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ABSTRACT was proposed in_[9]. Soon aftef, [10] showed that recov-

; . ery from nonlinearly distorted measurements is also possi-
We propose a new methorhbust binary fused compressive ble, and [10] proposed a greedy algorithmaching sign

sensing ROBFCS), to recover sparse piece-wise smooth sig- rsuif [11]. After that seminal work, several algorithms
nals from 1-bit compressive measurements. The proposefc} 4 ' ] LT ”
method is a modification of our previolsnary fused com- or 1-bit CS have appeared; a partial list includes linear pr

: . . o ing [12], [[13],restricted-step shrinkagd 4], andbi-
pressive sensingBFCS) algorithm, which is based on the gramming - i .
. . . . ; : nary iterative hard thresholdin¢BIHT), which performs bet-
binary iterative hard thresholdingBIHT) algorithm. As in er than the previous algorithms. Algorithms for 1-bit CS,

BIHT, the data term of the objective function is a one—sidec{) d lized imat 5 and
¢ (or £2) norm. Experiments show that the proposed algo- ased orgeneralized approximate message pa_si gan
ajorization-minimizatiorj16], were proposed in_[17] and

rithm is able to take advantage of the piece-wise smoothne g tivelv. InTT9]. the in the data-t f
of the original signal and detect sign flips and correct them |, respectively. In[[19], 1 horm In the data-term o
[12] was replaced by a#y norm; the resulting problem is

achieving more accurate recovery than BFCS and BIHT. . L oo
_ _ o _ solved by successive approximations, yielding a sequehce o
Index Terms— 1-bit compressive sensing, iterative hardsimpler problems, not requiring prior knowledge about the

thresholding, group sparsity, signal recovery. sparsity of the original signal. Considering the possipitif
sign flips due to by noise, [20] introduced théaptive outlier
1. INTRODUCTION pursuit (AOP) algorithm, and[[21] extended it into an algo-

rithm termednoise-adaptive RFRWwhich doesn’t need prior
In compressive sensin@S) [1], [2], a sparse signal € R™  information on the signal sparsity and number of sign flips.
is shown to be recoverable from a few linear measurements

b = Ax, 1) More recently, [[22] and [23] applied 1-bit CS in image
acquisition, [24] studied matrix completion from noisy it-b
whereb € R™ (with m < n), A € R™*" is the sensing ma- observations, [25] used methods of statistical mechanics t
trix (which satisfies some conditions), and the factthat n  examine typical properties of 1-bit CS. The authors[of [26]
makes|[(IL) an ill-posed problem. This classical formulationaddressed 1-bit CS using their recemadient support pur-
assumes real-valued measurements, thus ignoring tha; in rsuit(GraSP)[[27] algorithm; finally, guantized iterative hard
ality, any acquisition involves quantization. ¢uantized CS  thresholdingmethod proposed ir [28] provides a bridge be-
(QCs) [3], [4], [E], [€], [7], [8], this fact is taken into acwnt.  tween 1-bit and high-resolution QCS.
An interesting extreme case of QCS is 1-bit C5 [9],

y = sign(Ax) , (2) Recently, we proposetinary fused compressive sensing
_ . ) ) ) _ (BFCS) [29], [30] to recover group-sparse signals fromtl-bi
where sigif-) is the element-wise sign function. Such 1-bit cs measurements. The rationale is that group-sparsity may
measurements can be acquired by a comparator with zergypress more structured knowledge about the unknown signal
which is very inexpensive and fast, as well as robust to ampliyn simple sparsity, thus potentially allowing for morbust
fication distortions. In contrast with the measurement rhoderecovery from fewer measurements. In this paper, we further
of standard CS, 1-bit measurements are blind to the magnipnsider the possibility of sign flips, and propaseust BFCS

tude of the original signak; the goal may then only be to (RoBFCS) based on the AOP methdd|[20].
recoverx, up to an intrinsically unrecoverable magnitude.

