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ABSTRACT

Time-difference-of-arrival (TDOA) estimation is an important prob-
lem in many microphone signal processing applications. Tradition-
ally, this problem is solved by using a cross-correlation method,
but in this paper we show that the cross-correlation method is ac-
tually a restricted special case of a much more general method. In
this connection, we establish the conditions under which the cross-
correlation method is a statistically efficient estimator. One of the
conditions is that the source signal is periodic with a known fun-
damental frequency of 2π/N radians per sample, where N is the
number of data points, and a known number of harmonics. The
more general method only relies on that the source signal is periodic
and is, therefore, able to outperform the cross-correlation method in
terms of estimation accuracy on both synthetic data and artificially
delayed speech data. The simulation code is available online.

Index Terms— (Fractional) TDOA Estimation, Fundamental
Frequency Estimation, Generalised Cross-correlation

1. INTRODUCTION

The estimation of an angle or a location, from which an unknown
source signal originates, is an important problem in many appli-
cations. In, e.g., audio applications, such estimates can be used
to separate simultaneously talking speakers, to attenuate unwanted
background noise, and to estimate the geometry of a room [1–3].
These direction-of-arrival (DOA) and source localisation estimation
problems can be boiled down to the problem of estimating the time-
difference-of-arrivals (TDOA) between the sensors of an array, and
we here consider the problem of estimating the TDOA between two
sensors. Such TDOA estimates between sensor pairs are often re-
quired input to algorithms (such as the popular SRP-PHAT algorithm
[1]) operating on data recorded by more than two microphones [2].

The collection of correlation-based methods referred to as the
generalised cross-correlation (GCC) methods [4] is by far the most
widely used way to compute TDOA estimates in audio applications.
In contrast to radar and sonar applications, the source signal is here
typically a wideband signal so statistically efficient algorithms such
as MUSIC [5] and ESPRIT [6] developed for narrowband signal
models cannot be used directly. Moreover, the broadband version of
the MUSIC algorithm has a high computational cost [7] in contrast
to the GCC methods, which can be implemented efficiently using
an FFT algorithm when these methods are formulated in the fre-
quency domain. Another advantage to formulating the signal model
in the frequency domain is that the delay parameter is also separated
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analytically from the source signal and can be modelled as a con-
tinuous parameter. Consequently, most papers on DOA estimation
and source localisation for audio applications take their outset in a
frequency domain model.

The main points in this paper are most easily demonstrated if we
consider the simplest parametric model for TDOA estimation

x1(n) = s(n) + e1(n)

x2(n) = βs(n− η) + e2(n)
(1)

for n = 0, 1, . . . , N − 1 where the signals xi(n), s(n), and ei(n)
are the i’th sensor signal, the source signal, and the noise on sensor
i, respectively. The scalars β > 0 and η ∈ [−N/2, N/2) are the
attenuation and the relative delay in samples, respectively, of the
source signal from sensor 1 to 2. If the source signal is a periodic
signal with the fundamental frequency 2π/N radians per sample (or
an integer multiple thereof), the model in (1) can be written in the
frequency domain as

X1(k) = S(k) + E1(k)

X2(k) = βS(k) exp(−j2πkη/N) + E2(k)
(2)

for k = 0, 1, . . . , N − 1 where Xi(k), S(k), and E(k) are the dis-
crete Fourier transform coefficients of the signals xi(n), s(n), and
ei(n), respectively. The frequency-domain model in (2) suffers from
a number of problems. First of all, it is often too restrictive. Al-
though the source signal is often approximately periodic on a short
time scale in audio applications, the assumption on the fundamental
frequency is usually not satisfied in practice. This will lead to arte-
facts which are commonly referred to as edge effects [8–10]. These
edge effects can be avoided by introducing appropriate zero padding,
but this will colour the noise spectrum by a rank-deficient correlation
matrix [8]. Another problem is that the frequency-domain model
in (2) cannot be used for fractional TDOA estimation since a non-
integer delay of a real-valued source signal results in a complex-
valued sensor signal!

Due to these problems, we instead propose a different model
which only assume the source signal to be periodic, but not that the
fundamental frequency is 2π/N radians per sample. Modelling the
fundamental frequency as an unknown parameter and estimating it
jointly with the TDOA or DOA is not a new idea [11–15]. How-
ever, we here show that this model is actually more general than the
traditional frequency domain model as the latter is a special case
of the former, and we also establish the conditions under which the
cross-correlation method is a statistically efficient estimator. In this
connection, we propose a new approximate maximum likelihood es-
timator for joint fundamental frequency and TDOA estimation which
outperforms the cross-correlation method on both synthetic data and
artificially delayed speech data. In contrast to the traditional cross-
correlation method, the proposed estimator also produces fractional
delay estimates without resorting to, e.g., interpolation methods.



