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Abstract—One approach for analyzing the high signal-to-noise ra-
tio (SNR) capacity of non-coherent wireless communication systems is

to ignore the noise component of the received signal in the computation
of its differential entropy. In this paper we consider the error incurred
by this approximation when the transmitter and the receiver have one

antenna each, and the noise has a Gaussian distribution. For a general
instance of this case, we show that the approximation error decays as
1/SNR. In addition, we consider the special instance in which the received
signal corresponds to a signal transmitted over a channel with additive

Gaussian noise and a Gaussian fading coefficient. For that case, we
provide an explicit expression for the second order term of the Taylor
series expansion of the differential entropy. To circumvent the difficulty
that arises in the direct computation of that term, we invoke Schwartz’s

inequality to obtain an efficiently computable bound on it, and we provide
examples that illustrate the utility of this bound.

Index Terms—High-SNR non-coherent capacity, differential entropy,
sum and product of random variables, Lebesgue dominated convergence.

I. INTRODUCTION

Evaluating the capacity of a given channel involves the search for

input distributions that maximize the mutual information between the

random variables representing the transmitted signals and the signals

observed by the receivers. When the transmitted and received signals

assume continuous values, the mutual information can be expressed

as the difference between the non-conditional differential entropy of

the received signals and their entropy conditioned on the transmit-

ted signals. In many cases, including non-coherent communication

ones [1]–[4], the received signals are contaminated by additive noise.

In those cases, the conditional differential entropy of the random

variable representing the received signal is typically straightforward

to compute. In contrast, computing the non-conditional counterpart

of this entropy is rather difficult.

The main difficulty that arises in computing and maximizing the

non-conditional differential entropy of the received signal follows

from the fact that the received signals are composed of the sum of

random variables of potentially unknown distributions. This difficulty

usually renders direct computation and maximization of the non-

conditional entropy intractable. An exception of this is the case

considered in [5]. Therein, a closed form expression is given for the

optimal distribution that maximizes the sum of n independent random

variables with finite supports and distributions that are symmetric

around zero. In more general situations, bounds are typically used

to gain insight into the input distribution that maximizes the non-

conditional differential entropy. For instance, a lower bound on the

differential entropy of the sum of independent random variables

can be obtained using entropy power inequalities [6], [7]. In a

complementary fashion, upper bounds on the entropy of the sum of

random variables have been derived under various assumptions. For

instance, a tight upper bound on the differential entropy of the sum

of two dependent random variables was provided in [8] when the

distributions of these variables are log-concave. In [9] and [10] the

difference, and the ratio of the entropy of the sum and difference of

independent identically distributed random variables were considered

using results from additive combinatorics. Upper bounds on the

discrete and differential entropy of the sum of independent random

variables are provided in [11]. Other upper bounds are derived

from the observation that the Gaussian distribution maximizes the

differential entropy [1], [3].

The difficulty of computing and maximizing the non-conditional

entropy of the received signal arises in the evaluation of the non-

coherent capacity of multiple-input multiple-output (MIMO) com-

munication systems [1], [3] and in systems with phase noise [4].

To obtain asymptotic results in the case of non-coherent MIMO

communication systems, the analysis is restricted to asymptotically

low and high SNR scenarios. For instance, at high SNR, the noise

contribution to the non-conditional differential entropy of the random

matrix representing the received signal is ignored and that entropy

is approximated by the differential entropy of the random matrix

representing the product of the input signal matrix and the channel

matrix. This approach enables an approximate expression for the non-

coherent capacity to be obtained and the asymptotically optimal input

distribution to be determined.

Given the central role of ignoring the noise contribution in com-

puting the non-conditional differential entropy at high SNRs, in this

paper we investigate the accuracy of this approximation. In particular,

we assess how the approximation error decays with the increase

of the SNR. To answer this question we begin by considering an

expression of the differential entropy of the sum of an arbitrary

and a zero mean Gaussian-distributed random variable with variance

given by the inverse of the SNR. We derive explicit expressions

for the first two non-constant terms of the Taylor series expansion

of the differential entropy of the received signal and we use these

expressions to show that the approximation error decays as 1/SNR.

Next, we consider a non-coherent wireless communication system in

which the signal component of the received signal can be expressed

as the product of a random variable with some unknown distribution

and a Gaussian-distributed random variable representing the channel

fading coefficient. For that case, we provide an explicit expression for

the second order term of the Taylor series expansion of the differential

entropy, and to circumvent the difficulty that arises in the direct

computation of that term, we invoke Schwartz’s inequality to obtain

an efficiently computable bound on it. Finally, we provide examples

that illustrate the utility of the obtained bound.

