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ABSTRACT representation (LRR)5], SSC-orthogonal matching pur-

Subspace clustering refers to the problem of cluster§uit (OMP) Fl, and thresholding-based subspace cluster-
ing high-dimensional data points into a union of low- ing (TSC) ['] are based on the principle of applying spec-

) . ; tral clustering [] to a similarity matrixA € RY*Y con-
dimensional linear subspaces, where the number of sub; gl y

their di X d orientat Il unk tructed from the data points ii. Specifically, in SSCA
Spaces, their dimensions and orientations are all Unknowil, ,pyi4in e g by finding a sparse representation of each data

In this paper, we propose a variation of the recently intro-_ . . . o
. . oint in terms of the other data points Vigminimization
duced thresholding-based subspace clustering (TSC) alg ot via LASSO []), SSC-OMP replaces thg-step in SSC

rithm_, which applies spectral clustering to an adjacenc y OMP, LRR computes\ through a low-rank representa-
matrix gonst_ructed from the nearest ne]ghbors of eac on of the data points obtained by nuclear norm minimiza-
data point with respect to the spherical distance measurg, o4 TSC constructa from the nearest neighbors of

The new element resides in an indvidual and data'd”Ve'(l,ach data point through thresholding of the correlations be

choice of the number of nearest neighbors. Previous Peleen data points

formance results for TSC, as well as for other subspace A common feature of SSC, SSC-OMP, and TSC is

clustering algorithms based on spectral clustering, come i . .

. ! . that A is constructed by sparsely representing each data
terms of an intermediate performance measure, which doesoint i terms of all the other data points. The sparsit
not address the clustering error directly. Our main analytip P : P y

T . o (Jevel of the corresponding representation is controlled by
cal contribution is a performance analysis of the modifie L tooping criterion for SSC-OMP. by the number of nearest
TSC algorithm (as well as the original TSC algorithm) in bpIng DY

terms of the clustering error directly neighbors for TSC, and by the LASSO regularization pa-

' rameter) for the robust version of SSGJ. A procedure
for selecting\ for each data point individually and in a
1. INTRODUCTION data-driven fashion is described i# [

Suppose we are given a set &f data points inR™, de- i . -
noted by.X', and assume that — X, U ... U X;, where Contributions: We consider a variation of TSC—refer-

the points inX,, ¢ € {1, ..., L}, satisfyxg.l) € S, with S, red to as “modified TSC” henceforth—which selects the

: : L number of nearest neighbors of each data point individu-
a d,-dimensional subspace &™. The association of the ) . . "
P ) . ally and in a data-driven fashion. For a semi-random data
points inX” with the X, the number of subspacés their : S )
) . o . model with deterministic subspaces and the data points
dimensionsi,, and their orientations are all unknown. We = . . .
: o o within the subspaces chosen randomly, we provide perfor-
want to find the partitioning of the points iti into the sets mance guarantees in terms of the clustering error, defined
X1, ..., Xr. Once this partitioning has been identified, it is 9 9 ’

straightforward to extract the subspacsthrough prin- as the fraction of misclassified points. Specifically, we

) . : . build on the fact that the clustering error is zero if the
cipal component analysis (PCA). This problem is known . ) .
. o ; connected componentsn the graphG with adjacency
as subspace clustering and has applications in, e.g., unsu-

pervised learning, image processing, disease detectidn, amatnxA correspond to thér;. The _performqnce resul_ts n
computer vision ], [9, 8,5, 6,10 are all based on an intermediate, albeit sen-

. ible, performance measure guaranteeing that the nodes
Numerous approaches to subspace clustering are avail- ; .
) ) . in G corresponding toY, are connected to other points
able in the literature, see’] for an excellent overview.

Several recently proposed subspace clustering algorithms 1ye say that a subgragi of a graphc is connected if any two nodes
such as sparse subspace clustering (SSCJ]| low-rank in H can be joined by a path such that all intermediate nodes ialso |
H. The subgraplH is called a connected componentHfis connected

Part of the results in this paper were submitted to the Arofedsatis- and if there are no connections between nodds iand nodes outside of
tics [1]. H[7].
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in X, only, for each?. This is, however, not sufficient pseudo-distance metfiarccos(|(x;,x;)|). The hope is

to conclude that the connected components in the grapthat7;(¢;), corresponding tex; € X, contains points in

G correspond to theX,. The key to deriving conditions A’ only. In addition, we want the points corresponding
for TSC to yield zero clustering error is to recognize thatto Xy, for every/, to form a connected component in the
G is a random nearest neighbor graph and to analyze itgraphG with adjacency matriA. If this is, indeed, the
connectivity properties. case, then by virtue of the number of zero eigenvalues of
the Laplacian ofy being equal to the number of connected

