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ABSTRACT

In this paper, a cognitive radio (CR) scenario comprised of a sec-
ondary interference channel (IC) and a primary point-to-point link
(PPL) is studied, when the former interferes the latter. In order to sat-
isfy a given rate requirement at the PPL, typical approaches impose
an interference temperature constraint (IT). When the PPL transmits
multiple streams, however, the spatial structure of the interference
comes into play. In such cases, we show that spatial interference
shaping constraints can provide higher sum-rate performance to the
IC while ensuring the required rate at the PPL. Then, we extend the
interference leakage minimization algorithm (MinIL) to incorporate
such constraints. An additional power control step is included in
the optimization procedure to improve the sum-rate when the inter-
ference alignment (IA) problem becomes infeasible due to the addi-
tional constraint. Numerical examples are provided to illustrate the
effectiveness of the spatial shaping constraint in comparison to IT
when the PPL transmits multiple data streams.

Index Terms— Cognitive radio, interference alignment, inter-
ference channel, interference temperature

1. INTRODUCTION

Typically, when two or more networks coexist over the same radio
resources, orthogonal resource allocation approaches are applied to
eliminate inter-network interference, which is clearly suboptimal. In
this context, cognitive radio (CR) has been proposed as a promising
approach to efficiently utilize the scarce radio resources [1, 2]. In un-
derlay CR systems, the secondary users are allowed to coexist with
a primary link over the same resources, as long as the interference
level generated at the former is such that a given rate is guaranteed.
To this end, the secondary users are usually constrained by the so-
called interference temperature (IT), so that the interference level at
the primary receiver is limited to a maximum value.

In this paper, we consider a coexistence scenario in which a
point-to-point link (PPL) is willing to share its spectrum with an
interference channel (IC), provided that the PPL rate requirements
are satisfied. Outside the context of CR, the K-user multiple-input
multiple-output (MIMO) IC is currently receiving a great deal of at-
tention. In such channels, K transmitter communicate with their cor-
responding receivers generating interference to the unintended ones.
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Interference alignment (IA) has emerged as an interesting approach
to manage interference in such scenarios, allowing each user to com-
municate free of interference and to approach capacity in the asymp-
totic signal-to-noise ratio (SNR) regime [3]-[5]. Although there are
still many open problems regarding this technique, different studies
carried out over the last years have provided many interesting the-
oretical results [6]-[9], as well as many different algorithms to per-
form IA [10]-[17]. Among those, it is worth highlighting the inter-
ference leakage minimization algorithm (MinIL) proposed in [10].

CR with K-user IC as secondary network has been studied in
[18]-[22]. In [18], the achievable degrees-of-freedom (DoF) are
studied when the primary user performs the optimal strategy, namely,
singular value decomposition (SVD) and waterfilling power alloca-
tion, which may result in some unused eigenmodes, in which the IC
opportunistically confines the transmitted signals. On the other hand,
the authors in [19] and [20] follow the same idea but show that, if
the primary receiver cooperates and performs interference suppres-
sion decoding, the sum-rate of the IC is significantly improved with
negligible primary rate reduction. A non-iterative IA scheme is pro-
posed in [21], in which the IC is also constrained to cause zero inter-
ference to the primary. In [22] a slightly modified scenario is stud-
ied, in which the IC interferes the primary user but not the other way
around, and some level of interference is allowed. Taking this into
account, the authors of [22] propose an IA algorithm that minimizes
the interference leakage (IL) subject to IT constraint to control the
interference level at the primary, based on semidefinite relaxation
(SDP) and randomization techniques. Coexistence issues have been
also considered for other networks. For instance, in [23], the perfor-
mance degradation due to IT is analyzed for a secondary user that
coexists with multiple primary users. In [24] and [25], the trans-
mission strategy of a secondary user that shared the spectrum with a
primary is optimized subject to an explicit rate constraint on the for-
mer, which requires additional channel state information (CSI) on
the secondary transmitter. Also, single-input single-output (SISO)
or multiple access (MAC) secondary networks are considered in [26]
and [27], respectively.