2. JOINT FUNDAMENTAL FREQUENCY AND TDOA
ESTIMATION

As we alluded to in the introduction, we will here not make any
assumption in our signal model on the fundamental frequency. As
we detail below, we instead assume that the source signal is periodic
with an unknown fundamental frequency and an unknown number
of harmonic components. We will also make the assumption that the
noise is white and Gaussian. Although this will potentially lead to
poor estimation performance in audio applications with significant
reverberation, the assumption is sufficient here to demonstrate our
main points.

2.1. The Model

Any zero-mean, real-valued, and periodic source signal can be writ-
ten as

s(n) =

L∑
k=1

Ak cos(ω0kn+ φk) =

L∑
k=−L

αk exp(jω0kn) (3)

where Ak > 0, φk ∈ [−π, π), ω0 ∈ (0, π/L), and αk = α∗−k =
Ak exp(jφk)/2 are the amplitude, phase, fundamental frequency,
and complex amplitude, respectively. Note that A0 = 0 which
corresponds to the physical fact that the source signal has no DC-
component. If we delay the source signal by the delay η, we there-
fore obtain that

s(n− η) =
L∑

k=−L

αk exp(jω0kn) exp(−jξk) (4)

where we have defined ξ , ω0η. In matrix-vector notation, the
signal model in (1) can therefore be written as

x =

[
x1

x2

]
=

[
Z(ω0)

βZ(ω0)D(ξ)

]
α+ e =H(β, ξ, ω0)α+ e (5)

where we have defined

z(ω) ,
[
1 exp(jω) · · · exp(jω(N − 1))

]T
Z(ω0) ,

[
z(−Lω0) · · · z(−ω0) z(ω0) z(Lω0)

]
D(ξ) , diag

(
exp(jLξ), . . . , exp(jξ),

exp(−jξ), . . . , exp(−jLξ)
)

α ,
[
α−L · · · α−1 α1 · · · αL

]T
H(β, ξ, ω0) =

[
Z(ω0)

βZ(ω0)D(ξ)

]
.

Moreover, we assume the noise to be white and Gaussian with vari-
ance σ2. Thus, the observation model is the normal distribution with
probability density function (pdf)

p(x|α, β, ξ, ω0, σ
2) = N (H(β, ξ, ω0)α, σ

2I2N ) (6)

where I2N is the 2N × 2N identity matrix.

2.2. An Approximate ML Estimator

The observation model in (6) consists of the 2L linear parameters in
α, the noise variance σ2, and the nonlinear parameters β, ω0, and ξ.
We obtain the maximum likelihood estimates of these parameters if
the observation model is maximised w.r.t. to these parameters. The
linear parameters and noise variance are easily separated out of the

optimisation problem leaving us with the non-convex optimisation
problem

(β̂, ξ̂, ω̂0) = argmax
β>0,ξ∈[−π,π),ω0∈(0,π/L)

J(β, ξ, ω0) (7)

where the cost function is given by

J(β, ξ, ω0) = x
HH(β, ξ, ω0)

[
HH(β, ξ, ω0)H(β, ξ, ω0)

]−1

×HH(β, ξ, ω0)x . (8)

This cost function is also sometimes referred to as the nonlinear least
squares (NLS) cost function. Although possible in principle, it is
not computationally feasible to perform the 3D-search for the global
maximum over the highly nonlinear cost function in (8). However,
an approximate method, which is much faster, can be used instead
as described below.

When the fundamental frequency is not close to 0 or π (rela-
tive to N ), a good approximation to the product ZH(ω0)Z(ω0) is a
scaled identity matrix. That is,

ZH(ω0)Z(ω0) ≈ NI2L . (9)

This approximation is exact asymptotically in N or if the funda-
mental frequency is on the Fourier grid {2πk/N}N−1

k=0 . Under this
approximation, we have that

HH(β, ξ, ω0)H(β, ξ, ω0) ≈ (1 + β2)NI2L (10)

and this results in that the cost function in (8) can be written as

J(β, ξ, ω0) =
1

N(1 + β2)

[
xH1 Z(ω0)Z

H(ω0)x1

+ β2xH2 Z(ω0)Z
H(ω0)x2

+ 2βxH1 Z(ω0)D
∗(ξ)ZH(ω0)x2

]
. (11)

We suggest that this cost function is optimised in the following steps.

1. If all the nonlinear parameters are unknown, an initial esti-
mate of the fundamental frequency can be obtained by us-
ing a multi-channel pitch estimator such as the one suggested
in [16]. If also the number L of harmonics are unknown,
the joint fundamental frequency and model order estimator
in [17] can easily be extended to cope with multi-channel data
by using the model comparison framework suggested in [18].
If the attenuation β and ξ have been estimated (see the next
two steps), the fundamental frequency can be re-estimated by
maximising the cost function in (11).