Notation: We use lowercase boldface letters to de- . : .
components irG [7], Step 3 delivers the correct estimate
note (column) vectors and uppercase boldface letters t
; . . = L for the number of subspaces. The spectral cluster-
designate matrices. For the vector =, stands for its

gth entry. For the matrixA, A,; is the entry in itsith ing Step 4 will then |dent|.fy the individual connegted com-
. i . ~ ponents ofG and thus yield correct segmentation of the
row andjth column,AT its pseudo-inverselA ||, ., = . ; .
maxyy -1 |Av|, its spectral norm, and/A]. = data [/, Prop. 4; Sec. 7]. When the points corresponding
Ivil,=1 1% 7l2 _ : F to the X, do not form connected componentsGhbut the
\/2_i; |Ai;[* its Frobenius norm.log(-) stands for the A, for pairsx;,x; belonging to differentt, are “small
natural logarithm,arccos(-) for the inverse function of enough”, a robust estimator fdris theeigengap heuristic
cos(-), andz A y is the minimum ofz andy. The set [7]. With this modification, TSC may still cluster the data
{1,..., N} is denoted byN] and the cardinality of the set correctly, even when points corresponding to, sey,are
T is|T|. We write V' (i, X) for a Gaussian random vector connected to points in the s&t\ A;.

with meany and covariance matriX. The unit sphere in The idea underlying Step 1 in the modified TSC algo-
R™isSm1 = {x € R™: ||x|, = 1}. rithm is to estimatey; as the number of points necessary

to represenk; € X, as a linear combination of its near-
est neighbors; the left-hand side &j {s the corresponding
ly-approximation error. The estimate fgr will be on the
We next present a variation of the TSC algorithm intro-Order ofde, the dimension of;, the subspace; lies in.
duced in [L0, 1]. The new element here isdata-driven To see this, assume that the data point¥jmare distributed
choice of the number of nearest neighbors for each datdniformly at random on the setc € S;: [|x|[, = 1}. If
point individually. For Step 1 below to make sense, wethe points corresponding © (d;) are all iny, then those
assume that the data pointsihare normalized. This as- Points suffice (with probability one) to represeqy with

sumption is not restrictive as the data points can be normafero error. Moreover, with probability one, every strict
ized prior to clustering. subset of these points will fail to represeqt with zero

error. Thus, the estimatg obtained forr = 0 in Step 1
Modified TSC algorithm. Given a setofV data pointst’ s equal tod,, with probability one. Throughout this pa-
and a threshold parameter (the choice of- is discussed per, we setr = 0 in (1); in the noisy case, not considered
below), perform the following steps: here, a sensible choice is to takgroportional to the noise
Step 1: For everyx; € X, sort|(x;,x;)|,¢ € [N],in  variance.
descending order, and |6 (¢) C [N]\j be the index set

corresponding to the largest values of(x;, x;)|. Next, 3. ANALYTICAL PERFORMANCE RESULTS
determingy; as the smallest value gfsuch that

2. THE MODIFIED TSC ALGORITHM

We take the subspacég to be deterministic and choose

H(I — XT‘(q)X;( ))xj <r (1) the points within theS, randomly. To this end, we rep-
J ilq - . .
’ 2 resent the points it5; by xy) = U(@ag.g) whereU®) ¢
whereX - () is the matrix with columns;, i € 7;(q). R™>de js an orthonormal basis for thé,-dimensional

Step 2: For eachj € [N], set the entries of; € RY  subspaceS, and theagz) € R% are i.i.d. uniformly dis-
indexed byT;(g;) to the absolute values Oﬂrj(qj)xj and tributed onS%~!. Since eaciU") is orthonormal, the
set all other entries to zero. Construct the adjacency matri data pOintSXS»E) = U®a" are uniformly distributed on
A according toA = Z + Z7, whereZ = [z, ..., zy]. the set{x € Sy: ||x||, = 1}. Our performance guarantees
Step 3: Estimate the number of subspaces as the numare expressed in terms of the affinity between subspaces,
ber of zero eigenvalues, of the normalized Laplacian of defined as
the graph with adjacency matrix.