In this paper, we consider the same model as in [22]. We first
show that, when the primary link transmits multiple streams, con-
straining the spatial structure of interference [28] is crucial for the
IC to achieve good sum-rate performance. To this end, we derive
transmit shaping constraints at the secondary transmitters and extend
the MinIL algorithm to incorporate such constraints. An additional
power control step is introduced to enhance the sum-rate of the IC
when the data rate requirement of the primary link is high. With
the proposed approach, the IC requires no CSI from the primary
and needs only to know the aforementioned constraints to design
the transmit directions.



2. SYSTEM MODEL

We consider a K-user single-beam MIMO IC that coexists with a
MIMO PPL. We assume that the PPL transmitter is deployed far
from the IC, and therefore the latter receive no interference from the
former. Under this setting, and denoting by M; and N; the num-
ber of antennas at receiver ¢ and transmitter j, respectively (¢, =
0,..., K, where 7,5 = 0 denotes the PPL), the signal received by
each user can be expressed as

K
yizufl <ZHMV]’S]'+H¢> yi=1,...,K D

Jj=1

K
Yo = Ul <HOOVOSO + ZHOjVjsj + H0> , 2)
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where H;; € C NixMj i the MIMO channel between transmitter i
and receiver 4, Ug € CV0*No and Vi € CM0*Mo gre the decoding
and precoding matrices of the PPL, respectively; u; € C™i*! and
v; € CMi*1 are the decoding and precoding vectors of the ith IC
user, respectively; n; € CYVi*! is the noise at receiver 4 which is
assumed to be distributed as CA/(0, 0°I) and so € CM°*! and s; €
C are the symbols transmitted by the PPL and the jth IC transmitter,
respectively, which are distributed as CN (0, I).

Let us assume that the PPL does not know the actual interfer-
ence covariance matrix and performs the optimal transmission strat-
egy, namely, SVD and waterfilling power allocation [29]. Thus, its
achievable rate as a function of the aggregate interference covariance
matrix, Q = Y- U§' Ho;v;vi Hg; U, is given by

Rppr (Q) = log det (1 +(°1+Q) " zs) , 3)

where Xig is a diagonal matrix. The minimum rate constraint can
be therefore expressed as RppL (Q) > (1 — ) Rppr (0), with « €
[0,1].

An interesting issue that comes up at this point is related to the
knowledge that each network has about the other one and how they
cooperate with each other. In this work we consider that they have
limited knowledge about each other and the required overhead is
reduced as much as possible. More specifically, each transmitter
of the IC only needs to know its transmit covariance constraint in
order to optimize its precoders and decoders. On the other hand, the
PPL only needs to know the local channels, Hy;, in order to select
suitable constraints.

3. INTERFERENCE SHAPING CONSTRAINTS

In this section we derive shaping constraints [28] for the IC to ensure
that the rate requirement at the PPL is satisfied. We assume that the
constraints are obtained by the PPL receiver, which has perfect local
CSI, and are sent to the IC through a feedback link. Typically, IT
constraints are used to control the total interference power that the
secondary users generate at the primary receiver. When the PPL uses
single-beam transmissions there is not much left to do; however, in
the multiple-stream case, how the interference is distributed among
the different streams strongly affects the achievable rate of the PPL.
To this end, we will constrain the spatial interference distribution by
using the following matrix partial orders on the set of N x N positive
semidefinite matrices

A<B B-A eS8}, 4)
A=<p B = (A),<(B), ,i=1...,N, (5
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where SY is the set of N x N positive semidefinite matrices and
(A)i; denotes the ith element of the diagonal of A. Notice that (4)
is the Lowner ordering [30], whereas (5) is also a valid partial order
since it is reflexive, antisymmetric and transitive [31]. For a given a,
we first consider a constraint in the aggregate interference covariance
matrix, Q, as

Q =p Ca, 6)
where C,, € Si\]" is the interference shaping constraint, which is a
diagonal matrix since expression

det (I-‘r (0'21+ Ca)_l ZS) < ]:O[ [1 + (Cgl)“ (Es)ii} ’

i=1

_ _
where C,, = oI + C., holds with equality only when C, is
diagonal, which is due to Sylvester’s determinant theorem and
Hadamard’s inequality. This interference shaping constraint is then
translated into a transmit covariance constraint, so that the IC re-
quires no additional CSI from the PPL, that is expressed as

vivil <85, j=1,...,K, (8)

where S; € S_Jyj is the transmit covariance constraint of user j
and such that (6) is satisfied for all possible transmit directions, v ;.
The reasons for choosing the matrix partial order (5) instead of the
standard ordering (4) for the interference shaping constraint in (6)
are formalized in the following lemmas.

