10] has proven successful in both speaker [10,
11], language [12], and accent recogntion [13]. It extracts a
low-dimensional representation of the sequence of feature
vectors. Session and channel variability is typically tack-
led with techniques such as linear discriminant analysis
(LDA). The i-vectors from spectral features have been used
in dialect and foreign accent characterization. In [14], L1
of the non-native English speakers was recognized using
multiple spectral systems, including i-vectors with different
back-ends. The i-vector based system outperformed other
compared methods most of the time. In [1], it was found
out that the i-vector system using SDCs outperformed other
methods in recognizing Finnish non-native accents.

In language recognition, spectral features with i-vector
based systems have been seen to outperform the classical
phonotactic language recognition [4]. However, knowledge
based modeling, such as phonotactic features, are known
to be linguistically and phonetically relevant [5]. However,
the front-end of the phonotactic system needs a tokenizer
that will turn the utterance into a sequence of “phonetic
letters” [15, 16]. An ad-hoc approach is to use a phone rec-
ognizer developed for one language, such as Hungarian, and
apply it to all phonotactic recognition tasks [17].

In the present work, we argue that, especially in foreign
accent recognition, a universal phonetic tokenizer is prefer-
able. It will be able to find differences between the unknown
L1 and the known L2. For example, Spanish L1 speaker
trying to pronounce Finnish word “stressi” (stress) will typ-
ically lead to /e/ placed as a prefix, leading to “estressi”. In
this case, detecting a vowel in the beginning of the word is
a cue for Spanish L1. We then propose to use speech at-
tributes [18, 19, 20] to represent a language-universal set of
units to be modeled. In addition, we avoid the early quantiza-
tion of the attribute detector scores by computing an i-vector
from the detector score vector streams.
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Fig. 1. The internal structure of an attribute detector is shown.
Energy trajectories are fed into the left-context and right-
context ANNs. A merger then combines the outputs gener-
ated by those two neural networks and produced the final at-
tribute posterior probabilities.

2. SPEECH ATTRIBUTE EXTRACTION

2.1. Choice and Extraction of Attribute Features

The set of speech attributes used in this work is mainly acous-
tic phonetic features, and it comprises five manner of articu-
lation classes (glide, fricative, nasal, stop, and vowel), and
voicing. Those attributes could be identified from a particular
language and shared across many different languages, so they
could also be used to derive a universal set of speech units.
Furthermore, data-sharing across languages at the acoustic
phonetic attribute level is naturally facilitated by using these
attributes, so more reliable language-independent acoustic pa-
rameter estimation can be anticipated [21]. In [16], it was also
shown that these attributes can be used to compactly charac-
terize any spoken language along the same lines as in the au-
tomatic speech attribute transcription (ASAT) paradigm for
automatic speech recognition (ASR) [20]. Therefore, we be-
lieve that it can also be useful to characterize speaker accent.

Data-driven detectors are used to spot speech cues em-
bedded in the speech signal. An attribute detector converts
an input utterance into a time series that describes the level
of presence (or level of activity) of a particular property of
an attribute over time. A bank of six detectors is used in
this work, each detector is individually designed for spotting
of a particular event. Each detector is realized with three
single hidden layer feed-forward ANNSs (artificial neural net-
works) organized in a hierarchical structure and trained on
sub-band energy trajectories that are extracted with a 15 band
uniform mel-frequency filterbank. For each critical band
a window of 310ms centered around the frame being pro-
cessed is considered and split in two halves: left-context and
right-context [22]. Two independent front-end ANNs (“lower
nets“) are trained on those two halves and generate left- and
right-context speech attribute posterior probabilities, respec-
tively. The outputs of the two lower nets are then sent to the
third ANN that acts as a merger and gives the attribute-state
posterior probability of the target speech attribute. Figure 1
shows the detector architecture in detail.
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Fig. 2. Remaining variance after PCA. Comparing stacked
context sizes 5, 8, 12, 20 and 30 frames.

2.2. Long-term Attribute Extraction

Each attribute detector outputs probabilities p(Ht(;)rget| ).
p(HiE;)ti| f) and p(HI(lf))ise| f), of target class 4, non-target
and noise model, given a speech frame f. All these prob-
abilities sum to one. We then form a new feature vector x
by concatenating each of these posteriors of each six tar-
get classes. Since language and dialect recognizers benefit
from an inclusion of long temporal context, it is natural to
study similar ideas for attribute modeling. The first idea is
to compute SDCs from the attribute features, treating them
analogous to cepstral coefficients. But since this is diffi-
cult to interpret, we study a simple feature stacking. To this
end, let x(t) denote the 18-dimensional (6 attributes X 3
features) attribute vector at frame ¢. We form a sequence
of new p = 18 x C dimensional stacked vectors ¢ (t) =
(@), z(t+1)*...,2(t+C-1)")*, t=1,2,..., where
C is the context size and * stands for transpose. Principal
component analysis (PCA) is used to project each & (t) onto
the first d < p eigenvectors corresponding to the largest
eigenvalues of the sample covariance matrix. We estimate the
PCA basis from the same data as the UBM and the T-matrix,
after VAD.We set d to retain 99 % of the cumulative variance.
As Fig. 2 indicates, d varies from ~20 to ~100, with larger
dimensionality assigned to longer context as one expects.