: i ! »T®
Step 4: Apply normalized spectral clustering][to aff(Sk, S¢) = 7HU( U H . (2)
(A,L) \/dk/\d( F
2 3(x;,xj) = arccos(](x;,x;)|) is not a distance metric since

_ Sincearccos(z) is dec_reasing in fOI’. z €[0,1], 7;(q) 3(x, —x) = 0, but—x # x for x # 0. It satisfies, however, the defining
is the set ofg nearest neighbors of; with respect to the properties of a pseudo-distance metfic][



Note that the affinity notiond, Definition 2.6] and §, Def- X, form a connected component, which, however, is essen-

inition 1.2], relevant to the analysis of SSC, is equivalential to ensure zero clustering error.

to (2). The affinity between subspaces can be expressed in  The conditionn,/d, > 6 (¢ < n/6 for the original

terms of the principal angles betwegpandS, according  TSC algorithm) is used to establish that eaghe X, is

to connected to points correspondingtp only, while d, >

calogng (¢ > cologn, for the original TSC algorithm)

Vcos?(01) + ... + cos (Ga,nd,) 3) is needed to ensure that subgraphs corresponding tt,the

Vdp Adyg are connected. The latter condition is order-wise necgssar

We finally note that the constamt is increasing in

maxy dg. This is likely an artifact of our analysis, as in-

dicated by numerical simulations, not shown here.

aﬁ(Sk, Sg) =

whereb, ..., 04, rd, With 0 < 01 < ... < 04, pa, < 7T/2
denotes the principal angles4, Sec. 12.4.3] betweefi;
and S,. Note that0 < aff(Sk,S,) < 1. If Sy and S,
intersect inp dimensions, i.e., i, NS, is p-dimensional,
thencos(61) = ... = cos(d,) = 1 [12]. Hence, ifS; and 4. PROOF OUTLINE
Se intersect inp > 1 dimensions, we haveff (S, Sy) >
\/p/(di. A dg). We are now ready to state our main result.In the following, we give a brief outline of the proof of
The corresponding proof is outlined in Sectitin Theoreml. For the sake of brevity, we will not detail the
minor modifications needed to prove the statement for the
Theorem 1. Suppose that; is obtained by choosing,  original TSC algorithm. Le€ be the graph with adjacency
points inS, at random according tecge) = U“)a;z),j €  matrix A constructed by the modified TSC algorithm. The
[n¢], where thea'” are i.i.d. uniform onS%~!, and let Proof is effected by showing that the connected compo-

X = X, U...U Xy. Suppose furthermore thay/d, > 6  Nents inG correspond to th&, with probability satisfying

andd, > ¢y logny, for all ¢ € [L], wherec, is a constant the probability estimate in Theorefn henceforth simply
that depends ot, only. If referred to as “with high probability”. To this end, we first

establish thatz has no false connections in the sense that
< 1 the nodes corresponding &) are connected to nodes cor-
~ 15log N’ responding toY; only. We then show that, conditional on

G having no false connections, the nodes corresponding to
with N = |X|, then modified TSC yleldS the correct Xg form a connected Subgraph,for ale [L]

k,relzle}c);z aff (S, S¢)

segmentation oft’ with probability at leastl — 3/N — To establish thaty has no false connections, we first
2 oelr] (nze*C(nefl) + = ljgmz)’ wherec > 0is a nu- show that for eackx; € X, the corresponding séf;(q)
merical constant. ‘ contains points int; only, as long as; < n¢/6. (The

conditiong < n,/6 is shown to hold below.) This is
Theoren states that modified TSC succeeds with highaccomplished through the use of concentration inequal-
probability if the affinity between subspaces is sufficigntl ities for order statistics of the inner products between
small, and if the number of points ift; per subspace di- the (random) data points. Specifically, we show that
mension, i.e.ng/d,, for each?, is sufficiently large. Intu-  for each xg.’“}) € X, and for eachX,, we have that
itively, we expect that clustering becomes easier when the() ' R e o
ng increase. To see that Theordindeed, confirms this  ~(ne—a) >(z) MaXk£Li 2 © with high probability. _ Here,
intuition, setn, = n, for all £, and observe that the proba- z;) < z,) < ... < z, ) are the order statistics of
bility of success in Theorerh indeed, increases in. {Z(f)}_ Cand:® — |<x(k) x(.l)>|
The original TSC algorithm introduced iri,[10] h e e ow edn st i
e original TSC algorithm introduced in,[1(] has We next show thag; obtained in Step 1 of the modified
g; = ¢, for all pointsx; € X, and takes; as an input 15 algorithm is equal td;. This is accomplished by es-
parameter. We note that the statementin Thedrepplies  ap|ishing that the smallegtfor which (1) holds withr —
to this (original) version of TSC as well with the conditions () jg q = dy. Recall thatX 1., is the matrix with columns
ne/de > 6 andd, > ¢y logng replaced byy < ne/6and . i e To(g). As long asq < ne/6, T;(q) consists of
q = c2logny, respectively. points in X, only (as argued above), therefaker (,, =
Theoreml is proven (for more details see Sectidn (@)
b U® AL (), where the columns oA~ () correspond to