Lemma 1. Let £L = {Q € Sfrv" Q=<C.}and D = {Q €

Si\’“ : Q =Xp C.} for a given positive diagonal matrix Co. Then
LCD.

Proof. Suppose that Q < C,, for a given Q. Therefore, a” Qa <
all C.a, for all a. Setting a an all-zero vector with a one in the
ith entry, it is clear that Q <p C, also holds, which proves that
L C D. To prove that L is strictly a subset of D, suppose that
Q =p C, for a given Q, i.e., (Q)ii = (Ca)i: for all 7. As the
eigenvalues of any Hermitian matrix majorize its diagonal [30], it
turns out that Q ﬁ C., which concludes the proof. O

The following lemma establishes the monotonicity of (3) with
respect to the ordering defined in (5).

Lemma 2. Let Q € Sfo be any matrix such that Q <p C,, for
a given positive diagonal matrix Co. Then Rppr.(Q) > Rppr(Ca),
where Rppy(+) is given by (3).

Proof. To prove the lemma, we must show that the off-diagonal
elements of Q do not reduce the achievable rate when its diago-
nal is fixed. To this end, let us consider that Q =p C,, i.e.,
Q = C., + O, where O is any off-diagonal Hermitian matrix such
that Co, + ©® > 0. Notice that, if Rpp.(Q) > RppL(Cq) holds for
all ©, then Rpp.(Q’) > RppL(Cy) for any Q' <p Q. The lemma
is therefore proved if the following holds

det (T4 (Ca+©) ' Bs) > det (1+C.'Ss) . )

Applying the determinant identities det(AB) = det(A) det(B),
for any squared matrices A and B, and det(A™") = 1/det(A);
the foregoing expression can be equivalently given by

det (Co + X5+ ©) _ det (Ca + O)

det (Ca + X3) det (C..)

As det(A) <TT,(A):, with equality only when A is diagonal, and
35 is a diagonal matrix with positive entries, (10) holds for any ©,
which concludes the proof. O

10)



Algorithm 1 Algorithm for computing the interference shaping ma-
trix according to P
Set C,, = diag(ci,...,cn,)
while j < No and RPPL(

=0andj =1
)> (1—a)RppL( ) do

AR = Rby (c;) — (RepL(Ca) — (1 — ) Rpp(0))
if AR < 0 then

¢j = (Cmax)jj
else

. =9)i;

¢; = min (;A—i)f% - o2, (Cmax)jj)
end if
j=i+l

end while

where R, (a) is the rate achieved by the PPL at mode j when it
experiences an interference power of a

Note that the ordering (5) cannot be used for the transmit covari-
ance constraints since the diagonal of Q depends on the off-diagonal
elements of the transmit covariances. Finally, using Lemma 1, it is
easy to see that the transmit covariances satisfying (8) also satisfy
(6) for all S; such that 37 | U§'Ho;S;H{; U <p Ca.

4. ALGORITHM DESIGN

In this section we propose algorithms for computing C, and Sj,
j=1,..., K, as well as an extension of the MinIL algorithm that
incorporates the transmit covariance constraints (8) and a power con-
trol step.

4.1. Shaping constraint design

The interference shaping constraint, C,, must be chosen such
that Rpp. (Co) = (1 — @) Rpp (0) and it is the least stringent for
the IC. To this end, we propose the following optimization problem

P Inaxcimize Tr(Ca.) ,

subject to RppL (Co) > (1 — ) Rpp (0)

Ojcajcmax7

where (Cmax)ii = (Z] L U§Ho;H{ Uy);; and zeros elsewhere.
Recall that, according to (7), the optlmal C,, is a diagonal matrix.
In P;, the allowed interference power at the PPL is maximized sub-
ject to the minimum rate constraint and an additional constraint that
bounds the maximum allowed interference level at each stream to the
worst case, which is represented by each entry of Cmax. This may
occur if the transmit directions are aligned to the channels from the
transmitters to the PPL receiver. To solve this non-convex problem,
we use the ensuing lemma.

