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ABSTRACT

Subspace clustering refers to the problem of cluster-
ing high-dimensional data points into a union of low-
dimensional linear subspaces, where the number of sub-
spaces, their dimensions and orientations are all unknown.
In this paper, we propose a variation of the recently intro-
duced thresholding-based subspace clustering (TSC) algo-
rithm, which applies spectral clustering to an adjacency
matrix constructed from the nearest neighbors of each
data point with respect to the spherical distance measure.
The new element resides in an individual and data-driven
choice of the number of nearest neighbors. Previous per-
formance results for TSC, as well as for other subspace
clustering algorithms based on spectral clustering, come in
terms of an intermediate performance measure, which does
not address the clustering error directly. Our main analyti-
cal contribution is a performance analysis of the modified
TSC algorithm (as well as the original TSC algorithm) in
terms of the clustering error directly.

1. INTRODUCTION

Suppose we are given a set ofN data points inRm, de-
noted byX , and assume thatX = X1 ∪ ... ∪ XL where
the points inXℓ, ℓ ∈ {1, ..., L}, satisfyx(ℓ)

j ∈ Sℓ with Sℓ

a dℓ-dimensional subspace ofRm. The association of the
points inX with theXℓ, the number of subspacesL, their
dimensionsdℓ, and their orientations are all unknown. We
want to find the partitioning of the points inX into the sets
X1, ...,XL. Once this partitioning has been identified, it is
straightforward to extract the subspacesSℓ through prin-
cipal component analysis (PCA). This problem is known
as subspace clustering and has applications in, e.g., unsu-
pervised learning, image processing, disease detection, and
computer vision [2].

Numerous approaches to subspace clustering are avail-
able in the literature, see [2] for an excellent overview.
Several recently proposed subspace clustering algorithms
such as sparse subspace clustering (SSC) [3, 4], low-rank

Part of the results in this paper were submitted to the Annalsof Statis-
tics [1].

representation (LRR) [5], SSC-orthogonal matching pur-
suit (OMP) [6], and thresholding-based subspace cluster-
ing (TSC) [1] are based on the principle of applying spec-
tral clustering [7] to a similarity matrixA ∈ R

N×N con-
structed from the data points inX . Specifically, in SSCA
is obtained by finding a sparse representation of each data
point in terms of the other data points viaℓ1-minimization
(or via LASSO [8]), SSC-OMP replaces theℓ1-step in SSC
by OMP, LRR computesA through a low-rank representa-
tion of the data points obtained by nuclear norm minimiza-
tion, and TSC constructsA from the nearest neighbors of
each data point through thresholding of the correlations be-
tween data points.

A common feature of SSC, SSC-OMP, and TSC is
thatA is constructed by sparsely representing each data
point in terms of all the other data points. The sparsity
level of the corresponding representation is controlled bya
stopping criterion for SSC-OMP, by the number of nearest
neighbors for TSC, and by the LASSO regularization pa-
rameterλ for the robust version of SSC [8]. A procedure
for selectingλ for each data point individually and in a
data-driven fashion is described in [8].

Contributions: We consider a variation of TSC—refer-
red to as “modified TSC” henceforth—which selects the
number of nearest neighbors of each data point individu-
ally and in a data-driven fashion. For a semi-random data
model with deterministic subspaces and the data points
within the subspaces chosen randomly, we provide perfor-
mance guarantees in terms of the clustering error, defined
as the fraction of misclassified points. Specifically, we
build on the fact that the clustering error is zero if the
connected components1 in the graphG with adjacency
matrixA correspond to theXℓ. The performance results in
[9, 8, 5, 6, 10] are all based on an intermediate, albeit sen-
sible, performance measure guaranteeing that the nodes
in G corresponding toXℓ are connected to other points

1We say that a subgraphH of a graphG is connected if any two nodes
in H can be joined by a path such that all intermediate nodes also lie in
H. The subgraphH is called a connected component ifH is connected
and if there are no connections between nodes inH and nodes outside of
H [7].
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in Xℓ only, for eachℓ. This is, however, not sufficient
to conclude that the connected components in the graph
G correspond to theXℓ. The key to deriving conditions
for TSC to yield zero clustering error is to recognize that
G is a random nearest neighbor graph and to analyze its
connectivity properties.