3. RECOGNIZING FOREIGN ACCENTS

3.1. I-vector Modeling

We now shortly review i-vector extraction. It is grounded
on the universal background model (UBM), which is a
M-component Gaussian mixture model parametrized by
{Wm, My, X}, m = 1,..., M, where we have mixture
weight, mean vector and covariance matrix, respectively.
We here restrict the covariance matrix to be diagonal. The
i-vector model is defined for the UBM component m as [10]:

S =My + Vi y + €, (D

where V', is the sub-matrix of the total variability matrix,
y is the latent vector, called an i-vector, ¢, is the residual
term and s,, is the m’th sub-vector of the utterance depen-
dent supervector. The ¢, is distributed as N'(0, X,,), where



3, is a diagonal matrix. Given all these definitions, poste-
rior density of the y, given the sequence of observed feature
vectors, is Gaussian. Expectation of the posterior is the ex-
tracted i-vector. Hyperparameters of the i-vector model, m.,
and X,,, are copied directly from UBM and V,,, are estimated
by EM algorithm from the same corpus as is used to estimate
the UBM.

3.2. Scoring against Accent Models

We use cosine scoring [23] between two i-vectors y, .., and
Yrarger 10 match test utterance to target L2 language model.
Cosine score is given by the dot product (G es;, Jrarget )

~T ~
Ytest - ytarget

2

Score(ytest7ytarget) = ma
es arge

where A is the HLDA projection matrix trained by using all
training utterances and g 1S,

gtcst - ATytcst' (3)

In order to model §y,,qc(, We followed the same strategy used
in [4], where gy, 4 1S defined as

1
gtarget = Fdz gid? (4)
i=1

where N is the number of training utterances in dialect d, and
w; is the projected i-vector of training utterance ¢ for accent
d computed the same way as in (3).

4. EXPERIMENTAL SETUP

4.1. Corpora

The “stories” part of the OGI Multi-language telephone
speech corpus [24] was used to train the articulatory de-
tectors. This corpus has phonetic transcriptions for six lan-
guages: English, German, Hindi, Japanese, Mandarin, and
Spanish. Data from each language were pooled together to
obtain: 5.57 hours for the training set, and 0.52 hours for the
validation set.

A series foreign accent recognition experiments was per-
formed on the FSD corpus [25] which was developed to as-
sess Finnish language proficiency among adults of different
nationalities. These selected the oral responses portion of the
exam, corresponding to 18 foreign accents. Since the number
of utterances is small, 9 accents — Russian, Albanian, Arabic,
Chinese, English, Estonian, Kurdish, Spanish, and Turkish —
with enough available data were used. The unused accents
are, however, used in training the UBM and the V,,,-matrices.
For our purposes, each accent set is randomly split into a test
and a train set. The test set consists of (approximately) 30% of
the utterances, while the training set consists of the remaining

Table 1. Train and test file distributions in the FSD corpus.

Accent #train files  #test files  #speakers
Spanish 60 25 15
Albanian 67 30 19
Kurdish 83 35 21
Turkish 84 34 22
English 92 37 23
Estonian 153 63 38

Arabic 166 67 42
Russian 599 211 235

Table 2. Sliding window context experiments with PCA as a
dimensionality reduction.

PCA features Pooled EER (%) | Cavg x 100
(C=5,d=23) 10.65 4.82
(C' = 20,d = 50) 10.44 471
(C =30,d =96) 8.73 4.47

70% to train foreign accent recognizers. The raw audio files
were partitioned into 30 sec chunks and re-sampled to 8 KHz.
Statistics of the test and train portions are shown in Table 1.

4.2. Attribute Detector Design

One-hidden-layer feed forward multi-layer perceptrons (MLPs)
were used to implement each attribute detector shown in Fig-
ure 1. The number of hidden nodes with a sigmoidal activa-
tion function is 500. MLPs were trained to estimate attribute
posteriors, and the training data were separated into “feature
present,” “feature absent,” and “other” regions for every pho-
netic class used in this work. The classical back-propagation
algorithm with a cross-entropy cost function was adopted
to estimates the MLP parameters. To avoid over-fitting, the
reduction in classification error on the development set was
adopted as the stopping criterion. The attribute detectors
employed in this work were actually just those used in [21].