II. PRELIMINARIES

In the forthcoming analysis we will frequently exchange the order

of the operations of integration and taking limits. Such an exchange is

valid if the conditions of Lebesgue’s dominated convergence theorem

are satisfied [12]. For completeness, we state this theorem.

Theorem 1 (Lebesgue’s dominated convergence theorem):

Suppose that {fn} is a sequence of measurable functions on a

measurable space X such that f(x) = limn→∞ fn(x) exists for
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every x ∈ X . If there is a Lebesgue integrable function g such that
Z

X
|g|dµ < ∞, and |fn(x)| ≤ g(x), ∀ n = 1, 2, . . . ; x ∈ X , (1)

where µ denotes a positive measure on X , then

limn→∞
R

X fn(x)dµ =
R

X fdµ.
Proof: The proof follows from Fatou’s Lemma; for details, see,

e.g., [12, Chapter 1].

To use this theorem to exchange the order of integration and taking

limits, we note that the space, X , that we will encounter is the open

interval (−∞,∞) and the functions that we will encounter can be

readily verified to be bounded by Lebesgue integrable functions. For

instance, such functions will include the integrands in the convolution

of two probability density functions (pdfs), which are, therefore, non-

negative and their integration over X is unity. Hence, for the cases

that we will consider, Theorem 1 can be readily applied to exchange

the order of integration and taking limits; see [13]. In our analysis,

the measure dµ = dx, the sequence of functions {fn(x)} will be

parametrized by n =
√

SNR, and the limiting functions, f(x), will
assume the form of the Dirac delta function, δ(x), the unit doublet

function, δ′(x), or the unit triplet function, δ′′(x).

III. THE TAYLOR SERIES EXPANSION OF THE SUM OF AN

ARBITRARY AND A GAUSSIAN-DISTRIBUTED RANDOM VARIABLE

Let X be an arbitrary random variable with a twice differentiable

pdf pX(·) with support [a, b], i.e., pX(x) > 0 for x ∈ [a, b] and zero

otherwise. Let Z be Gaussian-distributed with zero-mean and unit

variance, that is, pZ(z) = 1√
2π

e−
z2

2 .

In a point-to-point communication channel with additive Gaussian

noise, the received signal can be expressed as Y = X+tZ, where t =
1√
SNR

. Our goal is to examine the Taylor series expansion of the (non-

conditional) differential entropy of Y . For notational convenience, we

will denote this entropy by ht(Y ). For any given t > 0, the pdf of

tZ is given by 1√
2πt

e
− z2

2t2 , which implies that the pdf of Y is

pY (y; t) =
1√
2πt

Z ∞

−∞
pX(y − u)e

− u2

2t2 du. (2)

Notice that in this notation, t parametrizes a family of pdfs. Using

this notation, we can write

ht(Y ) = −
Z ∞

−∞
pY (y; t) log pY (y; t)dy. (3)

Evaluating ht(Y ) directly seems intractable. To circumvent this

difficulty, we assume that pX(·) is such that ht(Y ) is analytic in

t, which implies that all the derivatives of ht(Y ) with respect to t
exist and are finite. A class of practical instances in which pX(·)
satisfies this condition is identified in Section IV below. When this

condition is satisfied, the Taylor series expansion of ht(Y ) around 0
converges for all t < 1. To expand ht(Y ), we begin by noting that

pY (y; 0) = pX(y) and thereby h0(Y ) = h(X). Hence, the Taylor

series expansion can be expressed as

ht(Y ) = h(X) +
dht(Y )

dt

˛

˛

˛

t=0
t +

d2ht(Y )

dt2

˛

˛

˛

t=0

t2

2!
+ O(t3). (4)

To evaluate
dht(Y )

dt

˛

˛

˛

t=0
and

d2ht(Y )

dt2

˛

˛

˛

t=0
, we use (2) and (3).