The first algorithm for signal recovery from 1-bit mea-
surements, name@normalized fixed point iteratio(RFPI) The rest of the paper is organized as follows: Section I
Work partially supported by Fundacao para a Ciéncia edlegia, reviews the BIHT and BFCS algorithms, and introduces the

grants PEst-OE/EEI/LA0008/2013 and PTDC/EEI-PRO/140022 Xian- ~ Proposed ROBFCS method; Section IIl reports experimental
grong Zeng is partially supported by grant SFRH/BD/7599112 results and Section IV concludes the paper.
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2. ROBUST BFCS components in magnitude and setting the others to zero. Fi-
nally, the returned solution is projected onto the unit sphe
2.1. The Observation Model to satisfy the constrainx||, = 1. The versions of BIHT for
etpeﬁl and/, penalties are referred to as BIHT and BIJ-

In this paper, we consider the noisy 1-bit measurement mod .
respectively.

y =sign(Ax + w), 3)

2.3. Binary Fused Compressive Sensing (BFCS)
wherey € {+1,—1}", A € R™*" is as abovex € R" is
the_ or|g|_nal S|gnal,_ andv2€ R™ is ad(_jmve white Gaussian of a vectorv € R™ is given by TV(v) = Z,_Lz_l i1 — vil.
noise with the variance®, due to which some of the mea- . i=1 '
surements signs may change with the respect to the noiseIchs)rE = 0, we denote af; thee-radius TV ball.ie, T. =

veRP: TV (v) <e}. The projection ontdl. (denoted

measurements as given by (2). Pr.) can be computed by the algorithm proposedin [33]. Let
&(v) = uj.i(;)gi(v), where eacly,(v) C {1,...,n}is a set
of consecutive indice§y (v) = {ik, ..., ix + |Gk| — 1} such
To recoverx fromy, Jacquest al [31] proposed the criterion that, forj € G, v; # 0, while v, 1 = 0 andv;, g, = 0
(assume thaty = v,11 = 0); Gx(v) is the k-th group of
min f(y ® Ax) indices of consecutive non-zero components pand there
* (4)  areK(v) such groups. Letg, € RI%! be the sub-vector of
v with indices inG..
t Obviously, the criterion in[{4) doesn’t encourage group-
Sparsity. To achieve that goal, we propose the criterion

We begin by introducing some notation. The TV semi-norm

2.2. Binary lterative Hard Thresholding (BIHT)

subject to ||x||, =1, x € X,

where ‘©" represents the Hadamard (element-wise) produc
Yr = {xeR": [x]|, < K} (with ||v|o denoting the num-

ber of non-zero components W) is the set ofK -sparse sig- min f (y © Ax)

nals, andf is one of the penalty functions defined next. To x (6)
penalize linearly the sign consistency violations, theioh@ subject tol|x||, = 1, x € X NS

f(z) = 2|[|z—|,;, wherez_ = min (z,0) (where the mini- .« ic defined as

mum is applied component-wise and the factor 2 is included ¢

for later convenience) anfiiv||; = ), |v;| is the/; norm. Se={xeR": TV(xg,) <ek=1,- Kx)}. (7)

Quadratic penalization of the sign violations is achievgd b L

usingf(z) =  ||z_ ||, where the factot /2 is also included whereTV (xg,) = (|G| — 1)"' TV (x¢,) is a normalized
for convenience. Théerative hard thresholdingIHT) [32] TV, where|G,| — 1 is the number of absolute differences in
algorithm applied to[{4) (ignoring the norm constraint digri TV (xg,.). In contrast with a standard TV bals, promotes

the iterations) leads to the BIHT algorithm[31]: the “fusion” of components only inside each non-zero group,
that is, the TV regularizer does not “compete” with the spar-

Algorithm BIHT sity constraint imposed hy € Y.

1. sett=0,7>0,x0andkK To address the optimization problem [d (6), we propose

2. repeat the following algorithm (which is a modification of BIHT):

3 Vir1 =% — 170f (y © Axy)

4. Xit1 = Pug (Vi) Algorithm BFCS

S te—t+1 1. sett=0,7>0,e>0,K andxg

6. until some stopping criterion is satisfied. 2. repeat

7. return x;/ [|x|| 3. Vit =x¢ —70f (y © Axy)
4. Xt+1 = Ps, (Psx (Vit1))

In this algorithm 0 f denotes the subgradient of the objectives. t—t+1

(seel[31], for details), which is given by 6. until some stopping criterion is satisfied.