Notation: We use lowercase boldface letters to de-
note (column) vectors and uppercase boldface letters to
designate matrices. For the vectorx, xq stands for its
qth entry. For the matrixA, Aij is the entry in itsith
row andjth column,A† its pseudo-inverse,‖A‖2→2 :=
max‖v‖

2
=1 ‖Av‖2 its spectral norm, and‖A‖F :=

√

∑

i,j |Aij |2 its Frobenius norm.log(·) stands for the

natural logarithm,arccos(·) for the inverse function of
cos(·), andx ∧ y is the minimum ofx and y. The set
{1, ..., N} is denoted by[N ] and the cardinality of the set
T is |T |. We writeN (µ,Σ) for a Gaussian random vector
with meanµ and covariance matrixΣ. The unit sphere in
R

m is Sm−1 := {x ∈ R
m : ‖x‖2 = 1}.

2. THE MODIFIED TSC ALGORITHM

We next present a variation of the TSC algorithm intro-
duced in [10, 1]. The new element here is adata-driven
choice of the number of nearest neighbors for each data
point individually. For Step 1 below to make sense, we
assume that the data points inX are normalized. This as-
sumption is not restrictive as the data points can be normal-
ized prior to clustering.

Modified TSC algorithm. Given a set ofN data pointsX
and a threshold parameterτ (the choice ofτ is discussed
below), perform the following steps:

Step 1: For everyxj ∈ X , sort |〈xj ,xi〉| , i ∈ [N ], in
descending order, and letTj(q) ⊆ [N ]\j be the index set
corresponding to theq largest values of|〈xj ,xi〉|. Next,
determineqj as the smallest value ofq such that

∥

∥

∥
(I−XTj(q)X

†
Tj(q)

)xj

∥

∥

∥

2
≤ τ (1)

whereXTj(q) is the matrix with columnsxi, i ∈ Tj(q).
Step 2: For eachj ∈ [N ], set the entries ofzj ∈ R

N

indexed byTj(qj) to the absolute values ofX†
Tj(qj)

xj and
set all other entries to zero. Construct the adjacency matrix
A according toA = Z+ Z

T , whereZ = [z1, ..., zN ].
Step 3:Estimate the number of subspaces as the num-

ber of zero eigenvalues,̂L, of the normalized Laplacian of
the graph with adjacency matrixA.

Step 4: Apply normalized spectral clustering [7] to
(A, L̂).

Sincearccos(z) is decreasing inz for z ∈ [0, 1], Tj(q)
is the set ofq nearest neighbors ofxj with respect to the

pseudo-distance metric2 arccos(|〈xj ,xi〉|). The hope is
thatTj(qj), corresponding toxj ∈ Xℓ, contains points in
Xℓ only. In addition, we want the points corresponding
to Xℓ, for everyℓ, to form a connected component in the
graphG with adjacency matrixA. If this is, indeed, the
case, then by virtue of the number of zero eigenvalues of
the Laplacian ofG being equal to the number of connected
components inG [7], Step 3 delivers the correct estimate
L̂ = L for the number of subspaces. The spectral cluster-
ing Step 4 will then identify the individual connected com-
ponents ofG and thus yield correct segmentation of the
data [7, Prop. 4; Sec. 7]. When the points corresponding
to theXℓ do not form connected components inG but the
Aij for pairsxi,xj belonging to differentXℓ are “small
enough”, a robust estimator forL is theeigengap heuristic
[7]. With this modification, TSC may still cluster the data
correctly, even when points corresponding to, say,Xℓ, are
connected to points in the setX \Xℓ.