Lemma 3. Let us denote by C, = diag(ci, ..., cn,) the optimal
solution of P1, where c} is associated to the jth weakest mode of the
PPL channel. Then, the following holds

No—1. (11

Proof. As Cq is diagonal, we have RppL(Ca) = 3°;log[l +

(2s);5/(0% 4 ¢;)]. The derivative of Rppr(Ca) with respect to
¢j» Ve, Repr, is monotone decreasing and V¢, Repr. < Ve, Repr
forc; = ¢j4+1,5 = 1,...,No — 1, i.e., the weaker the mode, the
more interference power it tolerates to meet a given data rate. As
the interference level is limited by Ciax, we obtain (11), which
concludes the proof. O

¢; < (Cmax);; = ¢j+1=0,7=1,...

Ji

The above lemma allows us to find the optimal solution of Py
stream-wise, as detailed in Algorithm 1. Similarly, using the solution
of P1, we propose the following convex optimization problem for
computing the transmit covariance constraints

K
P2 :  maximize Tr (S;) ,
{S;}5 le !
K
subject to > U§'Ho;S;Hg;Ug <p Ca

j=1
085, 2I,j=1,....K,

where the last constraint is due to the unitary transmit power of the
secondary transmitters. Recall that P; and P2 are both solved at
the primary user. The obtained transmit covariance constraints, S,
are then sent to the IC, which performs the MinIL algorithm as de-
scribed in the next subsections. Notice that the PPL could modify
its transmission strategy to exploit the knowledge about the inter-
ference shaping constraint, C., which would result in a coupled
problem. For example, a worst-case optimization at the PPL would
assume that the aggregate interference covariance matrix is equal to
C., what would change the optimal power allocation at the PPL, but
not the transmit directions. For simplicity, we consider in this paper
that the PPL does not change its transmission strategy and we leave
further PPL optimization for future work.

4.2. Extension of MinIL algorithm

At each step of the MinlL, the precoders (decoders) are optimize
subject to norm constraints, while the decoders (precoders) are fixed,
so that the IL is successively minimized [10]. Notice that in our
model, the additional constraint affects only the design of the pre-
coders, whereas the decoders are optimized exactly as in the original
algorithm. The IL is given by

K K
2
. _ HH
lleak = E E ‘ui ijVj

i=1 j#£i

12)

Therefore, for fixed precoders, the unit-norm decoders that minimize
(12) are given by u; = I/mm(zj};i H;;v;vi'H[T), where vmin(A)
denotes the eigenvector of A with minimum eigenvalue. On the
other hand, when the decoders are kept fixed, the optimal precoder of
the jth transmitter is obtained by solving the following optimization
problem

Ps :  minimize Lleak 5
vj
subject to vaj = min(1, Tr(S;)) ,

V]V] <8S;

To solve the foregoing problem, we first rewrite the transmit co-
variance constraint by using the following lemma.

Lemma 4. Let S € SY and v € CN*'. Then vv <'S holds if
and only ifHE*%FHVH2 < 1, where S = FXFY is the singular
value decomposition of S.

Proof. Taking the singular value decomposition of S, vv < S'is
equivalent to Y FAywWHES 2 = I. Therefore, the maximum

. _1 _1

eigenvalue of X~ 2FHvvTFX~2 must be equal or lower than 1.

Since this matrix is rank-one, its maximum eigenvalue is given by
1

1=~ 2Fv||?, which concludes the proof. O
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Fig. 1. Achievable sum-rate of the (3 x 2,1)® IC with a 3 x 3 PPL
for both interference constraints and different values of c.