7. return x;/ ||x||
AT (signAx) —y), /1 penalty
T
(YA)" (YAx)_, {2 penalty Notice that the composition of projections in line 4 is not

. : . L i (,5) in general equal to the projection on the non-convexsen
whereY = diagy) is a diagonal matrix with vectoy inits ¢ Vi, Ps,ns. # Ps. o Px,.. However, this composition

. . €
diagonal. Step 3 corresponds to a sub-gradient descent stgag satisfy some relevant properties, which result frogn th

(with step-sizer), while Step 4 performs the projection onto gy ctyre ofPs, expressed in the following lemma (the proof
the non-convex sétx, which corresponds to computing the ¢\ hich is quite simple, but is omitted due to lack of space).
best K -term approximation o¥, i.e., keeping theX largest

8f(y®AX)={



Lemmal Letv € R™ andx = Ps, (v), then minimization w.r.t.x defines the function

Xg, =P vg,), for k=1,--- K(v); ® (u, K,e) =arg min f(u® Ax)
o = P15,y (Var) (v) (8) xex (11)
Xgv) = 0, subject to|x|[, = 1, x € g N S,
where®(v) = {1,--- ,n} \ &(v) ando is a vector of zeros. which is an instance of [6). The minimization w.A.defines

the function

_ The otherrelevantpropgrty ®fs_ is thgt it preserves spar- U(zL)—arg min  [(z6A)
sity, as expressed formally in the following lemma. Ac{—1,1}m (12)

Lemma?2 If v € Sk, thenPs (v) € Y. Consequently, subjecttol|A_||; < L

foranyv € R*, Ps. (Psy(v)) € 2k N Se. As shown in[20], [21], function[{d2) is given in closed form

That is, although it isi10t guaranteed tha®s, (Ps, (v)) by .
coincides with the orthogonal projectionefontoX x N S, (\IJ (z L)), _ { -1 if z > 75 (13)
it belongs to this non-convex set. In fact, the projectiotoon T +1 otherwise,
Yk NS, can be shown to be an NP-hard problem [34], sincg,nerer
it belongs to the class ahaped partition problem85], [36]
with variable number of parts.

is the L-th largest element (in magnitude) af

In the proposed RoBFCS algorithm, rather than imple-
menting [I1) by running the BFCS algorithm until some stop-
ping criterion is satisfied, a single step thereof is applield
2.4. Proposed Formulation and Algorithm lowed by the implementation df {11 2) given By {13).

In this paper we extend the BFCS approach to deal with the

case where there may exist some sign flips in the measurgigorithm RoBFCS

ments. To this end, we adopt the AOP technique [20], yield1. sett =0,7 > 0,¢ > 0, K, L andxg, Ag = 1 € R™
ing a new approach that we caibust BFCSRoBFCS); the 2. repeat

similarly robust version of BIHT is termed RoBIHT. Assume 3, Vig1 = Xp — 70f (y © Ay © Axy,)
that there are at modtsign flips and define the binary vector 4. Xi11 = Ps, (Psg (Vir1))
Ae{-1,+1}"as 5. A1 =¥ (y ©Ax¢qq, L)
e , 6 t—t+1
A4 L ifyiis _fllpped ; 9) 7. until some stopping criterion is satisfied.
i 1 oth (9)
+1  otherwise. 8. return x;/ ||x||

Then, the criterion of ROBFCS is given by
) The subgradient in line 3 is as given tby (5), withreplaced
eR™, A1 413 Flyo Ao Ax) with y ® A;. If the original signal is known to be non-
. negative, the algorithm includes a projection oRtb in each
subject tof[x|[, =1, x € ¥x N S (10) iteration,i.e., line 4 becomes; . ; = Pr» (Ps. (Pgt:f(vkﬂ))).
[A-]l; <L, The versions of ROBFCS (RoBIHT) with and/- objectives
are referred to as RoBFCS and RoBFGSRoOBIHT and

whereA_ = min{A,0}. Problem [(ID) is mixed continu- ROBIHT-£,), respectively

ous/discrete, and clearly difficult. A natural approachde a

dress[(ID) is via alternating minimization, as follows.
3. EXPERIMENTS

Algorithm Framework of RoOBFCS In this section, we report results of experiments aimed at
1. sett=0,A0=1€R™ e>0,K,Landxg studying the performance of RoBFCS. All the experiments
2. repeat were performed using MATLAB on a 64-bit Windows 7 PC
3. xt41 =P (y © Ay, K €) with an Intel Core i7 3.07 GHz processor. In order to mea-
4. Aiy1 =V (y © Axpy1, L) sure the performance of different algorithms, we employ the
5. te—t+4+1 following five metrics defined on an estimatef an original

