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ABSTRACT 
Monte Carlo (MC) methods are widely used in signal pro­
cessing, machine learning and communications for statistical 
inference and stochastic optimization. A well-known class 
of MC methods is composed of importance sampling and its 
adaptive extensions (e.g., population Monte Carlo). In this 
work, we introduce an adaptive importance sampler using a 
population of proposal densities. The novel algorithm pro­
vides a global estimation of the variables of interest itera-
tively, using all the samples generated. The cloud of propos­
als is adapted by learning from a subset of previously gener­
ated samples, in such a way that local features of the target 
density can be better taken into account compared to single 
global adaptation procedures. Numerical results show the ad­
vantages of the proposed sampling scheme in terms of mean 
absolute error and robustness to initialization. 

1. INTRODUCTION 

Monte Carlo methods are widely used in signal processing 
and communications [1,2]. Importance sampling (IS) [3,4] is 
a well-known Monte Carlo (MC) methodology to compute in­
tegrals involving a complicated multidimensional target prob­
ability density function (pdf), 7r(x) with x e 1 " , efficiently. 
The IS technique draws samples from a simple proposal pdf, 
<z(x), assigning weights to them according to the ratio be­
tween the target and the proposal, i.e., w(x) = ^W. How­
ever, although the validity of this approach is guaranteed un­
der mild assumptions, the variance of the estimator depends 
critically on the discrepancy between the shape of the pro­
posal and the target. For this reason, Markov Chain Monte 
Carlo (MCMC) methods are usually preferred for large di­
mensional applications [5, 6, 7, 8]. 

In order to solve this issue, several works are devoted to 
the design of adaptive IS (AIS) schemes [4], where the pro­
posal density is updated by learning from all the previously 
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generated samples. The Population Monte Carlo (PMC) [9] 
and the Adaptive Multiple Importance Sampling (AMIS) [10] 
methods are two general schemes that combine the proposal 
adaptation idea with the cooperative use of a population of 
proposal pdfs. In PMC, a cloud of proposals is updated using 
propagations and resampling steps [4, Chapter 14]. In AMIS, 
a single proposal is adapted following a standard adaptive IS 
scheme, but the sequence of all the previous proposals is used 
to build the global estimator (implying that all the previous 
proposals must be evaluated at the new samples, thus leading 
to an increase in computational cost as the algorithm evolves). 

In this work, we introduce a novel population scheme, 
adaptive population importance sampling (APIS). APIS 
draws samples from different proposal densities at each 
iteration, weighting them according to the so-called deter­
ministic mixture approach, proposed in [11, 12] for a fixed 
(i.e., non-adaptive) setting. At each iteration, APIS computes 
iteratively a global IS estimate, taking into account all the 
generated samples up to that point. The main difference w.r.t. 
AMIS and PMC lies in its more streamlined adaptation pro­
cedure. APIS starts with a cloud of N proposals initialized 
randomly or according to the prior information available. 
The algorithm is then divided into groups of Ta iterations 
(so called epochs), where the proposals are kept fixed and 
Ta samples are drawn from each one. At the end of every 
epoch, the Ta samples drawn from each proposal are used 
to update its parameters (using partial IS estimators). APIS 
does not require resampling steps to prevent the degeneracy 
of the mixture (as in PMC) and its computational cost does 
not increase with the iteration number (as in AMIS). 

For the sake of simplicity, in this work we focus on a 
specific implementation with Gaussian proposal pdfs, whose 
means are updated according to the partial IS estimators of 
the expected value of the target, given Ta samples from each 
Gaussian. In this way, APIS takes advantage of one of the 
drawbacks of a standard IS method, since each proposal is 
able to extract specific and localized features of the target ef­
ficiently. Thus, one proposal can describe a specific region, 
while the remaining proposals explore other parts of the state 
space. Numerical results show that APIS improves the perfor­
mance of a standard non-adaptive multiple importance sam­
pler regardless of the initial conditions and parameters. 