A. Evaluating the First Order Term

Using (3), we have

dht(Y )

dt
= −

Z ∞

−∞

`

1 + log pY (y; t)
´∂pY (y; t)

∂t
dy. (5)

Since herein we consider cases in which ht(Y ) is analytic, it

is continuous and evaluating
dht(Y )

dt

˛

˛

˛

t=0
is equivalent to evaluating

limtց0
dht(Y )

dt
. Using (2) and invoking Theorem 1, we can write

dht(Y )

dt

˛

˛

˛

t=0
= −

Z ∞

−∞

`

1 + lim
tց0

log pY (y; t)
´

lim
tց0

∂pY (y; t)

∂t
dy

= −
Z ∞

−∞

`

1 + log pX(y)
´

lim
tց0

∂pY (y; t)

∂t
dy. (6)

Using (2), we have

∂pY (y; t)

∂t
=

1√
2π

Z ∞

−∞
pX(y − u)

“u2

t4
− 1

t2

”

e
− u2

2t2 du. (7)

To evaluate limtց0
∂pY (y;t)

∂t
, we use the following result:

Lemma 1:

lim
tց0

1

t2
e
− u2

2t2 =
1

2
lim
tց0

u2

t4
e
− u2

2t2 . (8)

Proof: The proof of this result follows from applying l’Hôpital’s

rule to the left hand side of (8) and the fact that the derivatives of

the numerator and the denominator with respect to t are given by

u2

t3
e
− u2

2t2 and 2t, respectively.

Using Lemma 1 in (7) and taking the limit as t ց 0 yields

lim
tց0

∂pY (y; t)

∂t
=

1√
2π

Z ∞

−∞
pX(y − u) lim

tց0

1

t2
e
− u2

2t2 du. (9)

To evaluate the above limit, we will prove the following result:

Lemma 2:

lim
tց0

1

t2
e
− u2

2t2 U(u) = −δ′(u), (10)

where U(u) is the unit step function.

Proof: See Appendix A.

We will now use Lemma 2 to show that
dht(Y )

dt

˛

˛

˛

t=0
= 0. Since

δ′(u) is an odd function, it follows that limtց0
1
t2

e
− u2

2t2 U(−u) =
δ′(u). Now, assuming that pX(x) < ∞ for all x ∈ (−∞,∞), the
integration on the right hand side of (9) can be written as

R ∞
−∞ pX(y−

u) limtց0
1
t2

e
− u2

2t2
`

U(u) + U(−u)
´

du, implying that

lim
tց0

∂pY (y; t)

∂t
= 0. (11)

Substituting this result in (6) yields

dht(Y )

dt

˛

˛

˛

t=0
= 0. (12)

B. Evaluating the Second Order Term

The coefficient of the second order term is given by

limtց0
d2ht(Y )

dt2
. Differentiating both sides of (5), it can be readily

verified that

d2ht(Y )

dt2
= −

Z ∞

−∞

„

1

pY (y; t)

“∂pY (y; t)

∂t

”2

+
`

1 + log pY (y; t)
´∂2pY (y; t)

∂t2

«

dy. (13)

Taking the limit as t ց 0 and using (11) along with the fact that the

support of pX(·) is [a, b] yields

lim
tց0

d2ht(Y )

dt2
= −

Z b

a

`

1 + log pX(y)
´

lim
tց0

∂2pY (y; t)

∂t2
dy.
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Hence, to evaluate the integration of the second term in (13), we

need to evaluate limtց0
∂2pY (y;t)

∂t2
. Differentiating both sides of (7)

with respect to t and taking the limit as t ց 0 yields

lim
tց0

∂2pY (y; t)

∂t2
=

1√
2π

Z ∞

−∞
pX(y − u)

× lim
tց0

“u4

t7
− 5

u2

t5
+

2

t3

”

e
− u2

2t2 du (14)

The evaluation of this integral is simplified by the following lemma.

Lemma 3:

lim
tց0

1

t3
e
− u2

2t2 =
1

3
lim
tց0

u2

t5
e
− u2

2t2

=
1

15
lim
tց0

u4

t7
e
− u2

2t2 .

Proof: The proof of this result uses a technique similar to the

one used in the proof of Lemma 1, and is omitted for brevity.

Using Lemma 3, the limit in (14) yields

lim
tց0

∂2pY (y; t)

∂t2
=

r

2

π

Z ∞

−∞
pX(y − u) lim

tց0

1

t3
e
− u2

2t2 du. (15)

To evaluate the limit in the integrand in (15), we prove the

following lemma.

Lemma 4:
r

2

π
lim
tց0

1

t3
e
− u2

2t2 = δ′′(u). (16)

Proof: See Appendix B.