The idea underlying Step 1 in the modified TSC algo-
rithm is to estimateqj as the number of points necessary
to representxj ∈ Xℓ as a linear combination of its near-
est neighbors; the left-hand side of (1) is the corresponding
ℓ2-approximation error. The estimate forqj will be on the
order ofdℓ, the dimension ofSℓ, the subspacexj lies in.
To see this, assume that the data points inXℓ are distributed
uniformly at random on the set{x ∈ Sℓ : ‖x‖2 = 1}. If
the points corresponding toTj(dℓ) are all inXℓ, then those
points suffice (with probability one) to representxj with
zero error. Moreover, with probability one, every strict
subset of these points will fail to representxj with zero
error. Thus, the estimateqj obtained forτ = 0 in Step 1
is equal todℓ, with probability one. Throughout this pa-
per, we setτ = 0 in (1); in the noisy case, not considered
here, a sensible choice is to takeτ proportional to the noise
variance.

3. ANALYTICAL PERFORMANCE RESULTS

We take the subspacesSℓ to be deterministic and choose
the points within theSℓ randomly. To this end, we rep-
resent the points inSℓ by x

(ℓ)
j = U

(ℓ)
a
(ℓ)
j whereU(ℓ) ∈

R
m×dℓ is an orthonormal basis for thedℓ-dimensional

subspaceSℓ and thea(ℓ)j ∈ R
dℓ are i.i.d. uniformly dis-

tributed onSdℓ−1. Since eachU(ℓ) is orthonormal, the
data pointsx(ℓ)

j = U
(ℓ)

a
(ℓ)
j are uniformly distributed on

the set{x ∈ Sℓ : ‖x‖2 = 1}. Our performance guarantees
are expressed in terms of the affinity between subspaces,
defined as

aff(Sk, Sℓ) :=
1√

dk ∧ dℓ

∥

∥

∥
U

(k)T
U

(ℓ)
∥

∥

∥

F
. (2)

2 s̃(xi,xj) = arccos(|〈xj ,xi〉|) is not a distance metric since
s̃(x,−x) = 0, but−x 6= x for x 6= 0. It satisfies, however, the defining
properties of a pseudo-distance metric [11].



Note that the affinity notion [9, Definition 2.6] and [8, Def-
inition 1.2], relevant to the analysis of SSC, is equivalent
to (2). The affinity between subspaces can be expressed in
terms of the principal angles betweenSk andSℓ according
to

aff(Sk, Sℓ) =

√

cos2(θ1) + ...+ cos2(θdk∧dℓ
)√

dk ∧ dℓ
(3)

whereθ1, ..., θdk∧dℓ
with 0 ≤ θ1 ≤ ... ≤ θdk∧dℓ

≤ π/2
denotes the principal angles [12, Sec. 12.4.3] betweenSk

andSℓ. Note that0 ≤ aff(Sk, Sℓ) ≤ 1. If Sk andSℓ

intersect inp dimensions, i.e., ifSk ∩ Sℓ is p-dimensional,
thencos(θ1) = ... = cos(θp) = 1 [12]. Hence, ifSk and
Sℓ intersect inp ≥ 1 dimensions, we haveaff(Sk, Sℓ) ≥
√

p/(dk ∧ dℓ). We are now ready to state our main result.
The corresponding proof is outlined in Section4.

Theorem 1. Suppose thatXℓ is obtained by choosingnℓ

points inSℓ at random according tox(ℓ)
j = U

(ℓ)
a
(ℓ)
j , j ∈

[nℓ], where thea(ℓ)j are i.i.d. uniform onSdℓ−1, and let
X = X1 ∪ ... ∪ XL. Suppose furthermore thatnℓ/dℓ ≥ 6
anddℓ ≥ c2 lognℓ, for all ℓ ∈ [L], wherec2 is a constant
that depends ondℓ only. If

max
k,ℓ : k 6=ℓ

aff(Sk, Sℓ) ≤
1

15 logN
,

with N = |X |, then modified TSC yields the correct
segmentation ofX with probability at least1 − 3/N −
∑

ℓ∈[L]

(

nℓe
−c(nℓ−1) + 1

n2

ℓ
lognℓ

)

, wherec > 0 is a nu-

merical constant.