2. PROBLEM STATEMENT 

In many applications, we are interested in inferring a variable 
of interest given a set of observations or measurements. Let 
us consider the variable of interest, x G 1" , and let y G Rd 

be the observed data. The posterior pdf is then 

, | s % |x )# (x ) 
p(x|y) = — ^ — °c ^(y|x)ff(x) (i) 

where ^(y|x) is the likelihood function, g(x.) is the prior pdf 
and Z(y) is the model evidence or partition function (useful 
in model selection). In general, Z(y) is unknown, so we con­
sider the corresponding (usually unnormalized) target pdf, 

TT(X) = *(y|x)<7(x) (2) 

Our goal is computing efficiently some moment of x, i.e., an 
integral measure w.r.t. the target pdf, 

I / (X )TT (X )CZX , (3) 

where Z = Jx 7r(x)<ix. 

3. THE APIS ALGORITHM 

The adaptive population importance sampling (APIS) algo­
rithm tries to estimate Z and I by drawing samples from a 
population of adaptive proposals. For the sake of simplicity, 
here we only consider a population of Gaussian proposal pdfs 
with fixed covariance matrices and we adapt only the means. 
However, the underlying idea is more general: many kinds of 
proposals could be used, including mixtures of different types 
of proposals. Furthermore, other parameters (e.g., the covari­
ance matrices or any other shape/scale parameters) could also 
be updated.1 

3.1. Algorithm 

The APIS algorithm is summarized below. 

1. Initialization: Set t = 1, m = 0, IQ = 0 and LQ = 0. 
Choose N normalized Gaussian proposal pdfs, 

, ( ° > ^ - (0) ^ ( x ) = ^ ( x ; / * r , C 

,(0) 

i = l , ,N, 

with mean vectors fj,\ and covariance matrices Q 
(i = 1 , . . . , N). Select the number of iterations per 
epoch, Ta > 2, and the total number of iterations, 
T = MTa, with M < | G Z+ denoting the number 
of adaptation epochs. Set also r/i = 0 and Wi = 0 for 
i=l,...,N. 

2. IS steps: 
1 The joint adaptation of different types of parameters is more delicate, so 

we leave it for a future work. 

(a) Draw Zj ~ q\m' (x) for i = 1 , . . . , N. 

(b) Compute the importance weights, 

_ 7r(zi) 

and normalize them, 

, i = l,...,N, (4) 

ul — n 1 
s 

(5) 

^N 
with S = J2j=iwj-

3. Iterative IS estimation: Calculate the "current" esti­
mate of I, 

N 

Jt = ^WifiZi), (6) 
i=i 

and the global estimate, using the recursive formula 

/* = 
1 

L^J^+SJt), (7) 
Lt-i+S 

where Lt = Lt-\ + S. Note that Zt = -^Lt. 

4. Learning: 

(a) Compute 

Pi 
71" (Z i ) 

(b) Calculate the empirical means, 

1 

i = l, ,N. (8) 

Vi = (Willi + Pi-Li) , (9) 
Wi + p 

and set Wi = Wi + pi for i = 1,..., N. 

5. Proposal adaptation: If t = kTa (k = 1,2,... ,M): 

(a) Adapt the proposals, moving them to the locations 
corresponding to their empirical means, i.e., set 

(m+l) 
Mi = Vi 1 = 1, ,N, (10) 

a n d ^ ^ ^ ^ x ; ^ 1 ) , ^ . 
(b) "Refresh memory" by setting r/i = 0 and Wi =0 

for i = 1,..., N. Set also m = m + 1. 

6. Stopping rule: The simplest possibility is: If t < T, 
set t = t + 1 and repeat from step 2. Otherwise, end. 

7. Outputs: Return the estimate of the desired integral, 

IT « / = \ I /(x)7r(x)dx, (11) 

as well as the normalizing constant of the target pdf, 

(12) ZT « Z = / 7r(x)dx. 
Jx 

The final locations of the Gaussians (i.e., their means, 
/4 for % = l,..., N) could also be used to estimate 
the locations of the modes of 7r(x). 



3.2. Remarks and observations 

In this section, we provide some important remarks on several 
aspects of the APIS algorithm: 

1. All the different proposal pdfs should be normalized to 
provide a correct IS estimation. 

2. The global estimators, IT and ZT, are iteratively ob­
tained by an importance sampling approach using NT 
total samples drawn (in general) from NT different 
proposals: N initial proposals chosen by the user, and 
N(T - 1) proposals adapted by the algorithm. 