Using Lemma 4 in (15) and using the fact that, for any twice

differentiable function f(x), (f ∗δ′′)(x) = f ′′(x), where ‘∗’ denotes
the convolution operation, yield

lim
tց0

∂2pY (y; t)

∂t2
=

d2pX(y)

dy2
. (17)

Using integration by parts, we can write

lim
tց0

d2ht(Y )

dt2
= −

Z b

a

`

1 + log pX(y)
´d2pX(y)

dy2
dy

=

Z b

a

1

pX(y)

“dpX(y)

dy

”2

dy

−
`

1 + log pX(y)
´dpX(y)

dy

˛

˛

˛

˛

b

a

(18)

C. The Leading Terms of Taylor Series—The General Case

Substituting from (12) and (18) in (4) yields, for any SNR strictly

greater than 0 dB, t is strictly less than 1 and

ht(Y ) = h(X) +
t2

2

„Z b

a

1

pX(y)

“dpX(y)

dy

”2

dy

−
`

1 + log pX(y)
´dpX(y)

dy

˛

˛

˛

˛

b

a

«

+ O(t3). (19)

IV. A SPECIAL CASE

A case of special interest that arises in non-coherent communica-

tion scenarios is when X = RS, where R and S are two independent

random variables. For instance, in non-coherent communications,

R represents the input signal and S represents the channel. When

S is Gaussian-distributed the pdf of X possesses some favourable

properties that can be exploited to simplify the expression in (19) and

to yield further insight into information-theoretic high SNR analysis.

We have the following result:

Lemma 5: Let X = RS, where R and S are random variables

with a joint pdf pR,S(·, ·), then the pdf of X is given by

pX(x) =

Z ∞

0

1

r

“

pR,S

“

r,
x

r

”

+ pR,S

“

−r,−x

r

””

dr. (20)

In particular, if S is statistically independent of R and is Gaussian-

distributed with zero-mean and unit variance,

pX(x) =
1√
2π

Z ∞

0

1

r

`

pR(r) + pR(−r)
´

e
− x2

2r2 dr. (21)

Proof: This lemma can be proved by considering the cumulative

distribution function of X , FX(x) = Pr
˘

RS ≤ x
¯

. Expressing

this probability in terms of pR,S(·, ·) and taking the derivative with

respect to r yields (20); see e.g., [14].

Immediate from (21) is that, when X is the product of two indepen-

dent random variables, one of which is Gaussian, the support of pX(·)
is the entire real line (−∞,∞). Hence, in (19) a = −∞ and b = ∞
and from (21) pX(∞) = pX(−∞) = 0. Differentiating pX(x)
in (21) with respect to x and using Theorem 1 to compute the limit as

x tends to ±∞, it can be readily verified that limx→±∞
dpX (x)

dx
= 0.

Hence, in this case (19) can be expressed as

ht(Y ) = h(X) +
t2

2

„Z ∞

−∞

1

pX(y)

“dpX(y)

dy

”2

dy

− log pX(y)
dpX(y)

dy

˛

˛

˛

˛

∞

−∞

«

+ O(t3).

To further simplify this expression, we will show that

limb→∞
dpX (b)

dx
log pX(b) = 0. Since pX(b) ց 0 as b → ∞, we

have (1 − pX(b)) < 1. Hence, Taylor series expansion can be used

to write log pX(b) = log
`

1 − (1 − pX(b)
´

=
P∞

n=1
(1−pX (b))n

n
.

Using this, we have

lim
b→∞

dpX(b)

dx
log pX(b) =

∞
X

n=1

lim
b→∞

dpX(b)

dx

(1 − pX(b))n

n
= 0.

A similar argument shows that lima→−∞
dpX (a)

dx
log pX(a) = 0.

These results conform to the convention of setting 0 log 0 = 0 [6]

and imply that, for pX(x) in (21),

ht(Y ) = h(X) +
t2

2

Z ∞

−∞

1

pX(y)

“dpX(y)

dy

”2

dy + O(t3). (22)

A. An Upper Bound on the Second Order Error Term

Evaluating the coefficient of t2/2 in (22) directly can be intractable

for many distributions of R. To circumvent this difficulty, in this

section we will provide a bound
R ∞
−∞

1
pX (y)

“

dpX (y)
dy

”2

dy. When

pX(x) is given by the expression in (21), the integrand can be

expressed as

1

pX(y)

“dpX(y)

dy

”2

=
y2

√
2π

„

R ∞
0

1
r3

`

pR(r) + pR(−r)
´

e
− y2

2r2 dr

«2

R ∞
0

1
r

`

pR(r) + pR(−r)
´

e
− y2

2r2 dr

.