Theorem1states that modified TSC succeeds with high
probability if the affinity between subspaces is sufficiently
small, and if the number of points inXℓ per subspace di-
mension, i.e.,nℓ/dℓ, for eachℓ, is sufficiently large. Intu-
itively, we expect that clustering becomes easier when the
nℓ increase. To see that Theorem1, indeed, confirms this
intuition, setnℓ = n, for all ℓ, and observe that the proba-
bility of success in Theorem1, indeed, increases inn.

The original TSC algorithm introduced in [1, 10] has
qj = q, for all pointsxj ∈ X , and takesq as an input
parameter. We note that the statement in Theorem1 applies
to this (original) version of TSC as well with the conditions
nℓ/dℓ ≥ 6 anddℓ ≥ c2 lognℓ replaced byq ≤ nℓ/6 and
q ≥ c2 lognℓ, respectively.

Theorem1 is proven (for more details see Section4)
by showing that the connected components in the graphG
with adjacency matrixA correspond to theXℓ with prob-
ability satisfying the probability estimate in Theorem1.
Previous results for TSC [10] established that eachx(ℓ)

i ∈
Xℓ is connected (inG) to other points corresponding toXℓ

only, but it was not shown that the points corresponding to

Xℓ form a connected component, which, however, is essen-
tial to ensure zero clustering error.

The conditionnℓ/dℓ ≥ 6 (q ≤ nℓ/6 for the original
TSC algorithm) is used to establish that eachxj ∈ Xℓ is
connected to points corresponding toXℓ only, whiledℓ ≥
c2 lognℓ (q ≥ c2 lognℓ for the original TSC algorithm)
is needed to ensure that subgraphs corresponding to theXℓ

are connected. The latter condition is order-wise necessary.
We finally note that the constantc2 is increasing in

maxℓ dℓ. This is likely an artifact of our analysis, as in-
dicated by numerical simulations, not shown here.

4. PROOF OUTLINE

In the following, we give a brief outline of the proof of
Theorem1. For the sake of brevity, we will not detail the
minor modifications needed to prove the statement for the
original TSC algorithm. LetG be the graph with adjacency
matrixA constructed by the modified TSC algorithm. The
proof is effected by showing that the connected compo-
nents inG correspond to theXℓ with probability satisfying
the probability estimate in Theorem1, henceforth simply
referred to as “with high probability”. To this end, we first
establish thatG has no false connections in the sense that
the nodes corresponding toXℓ are connected to nodes cor-
responding toXℓ only. We then show that, conditional on
G having no false connections, the nodes corresponding to
Xℓ form a connected subgraph, for allℓ ∈ [L].

To establish thatG has no false connections, we first
show that for eachxj ∈ Xℓ the corresponding setTj(q)
contains points inXℓ only, as long asq ≤ nℓ/6. (The
condition q ≤ nℓ/6 is shown to hold below.) This is
accomplished through the use of concentration inequal-
ities for order statistics of the inner products between
the (random) data points. Specifically, we show that
for each x

(ℓ)
j ∈ Xℓ, and for eachXℓ, we have that

z
(ℓ)
(nℓ−q) > maxk 6=ℓ,i z

(k)
i with high probability. Here,

z
(ℓ)
(1) ≤ z

(ℓ)
(2) ≤ ... ≤ z

(ℓ)
(nℓ−1) are the order statistics of

{z(ℓ)i }i∈[nℓ]\j andz(k)i =
∣

∣

〈

x
(k)
i ,x

(ℓ)
j

〉∣

∣.
We next show thatqj obtained in Step 1 of the modified

TSC algorithm is equal todℓ. This is accomplished by es-
tablishing that the smallestq for which (1) holds withτ =
0 is q = dℓ. Recall thatXTj(q) is the matrix with columns
xi, i ∈ Tj(q). As long asq ≤ nℓ/6, Tj(q) consists of
points inXℓ only (as argued above), thereforeXTj(q) =

U
(ℓ)

ATj(q), where the columns ofATj(q) correspond to
theai, i ∈ Tj(q). Thanks to the orthonormality ofU(ℓ),
we have
∥

∥

∥
(I−XTj(q)X

†
Tj(q)

)xj

∥

∥

∥

2
=

∥

∥

∥
(I−ATj(q)A

†
Tj(q)

)aj

∥

∥

∥

2
.