2. When the fundamental frequency is known or has been es-
timated, the cost function for ξ does not depend on β and
reduces to

J(ξ) = xH2 Z(ω0)D(ξ)ZH(ω0)x1 . (12)

This can be optimised efficiently using an FFT algorithm fol-
lowed by a 1D line search such as a Fibonacci search.

3. When the fundamental frequency is known or has been esti-
mated and an estimate for ξ has been computed, an estimate
for the attenuation parameter is obtained by solving the sec-
ond order equation

0 =
∂J(β, ξ, ω0)

∂β

= β
[
xH2 Z(ω0)Z

H(ω0)x2 − xH1 Z(ω0)Z
H(ω0)x1

]
+ (1− β2)xH1 Z(ω0)D

∗(ξ)ZH(ω0)x2 (13)

for β.



By iterating between the three steps above, an approximate ML es-
timate can be found. However, we have found that just one iteration
gives an acceptable performance, and we have used this setting in
the simulation section below.

2.3. An Important Special Case

When the fundamental frequency is set to ω0 = 2π/N and the num-
ber of harmonics is set to L = dN/2e − 1, the approximation in (9)
is exact, and the cost function for η = ξ/ω0 does not depend on β
and can be written as

J(η) = xH1 Z(2π/N)D∗(2πη/N)ZH(2π/N)x2

=

dN/2e−1∑
k=−dN/2e+1

X∗1 (k)X2(k) exp(j2πkη/N) (14)

where X1(0) = X2(0) = 0. If η is an integer and X1(N/2) =
X2(N/2) = 0 if N is even, the cost function can be written as

J(η) =

N−1∑
k=0

X∗1 (k)X2(k) exp(j2πkη/N) (15)

which is the cost function of the cross-correlation TDOA estimator
[2]. Thus the cross-correlation estimator in (15) is the ML estimator
and is therefore an efficient estimator asymptotically if the following
conditions are satisfied.

1. The source signal is a periodic signal with zero-mean.

2. The fundamental frequency of the source signal is 2π/N .

3. The number of harmonics of the source signal is L =
dN/2e − 1.

4. The delay is an integer value.

For the special case whereN is even,X1(N/2) 6= 0, andX2(N/2) 6=
0, the cross-correlation method can be shown to be a suboptimal es-
timator. In practice, however, anti-aliasing filters will nearly always
ensure that X1(N/2) ≈ X2(N/2) ≈ 0 so this special case is only
of academic interest.

2.4. Fractional TDOA Estimation

The cross-correlation function in (15) can also be derived from the
frequency domain model in (2). However, as we alluded to in the in-
troduction, the cost function should not be used for fractional TDOA
estimation even though η appears to be a continuous parameter. To
demonstrate this, assume that no noise is present so that

X2(k) = X1(k) exp(−j2πkη0/N), for k = 0, 1, . . . , N − 1

where η0 is the true delay. If we insert this into (15) and exploit
that X1(k) = X∗1 (N − k), the cost function becomes complex-
valued unless η−η0 is an integer. This is a well-known problem and
has typically been addressed by using various interpolation methods
[19–21], fractional delay filters [22, 23], and the fractional Fourier
transform [24]. However, these heuristic methods can be completely
avoided if the cost function in (14) is used instead, since it is real-
valued for any delay η.

3. SIMULATIONS

The proposed TDOA estimator (denoted as AML in the rest of this
section) was evaluated and compared with other estimators on syn-
thetic data as well as on artificially delayed speech data. This served
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Fig. 1. Performance of the (A)NLS and GCC(P) methods in scenar-
ios with a stereo harmonic signal (a) in different SNRs as well as
(c) with different fundamental frequency deviations, and (b) a stereo
white Gaussian noise signal at different SNRs.

to experimentally show the differences between the traditional and
proposed models for TDOA estimation. The other methods consid-
ered in the evaluations were the NLS method proposed in [25]1, and
the generalized cross-correlation (GCC) method with unit and phase
transform (PHAT) weighting, respectively [4]. These GCC methods
have been modified so that their cost functions are written with sym-
metric indices as in (14) to allow for fractional TDOA estimates, and
we refer to them as GCC and GCCP in the rest of this paper. The
differences between the AML method and the NLS method are that
the NLS method does not make the asymptotic approximation in (9),
but assumes that the source is in the far field (i.e., that β = 1). For
both of these methods, the pitch and harmonic model order were
estimated using the method [17]. The for generating the results

1This method was derived for joint DOA and pitch estimation, but we
modified it for TDOA estimation when the pitch is known or estimated.
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Fig. 2. TDOA estimates of a real speech, stereo signal obtained using
the (A)NLS and GCC(P) methods.

presented in this section can be downloaded from http://kom.
aau.dk/~jkn/publications/publications.php.