by showing that the connected components in the géaph , . ©
with adjacency matrixA correspond to thet, with prob- ;[/Cee ﬁg\/zee 7j(g). Thanks to the orthonormality ‘",

ability satisfying the probability estimate in Theorein

Previous results for TSCL[] established that eact{” € H(I Xy XL )X_H _ H(I — Ay Al )a.H _
X is connected (irfx) to other points corresponding & C i IOV A | 8 (D T5(9)/ Y|y
only, but it was not shown that the points corresponding to (4)



With probability one, 4) is strictly positive if¢ < d,, and — 1sc
equal to zero ify = dy, thusq; = d,. Finally, note that . - ---modified TSC
ne/de > 6 ensures that; < n/6, which resolves the W\ - - SSC-OMP
assumptiory < n;/6. 04p SSC
It remains to show that the nodes corresponding to
X, form a connected subgraph, for dlle [L]. Since
(xi, %) = (a;,a;) for x;,x; € XA, it follows that the
subgraph ofG corresponding to the points iA} is the
g-nearest neighbor graph with pseudo-distance metric
arccos(|(a;,a;)|). The proof is then completed using 0
the following result (withy = 3). ! ! ! ! ! !

0.2 -

clustering error

Lemma 1. Letay,...,a, € R% bei.i.d. uniform orS¢-1, n

d>1, an_d I?té be the corresponding-nearest neighbor Fig. 1. Clustering error as a function of the number of
graph, Wlths(ai,a?-) = arccos(_|gai,aj>|) as the underly- pointsn in each subspace.
ing distance metric. Then, with = ~ ¢; logn, wherec;

depends ol only, and is increasing i, for everyy > 0, —  T1sc |

we haveP |G is connecte}j >1- M,RW. 0-251" - - -modified TSC]|
\ --- SSC-OMP

0.2 ssCc

5. NUMERICAL RESULTS

We compare modified TSC to TSC, SSC, and SSC-OMP
on synthetic and on real data. For SSC, we use the imple-
mentation in {].

clustering error
o
—
ot
T
|

0.1}

Synthetic data: We generatd, = 8 subspaces dR'?° 5-1072) )
with dimensiond = 30 each. Specifically, we choose the ‘ ‘ ‘ ‘ ‘
correspondingy®) ¢ R™>? uniformly at random from 50 100 150 200 250
the set of all orthonormal matrices Ri™**¢, with the first number of points of each digit

d/3 = 10 columns being equal. This ensures that th
subspaces intersect in at le@g8 dimensions and hence
aff (S, Se) > 1/\/5. The points corresponding t§y are
chosen at random accordingxéf) = U“)a;z) + eg-g),j €
)

eFig. 2. Empirical mean and standard deviation of the clus-
tering error for clustering handwritten digits.

(¢ - ) n © computed by averaging over 100 of the following problem
[n], where thea; " are i.i.d. uniform orfS " and thee; instances. We choose the digit8, 2, 4,8} and for each

are i.i.d. (0, (6®/m)IL,,) with 0> = 0.3. For eachn, the  digit we choose: vectorized and normalized images uni-
clustering error is averaged ovell problem instances. We formly at random from the set of all images of that digit.
chooseg = 20 for TSC, stop OMP in OMP-SSC afteéd  We choose = 7 for TSC, stop OMP in OMP-SSC aftér
iterations, and set = 0.45 in modified TSC. The results, iterations, and use = 0.45 in modified TSC. The results
summarized in Figl, show that SSC and SSC-OMP out- show that TSC outperforms modified TSC, SSC, and SSC-
perform TSC and modified TSC. However, TSC is compu-OMP. TSC outperforming modified TSC may be attributed
tationally less demanding. Finally, modified TSC is seeno the fact that for this dataset is large for severay,

to perform slightly better than the original TSC algorithm. which means that some digits can not be well represented
by its nearest neighbors. We hasten to add that for other
problems and datasets, SSC may outperform TSC as, e.g.,
for the problem of clustering faces.

Clustering handwritten digits: We next consider the
problem of clustering handwritten digits. Specifically,
we work with the MNIST data set of handwritten digits
[13], and use the test set that contains 10,000 centered

28 x 28 pixel images of handwritten digits. The as- Acknowledgments: We would like to thank Mahdi
sumption underlying the idea of posing this problem asSoltanolkotabi for helpful and inspiring discussions.
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