6. until some stopping criterion is satisfied. vectorx (both of unit norm):

7. return x;/ [|x|| e Mean absolute erroMAE = ||x — el|; /n;

e Mean square errofMSE = ||x — e||§ /n;
In this algorithm (template) lines 3 and 4 correspond to e Position error ratePER = >, ||sign(z;)|—|[sign(e;)|| /n;
minimizing (I0) with respect t and A, respectively. The e Angle error AE = arccos (x, e) /m;



Table 1. Experimental results

| Metrics | BIHT BIHT-¢; | BFCS | BFCS#; | RoBIHT | RoBIHT-; | RoBFCS | RoBFCS#;
MAE | 0.0019 | 0.0032 | 0.0008 | 0.0034 | 0.0019 | 0.0038 0.0001 | 0.0038
MSE | 7.43E-5| 1.65E-4 | 2.87E-5| 1.78E-4 | 7.12E-5 | 2.04E-4 4.00E-7 | 2.06E-4
PER 1.8% | 4.1% 0.9% | 4.9% 2.0% 4.7% 0% 5.2%
HE 0.0450 | 0.1360 | 0.0530 | 0.0995 | 0.0050 | 0.1420 0.0010 | 0.1390
AE 0.1234 | 0.1852 | 0.0764 | 0.1927 | 0.1208 | 0.2070 0.0085 | 0.2082

e Hamming errorHE = ||sign(Ax) — sign(Ae)||o/m.

proposed method (termed RoBFCSobust BFC$ outper-

The original signalsc are taken as sparse and piece-wisgforms (under several accuracy measures) the previous meth-

smooth, of lengtth = 2000 with sparsity levelK = 160;
specifically,

10401k, ieUl2dB,
15+01k, 1€ U?fg25d+18i
Fi=q 10+01k, i€ UG, B (14)
=15+ 0.1k;, @ € U_g 7594158
0, i ¢ UL B

where thek; are independent samples of a zero-mean, unit

variance Gaussian random variablas the number of non-
zero groups ofk, andB;,i € {1,---,d} indexes thei-th
group, defined as

B; = {50+ (i—1)n/d+1,--- 50+ (i — 1)n/d+ K/d} .

The signal is then normalize& = x/||x||2. The sensing
matrix A is a2000 x 2000 matrix with components sampled
from the standard normal distribution. Finally, observas
y are obtained by[{3), with noise standard deviation- 1.
The assumed number of sign flipslis= 10.

We run the algorithms BIHT, BIHT,, BFCS, BFCS,,
RoOBIHT, RoBIHT+;, ROBFCS and RoBFC8®;. The stop-
ping criterion is||x(x41) — Xy || / [[x(k+1)|| < 0.001, where
X (k) Is estimate at thé-th iteration. Following the setup of
[31] and [20], the step-size of BIHT and RoBIHT and that
of BIHT-¢2 and Ro BIHT4; is 7 = 1 and1/m, respectively.
While in BFCS, BFCS%, RoBFCS, RoBFCS35, 7 ande are

hand tuned for the bestimprovementin SNR. The quantitative[G]

results are shown in Tadlé 1.

From Tablé L, we can see that RoBFCS performs the best

in terms of the metrics considered. Moreover, the algorithm
with ¢; barrier perform better than those withbarrier.

4. CONCLUSIONS

Based on the previously proposed BFQGhéary fused com-
pressive sensingnethod, we have proposed an algorithm for

ods BFCS and BIHTKinary iterative hard thresholding Fu-

ture work will aim at making RoBFCS adaptive in termg/of

andL.
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