3. Different stopping rules can be applied to ensure that 
the global estimators produce the desired degree of ac­
curacy, in terms of Monte Carlo variability. For in­
stance, one possibility is taking into account the vari­
ation of the estimate over time. In this case, the algo­
rithm could be stopped at any iteration t* < T, since 
an IS approach does not have the convergence issues 
("burn-in" period) appearing in MCMC methods. 

Moreover, let us observe that the algorithm works on two dif­
ferent time scales: 

1. At each iteration (t = 1 , . . . , T = MTa), APIS com­
putes the "current" estimate of the desired integral, Jt, 
and updates recursively the global estimates of the de­
sired integral and the normalizing constant, It and Zt 

respectively. 

2. At the transition iterations between two epochs (t = 
mTa with m = 1 , . . . , M), the parameters of the pro­
posals, fx\m forl<i<N, are updated. 

Considering only the transitions (i.e., t = mTa), APIS 
can be seen as a parallel implementation of N different adap­
tive IS methods using Ta = -^ > 2 samples to adapt the 
proposal pdfs and providing a single global estimation. Thus, 
in the previous description the index t could be removed. In­
deed, within an epoch the proposals do not change, so we 
could draw Ta i.i.d. samples directly from each proposal and 
then adapt the proposals using these samples. However, we 
prefer to maintain the previous description to emphasize the 
fact that the accuracy of the estimator can be tested at each it­
eration t, and that the algorithm could be stopped at any time. 

3.3. Black-box implementation 

As in any other Monte Carlo technique, the performance of 
APIS depends on the initialization, although this sensitivity 
is reduced w.r.t. a standard IS approach, as illustrated in the 
simulations. Hence, if some prior information about the tar­
get is available, it should be used to choose the initial param­
eters. However, if no prior information is available, apossible 
black-box implementation of APIS is the following, (a) Se­
lect randomly N^ different means in order to cover as much as 

Fig. 1. Contour plot of the target 7r(x), the initial fi\ 
(T) 

(squares) and the final fi\ (circles) locations of the means 
of the proposals for a single run of APIS (<Tj = 5, N = 100, 
M = 40, T = 2000). The trajectories of two means in the 
sample population are depicted in dashed line. 

possible of the target's domain, ^ fCM". (b) For each mean, 
choose Na different covariance matrices, implying that the 
total number of different proposals is N = N^N^. 

4. NUMERICAL RESULTS 

For the simulations, we consider a bivariate multimodal target 
pdf, which is itself a mixture of 5 Gaussians, i.e., 

1 5 

7r(x) = - y W ( x ; !/<,£<), x G R2, (13) 

with means vx = [-10, -10 ] T , v2 = [0,16]T, i/3 = 
[13,8]T, i/4 = [-9,7]T , i/5 = [14,-14]T , and covariance 
matrices S x = [2, 0.6; 0.6, 1], S 2 = [2, -0 .4 ; -0 .4 , 2], 
S 3 = [2, 0.8; 0.8, 2], S 4 = [3, 0;0, 0.5] and S 5 = 
[2, - 0 . 1 ; - 0 . 1 , 2]. Fig. 1 shows a contour plot of 7r(x). 

We apply APIS with N = 100 Gaussian proposals to es­
timate the mean (true value [1.6,1.4]T) and normalizing con­
stant (true value 1) of the target. We choose deliberately a 
"bad" initialization of the initial means, to test the robust­
ness of the algorithm and its ability to improve the corre­
sponding static (i.e., non-adaptive) IS approach. Specifically, 
the initial means are selected uniformly within a rectangle, 
/<40) - W([-4,4] x [-4,4]) for i = 1 , . . . , N. A single real­
ization of fi\ ' is depicted by the squares in Fig. 1. 

Initially we use the same isotropic covariance matrix, 
C f = a2I2, for every proposal. We test different values 
of a G {0.5,1,2,3, 5, 7,10, 70}, to gauge the performance 
of APIS. Then we also try different non-isotropic diago­
nal covariance matrices, C^ = diag(<7?1;<7?2)> where 
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Fig. 2. (a)-(b): Mean absolute error in the estimation of the mean and normalizing constant of 7r(x), averaged over 2000 runs 
as function of M (number of epochs) for (a) a = 2 and (b) a = 5. (c)-(d): Estimate of the first component of the mean as a 
function of the iterations t for a = 3, (c) M = 400 and (d) without adaptation (M = 1). The solid lines depict the true mean 
value (1.6), and the darker and lighter areas show the range of 90% and 100% of the empirical probability mass, respectively. 