(4)



With probability one, (4) is strictly positive ifq < dℓ, and
equal to zero ifq = dℓ, thusqj = dℓ. Finally, note that
nℓ/dℓ ≥ 6 ensures thatqj ≤ nℓ/6, which resolves the
assumptionq ≤ nℓ/6.

It remains to show that the nodes corresponding to
Xℓ form a connected subgraph, for allℓ ∈ [L]. Since
〈xi,xj〉 = 〈ai, aj〉 for xi,xj ∈ Xℓ, it follows that the
subgraph ofG corresponding to the points inXℓ is the
q-nearest neighbor graph with pseudo-distance metric
arccos(|〈ai, aj〉|). The proof is then completed using
the following result (withγ = 3).

Lemma 1. Leta1, ..., an ∈ R
d be i.i.d. uniform onSd−1,

d > 1, and letG̃ be the corresponding̃k-nearest neighbor
graph, withs̃(ai, aj) = arccos(|〈ai, aj〉|) as the underly-
ing distance metric. Then, with̃k = γ c1 logn, wherec1
depends ond only, and is increasing ind, for everyγ > 0,

we haveP
[

G̃ is connected
]

≥ 1− 2
nγ−1γ logn

.

5. NUMERICAL RESULTS

We compare modified TSC to TSC, SSC, and SSC-OMP
on synthetic and on real data. For SSC, we use the imple-
mentation in [4].

Synthetic data: We generateL = 8 subspaces ofR120

with dimensiond = 30 each. Specifically, we choose the
correspondingU(ℓ) ∈ R

m×d uniformly at random from
the set of all orthonormal matrices inRm×d, with the first
d/3 = 10 columns being equal. This ensures that the
subspaces intersect in at leastd/3 dimensions and hence
aff(Sk, Sℓ) ≥ 1/

√
3. The points corresponding toSℓ are

chosen at random according tox(ℓ)
j = U

(ℓ)
a
(ℓ)
j + e

(ℓ)
j , j ∈

[n], where thea(ℓ)j are i.i.d. uniform onSd−1 and thee(ℓ)j

are i.i.d.N (0, (σ2/m)Im) with σ2 = 0.3. For eachn, the
clustering error is averaged over50 problem instances. We
chooseq = 20 for TSC, stop OMP in OMP-SSC after20
iterations, and setτ = 0.45 in modified TSC. The results,
summarized in Fig.1, show that SSC and SSC-OMP out-
perform TSC and modified TSC. However, TSC is compu-
tationally less demanding. Finally, modified TSC is seen
to perform slightly better than the original TSC algorithm.

Clustering handwritten digits: We next consider the
problem of clustering handwritten digits. Specifically,
we work with the MNIST data set of handwritten digits
[13], and use the test set that contains 10,000 centered
28 × 28 pixel images of handwritten digits. The as-
sumption underlying the idea of posing this problem as
a subspace clustering problem is that the vectorized im-
ages of the different handwritten versions of a single digit
lie in a low-dimensional subspace of unknown dimension
and orientation. The empirical mean and variance of the
corresponding clustering errors, depicted in Fig.2, are
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Fig. 1. Clustering error as a function of the number of
pointsn in each subspace.
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Fig. 2. Empirical mean and standard deviation of the clus-
tering error for clustering handwritten digits.

computed by averaging over 100 of the following problem
instances. We choose the digits{0, 2, 4, 8} and for each
digit we choosen vectorized and normalized images uni-
formly at random from the set of all images of that digit.
We chooseq = 7 for TSC, stop OMP in OMP-SSC after7
iterations, and useτ = 0.45 in modified TSC. The results
show that TSC outperforms modified TSC, SSC, and SSC-
OMP. TSC outperforming modified TSC may be attributed
to the fact that for this datasetqj is large for severalj,
which means that some digits can not be well represented
by its nearest neighbors. We hasten to add that for other
problems and datasets, SSC may outperform TSC as, e.g.,
for the problem of clustering faces.
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