Using Schwartz’s inequality, we have

1

pX(y)

“dpX(y)

dy

”2

≤ y2

√
2π

Z ∞

0

1

r5

`

pR(r) + pR(−r)
´

e
− y2

2r2 dr,

and equality holds if r assumes a deterministic value in [0,∞).
Substituting this result, the coefficient of t2/2 in (22) can be readily

seen to be bounded by
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Z ∞

−∞

y2

√
2π

Z ∞

0

1

r5

`

pR(r) + pR(−r)
´

e
− y2

2r2 drdy =

Z ∞

0

1

r2

`

pR(r) + pR(−r)
´

dr. (23)

Below, we provide a few examples to illustrate the error, |ht(Y )−
h(X)|, in approximating ht(Y ) with h(X).

V. EXAMPLES

Example 1: Let the input signal, R, be antipodal, i.e., R = ±a
with equal probability. In this case, pR(r) = 1

2

`

δ(r+a)+δ(r−a)
´

,

which yields

|ht(Y ) − h(X)| ≤ t2

2a2
+ O(t3).

In this case, it can be readily verified that the bound derived from

Schwartz’s inequality is tight. ✷

Example 2: If R is χ-distributed with m degrees of freedom, its

pdf is given by

pR(r) =
2

2m/2σmΓ(m/2)
rm−1e−r2/2σ2

U(r), (24)

where σ > 0, and Γ(·) is the standard Gamma function. This is

the distribution of the square root of the sum of the squares of

m independent zero mean Gaussian random variables with variance

σ2 each. Hence, for m = 2, the χ-distribution reduces to the

Rayleigh distribution and, for m = 3, it reduces to the Maxwell

distribution [14].

For m ≥ 3, the right hand side of (23) can be readily calculated

to yield that the error, |ht(Y ) − h(X)|, can be bounded by

|ht(Y )−h(X)| ≤
„

2−(m/2−1)ρ0

σ2Γ(m/2)
(m−4)(m−6) · · ·

«

t2 +O(t3),

(25)

where ρ0 =



1 m even
p

π
2

m odd
.

The coefficient of t2 in (25) goes to zero as m goes to infinity. ✷

VI. CONCLUSION

In this paper we analyzed the dominant error term resulting from

ignoring the noise component in computing the high-SNR entropy

of the received signal of non-coherent single-input single-output

communication systems. We have shown that this error decays with

the inverse SNR and we provided an explicit expression and an upper

bound for the dominant error term for the case in which the input

signal is transmitted over a channel with Gaussian fading coefficients.

Our analysis is supported by examples of input signal with various

input distributions.

APPENDIX A

PROOF OF LEMMA 2

To prove Lemma 2 we use the χ-distribution given in (24) with

m = 2, which corresponds to the case of a Rayleigh-distributed

random variable. In this case,

pχ(x) =
1

σ2
xe−x2/2σ2

U(x).

Taking the limit as σ ց 0 corresponds to the limiting case at which

χ approaches a deterministic value at zero. Since
R ∞
−∞ pχ(x)dx = 1,

we can write [15, Appendix A]

lim
σ2ց0

1

σ2
xe−x2/2σ2

U(x) = δ(x).

Hence, limσ2ց0
1

σ2 e−x2/2σ2

U(x) = 1
x
δ(x). Using the identity,

xδ′(x) = −δ(x)

yields the statement of the lemma.

APPENDIX B

PROOF OF LEMMA 4

The proof of this lemma uses an alternate representation of the

Dirac delta function [15]. In particular, since the pdf of a Gaussian

distributed random variable converges to the Dirac delta function as

the variance goes to zero, we have

δ(x) =
1√
2π

lim
ǫց0

1

ǫ
e
− x2

2ǫ2 .

A difficulty in proving this lemma arises because the order of

differentiation and taking the limit cannot be exchanged unless

uniform convergence to the limiting function is guaranteed [12]. To

avoid this difficulty, we note that using l’Hôpital’s rule, the limit on

the right hand side can be expressed as limǫց0
x2

ǫ3
e
− x2

2ǫ2 . Now, using

the identity that 2δ(x) = x2δ′′(x), we have

r

2

π
lim
ǫց0

1

ǫ3
e
− x2

2ǫ2 = δ′′(x), (26)

which completes the proof of the lemma.
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