4.3. Evaluation Protocol

System performance is reported in terms of equal error rate
(EER) and average detection cost (Cayg) [5]. Results are re-
ported per each accent for a cosine scoring classifier. Ciyg is
defined as [5],

1 M
Cove = 5 ; Cper(L;), (5)

where CDET(Lj) is the detection cost for subset of test seg-
ments trials for which the target accent is L; and J is the



Table 3. Summary of results and compared against baseline
spectral system, results are shown in pooled EER and Cyg.

Features (dimensionality) | Pooled EER (%) | Caveg x 100
SDC+MFCC(56) 15.00 7.00
Attribute(18) 12.54 5.07
Attribute+A(36) 11.33 4.79
Attribute+ A+AA(54) 11.00 4.59
PCA features(96) 8.73 4.47

number of target languages. The per target accent cost is then,
Cper(Lj) = CunissPrarPmiss(Lj)
1

+ Cfa(l - Ptar)ﬁ Z Pfa(Lj, Lk)(6)
k#j

The miss probability (or false rejection rate) is denoted by
Piss, 1.€., a test segment of accent L; is rejected as being
in that accent. On the other hand P, (L;, Li) denotes the
probability when a test segment of accent Ly, is accepted as
being in accent L;. It is computed for each target/non-target
accent pairs. Measures, Chyiss and Ct,, are costs of making
errors and both were set to 1. Py, is the prior probability of
a target accent and was set to 0.5.

5. EXPERIMENTS AND RESULTS

First we experimented with different context sizes (C' =
5,20, 30). Feature vectors were concatenated and PCA di-
mensionality reduction was trained on the held out data.
Output dimensionality (d) was set to retain 99% percent of
the cumulative variance. In Table 2 we see that increasing
the context size from 5 to 30 will decrease the both pooled
EER and C,,s. We also attempted to use context as large as
40 frames, which resulted to a numerical problems in UBM
computation. Output dimensionality of 124 was too large
with respect to the available data, so we observed singular
Gaussian components.

We applied the context size 30 to the following experi-
ments (see Table 3). We contrasted the above mentioned sys-
tem to the baseline SDC+MFCC based system in [1]. In addi-
tion to sliding window based context modeling, we also em-
ploy standard A and AA to attribute feature vectors. We no-
tice that increasing the context size using A and AA features
improves marginally over not using the context at all. A large
30-frame context brought forth an improvement. All systems
based on speech attributes improved substantially over the
baseline. In Table 4 we show the per target accent error rates,
in EER and Cpgr. We notice that there is a large variation in
error rates, where Turkish and Albanian are easiest and Rus-
sian and Estonian are the hardest to recognize.

We also studied the relative importance of individual
speech attributes to system performance in Fig. 3. No context
was used, so raw pooled EER is 12.54%. We left out one by

Table 4. Per-language results for PCA features (30,96). The
results are given in EER and Cpgr.

Features | EER (%) | Cpgr X 100
Spanish 9.00 4.10
Turkish 3.82 2.01
Albanian 4.34 2.48
English 8.11 4.20
Arabic 7.46 4.04
Russian 15.54 8.17
Kurdish 8.57 4.67
Estonian 12.70 6.11
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Fig. 3. Exclusion experiment, where relative change is shown
when one attribute is left out.

one all attributes, so we had 15-dimensional feature vectors.
We noticed that voicing, stop and vowels are individually
beneficial (leaving any one of them out will decrease the
system performance). On the other hand, glide, nasal and
fricative are not individually useful. We also noticed that in
terms of conclusions, pooled EER and Cl,, agree. Useful-
ness of vowels in contrast to other features can be explained
by the fact that Finnish has a very large vowel space (with 8
vowels) including vowel lengthening. It can create difficulties
for L2 speakers to hit the correct vowel target, thus showing
the L1 influence.

6. CONCLUSION

We proposed speech attributes as features for foreign accent
recognition. Instead of using speech attributes directly in a
phonotactic system, we modeled the sequence of speech at-
tribute feature vectors using the i-vector methodology. The
key idea is to treat foreign accent recognition as a language
recognition task and use universal speech attributes. Speech
attributes are employed because their statistics can differ con-
siderably from one language to another. Indeed, all attribute
feature configurations improved over the spectral-only base-
line system. Moreover, adding context information allowed
substantially better results. So far, we have only used man-
ner of articulation features, yet place of articulation can fur-
ther enhance accent recognition performance, as shown in
[16]. As a future work, experiments on English foreign ac-
cent recognition will be carried out. Furthermore, the possi-
ble beneficial effect of combining SDC- and attribute-based
information will be investigated.
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