Epochs \ Scale par. cr = 0.5 a= 1 cr = 2 cr = 3 cr = 5 a = 1 a = 10 cr = 70 <7i>;,-~W([l,10]) 

M = 1 (Ta = T) 5.3566 6.8373 8.3148 3.6428 0.3926 0.1326 0.0886 0.3376 0.2048 
M = 20 (Ta = 100) 4.6089 3.5248 1.9265 0.9083 0.1244 0.0910 0.0908 0.3397 0.0837 
M = 40 (Ta = 50) 4.0862 3.3079 1.7518 0.7125 0.1056 0.0863 0.0940 0.3318 0.0689 
M = 100 (Ta = 20) 3.7727 3.2009 1.5619 0.5776 0.0832 0.0822 0.0961 0.3441 0.0593 
M = 400 (Ta = 5) 3.5577 2.6161 0.7708 0.1464 0.0685 0.0846 0.0972 0.3539 0.0535 
M = 1000 (Ta = 2) 2.9543 0.9967 0.0550 0.0636 0.0814 0.0945 0.1102 0.3594 0.0700 

Table 1. Mean absolute error in the estimation of the mean of the target (first component), averaged over 2000 runs, for 
different values of a and number of epochs, M; M = 1 corresponds to a non-adaptive IS method, whereas M = -̂  = 1000 is 
the maximum number of epochs possible for T = 2000. The best results for each value of a are highlighted in bold-face. 

aij ~ W([l,10]) for j G {1,2} and i = l,...N. We 
set T = 2000 and Ta e {2,5, 20, 50,100}, i.e., M = f- e 
{20,40,100,400,1000}. We also consider M = 1, which 
corresponds to a standard IS technique with multiple propos­
als and no adaptation. All the results are averaged over 2000 
independent experiments. 

Fig. 1 shows also the final locations of the means, fi\ ', 
in one run with a = 5 using circles. Furthermore, the trajec­
tories of two means in the sample population are depicted in 
dashed line. Note that a random walk among three modes of 
the target is induced in one of them, whereas the other con­
verges to the mode that is further away from the origin. Table 
1 shows the mean absolute error (MAE) in the estimation of 
the first component of the mean: APIS always outperforms 
the non-adaptive standard IS procedure, with the only excep­
tion of a = 10, where APIS has a negligibly larger error. 
Figs. 2(a)-(b) illustrate the evolution of the MAE w.r.t. M for 
a = 2 and a = 5 respectively, whereas Figs. 2 (c)-(d) show 
the estimate of the first component of the mean vs. the itera­
tion step t for a case with adaptation (a = 3 and M = 400) 
and a case with no adaptation (a = 3 and M = 1). 

5. CONCLUSIONS AND FUTURE LINES 

We have introduced a novel adaptive population importance 
sampling (APIS) algorithm, which is based on applying im­

portance sampling (IS) principles to a population of adaptive 
proposal pdfs. Compared to other techniques, APIS has a 
simpler adaptation procedure (based only on partial IS esti­
mations) and could be easily implemented in a parallel and/or 
a distributed fashion. 

Although the APIS scheme is quite general, here we have 
focused on a specific implementation with Gaussian proposal 
pdfs, adapting their means. Our experiments have shown that 
APIS reduces the dependence on the choice of the parameters 
of the proposal. Indeed, the proposed adaptation procedure 
almost always improves the results w.r.t. the corresponding 
standard non-adaptive IS method, regardless of the variances 
chosen initially. The results suggest that smaller scaling pa­
rameters benefit more from a more frequent adaptation. Such 
an inverse relationship between the variance of the propos­
als and frequency of adaptation is expected to hold also more 
generally in a family of adaptive sampling schemes similar 
to APIS (e.g., if the proposals were mixture densities them­
selves). 

An interesting open issue is whether optimal adaptation 
schemes could be identified under particular conditions. Also, 
it would be interesting to explore in detail how the geometry 
of the target density does in general influence the rate and 
trajectories of proposal movements. The joint update of scale 
and shape parameters and interacting adaptation schemes will 
also be considered in future work. 
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