Using the foregoing lemma and taking the Lagrangian of Ps, we
obtain

v; = /min(1, Tr(S;))vmin [(1 — 1) Ry + 113871, (13)
where R Z ‘Hu;uf Hyj and p; € [0, 1], which can be ob-
tained using blsectlon such that the equivalent transmit covariance
constraint is satisfied with equality (if active). We omit the details

due to lack of space.

4.3. Power control

Even when the IA problem is feasible, the IC may not achieve zero
IL due to the additional shaping constraint, specially for low values
of . In these cases it is important to control the power transmitted
by the IC to improve its sum-rate. However, if we relax the power
constraint in P3 by an inequality, we will obtain zero transmit power.
Since we do not want to reduce the IL by means solely of reducing
the transmit power, a normalizing term must be included in P3. To
this end, when the IL converges to a non-zero value, each transmitter
computes a new precoder by solving the following problem

Ps:  minimize Dj [ilcak (V) — tieax (V;)] ,
Vjp;
subject to fo/j = min(1, Tr(S;)) ,

~ ~H
pivivy = 8;j,
p; <1,

where iicak(v;) is the IL when the jth transmitter applies v;, and
v/; is the precoder from the previous iteration (4ica (vg) is therefore
the current IL). The new precoder is then given by v} = |/pjv;,
i.e., p; is the ratio between the transmit power and the power bud-
get of user j. In the objective function of Py, the effect on the IL
of the transmit direction and the transmit power is decoupled by
[teak (V) — tieak (v )] and p;, respectively. The optimization of the
transmit power by means of p; allows to explore other transmit di-
rections which may reduce [iiea (V) — %1cak (v§)]. However, the op-
timal value of P4 is equal or lower than zero, and thus reducing
the transmit power may not reduce the objective function, which is
hence minimized when a compromise between the transmit direction

14 T T T T T T
Interferencer temperature : _7-/*
12_; _...constraint - <. IR EaR
:m~*¢‘ %
— 10}
N . :
L :
2 Rt RIEIE N
© u CUS,
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S : N
Transmit covariance constraint 1‘\A
Rate ST
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o

Fig. 2. Achievable sum-rate of the (3 x 2, 1)® IC and the 3 x 3 PPL
as a function of o for SNR = 15dB.

and p; is reached. The new precoder, v7, is the scaled generalized
eigenvector With minimum generalized eigenvalue of the matrix pen-
cil (R; —
space.

mm(l Tr(S I S; ). We omit the details due to lack of

5. NUMERICAL RESULTS

We consider a (3 x 2,1)* IC and a 3 x 3 PPL, and define SNR =
101og,,(1/0?). The entries of the channel matrices are i.i.d. com-
plex Gaussian random variables with zero mean and unit variance.
All results are averaged over 1000 different channel realizations. For
the IT constraint we use the algorithm proposed in [22] with the
additional power control step (by solving an analogous problem to
‘P4) and choosing the IT constraint such that the rate requirement is
guaranteed. In Fig. 1 we show the achievable sum-rate of the IC for
different values of a and for both interference constraints. Whereas
with both constraints the rate of the PPL is guaranteed, the transmit
covariance constraint allow the IC to achieve much higher data rates
than the IT thanks to controlling the spatial interference distribution
at the PPL. Moreover, the transmit covariance constraint allows the
IC to optimize its precoders and decoders without actually knowing
the channel to the PPL. Alternatively, we depict in Fig. 2 the sum-
rate of the IC at SNR = 15dB as a function of «, where it can
be observed the high performance improvement of the transmit co-
variance constraint over most of the range of «, showing again that
controlling the spatial structure of the interference plays an impor-
tant role when the PPL transmits multiple streams.

6. CONCLUSION

In this paper we have studied network coexistence between an IC
and a PPL in the context of CR. We have shown that controlling
the spatial structure of the interference is critical in order to pro-
vide high sum-rate to the IC, while ensuring the rate requirement
at the PPL. We have then extended the MinIL algorithm to incorpo-
rate such constraints and an additional power control step to enhance
the sum-rate of the IC. We have shown through different numerical
examples the importance of controlling the spatial structure of the
interference when the PPL transmits multiple streams.
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