Firstly, we describe the evaluation of the methods on synthetic
data. In one experiment, the methods were evaluated in a scenario
where the signal of interest was 100 samples of a real-valued and
periodic source consisting of five harmonics with unit amplitudes
and random phases. The fundamental frequency, in radians per sam-
ple, was sampled from U(0.1, 0.15). A synthetic stereo recording
was then obtained by generating an additional signal by delaying the
signal of interest with approximately 0.6 samples and multiplying it
with β = 0.75. Both signals were observed in white Gaussian noise
with a variance corresponding to a certain SNR for the first chan-
nel. With this setup, 100 Monte-Carlo simulations were conducted
for different SNRs for the first channel, yielding the results in Figure
1a. The labels ‘NLS (oracle)’ and ‘CRB’ denotes the NLS method
applied with oracle pitch information and the Cramér-Rao bound,
respectively. To summarize these results, the NLS yields similar per-
formance (except for low SNRs), no matter if the true or estimated
pitch was used. Moreover, the NLS slightly outperformed the ANLS
method. The main result, however, is that all of these methods out-
performed the GCC(P) methods, relying on the traditional frequency
domain model. This clearly illustrates the benefit of using the pro-
posed model. The reason to the floor on the (A)NLS performances
for SNRs greater than 30 dB are: the large sample approximation in
(9) used in the ANLS method, and the far field assumption used in
the NLS method (i.e., that β = 1).

The next experiment was on a scenario where the signal of in-
terest was a broadband, white Gaussian noise signal (N -periodic).
This corresponds to ω0 = 2π/N radians per sample and a harmonic
model order ofN/2−1. Again, a stereo recording was generated by
delaying and attenuating this signal as before. White Gaussian noise
was added to each channel at different SNRs for the first channel.
With this setup, the results depicted in Figure 1b were produced.
In this scenario, all methods yield similar performance and attain
the CRB for SNRs above 10 dB. This supports our claim that the
widely used frequency domain model in (2) is just a special case
of our proposed model for TDOA estimation. It should be noted,
however, that real signals are never perfectly N -periodic, and the
GCC(P) methods will therefore generally not show this optimum
performance in practice. We also note that in scenarios with broad-
band signals like this, the fundamental frequency is very low and
difficult to estimate [26]. Nonetheless, the AML and NLS methods
show optimum performance when the fundamental frequency is es-
timated. The last experiment was again with a harmonic signal as
in the first experiment on synthetic data. However, in this experi-

GCC GCCP AML NLS

RMSE [samples] 0.148 0.201 0.056 0.036

Table 1. RMSEs corresponding to the estimates shown in Figure 2.

ment the SNR on the first channel was varied while the fundamental
frequency was 2·fs

N
Hz plus a varying frequency deviation, where

the sampling frequency, fs, was 8 kHz. Monte Carlo simulations
were run for different frequency deviations, producing the results in
Figure 1c. When the fundamental frequency is on the N -point fre-
quency grid (i.e., no frequency deviation), the GCC, AML and NLS
all yield the same performance and attain the CRB. In the more real-
istic events of frequency deviations, the performance of all methods
decreases for an increasing deviation. Above 5 Hz, the AML and
NLS methods clearly outperforms the GCC(P) methods. With no
attenuation (β = 1), the NLS method attains the CRB even with fre-
quency deviations2, so extending the NLS method with estimation of
the attenuation factor, will clearly result in a method outperforming
GCC(P), in all cases.

We also evaluated the methods on artificially delayed speech
data. The data set used here was a female speech signal of the sen-
tence “Why were you away a year, Roy?”. To be able to evaluate
the accuracy of the obtained TDOA estimates, the stereo recording
was generated by delaying this speech signal using a RIR genera-
tor [27], such that the true TDOA is approximately 0.75 samples.
No reverberation or additional noise was added in this process. The
TDOA was estimated using the aforementioned methods over time
from blocks of 100 samples, which corresponds to 12.5 ms at a sam-
pling frequency of 8 kHz, from the two channels. This resulted in the
estimates shown in Figure 2, corresponding to the RMSEs in Table
1. These result show that the AML and NLS methods clearly outper-
formed the GCC(P) methods, which produced much more spurious
TDOA estimates in this more realistic evaluation scenario. This indi-
cates that the proposed model for TDOA estimation is indeed useful
in practice.

4. CONCLUSION

In this paper, we have established the connection between the tra-
ditional cross-correlation method and a more general maximum
likelihood method in which the fundamental frequency of the peri-
odic signal is modelled as an unknown and continuous parameter.
In this connection, we established the four conditions under which
the cross-correlation method is a statistically efficient estimator and
demonstrated experimentally that significant improvement can be
achieved by using the maximum likelihood method instead. The
conditions are actually quite restrictive as they require the funda-
mental frequency of the unknown source signal to be 2π/N , where
N is the number of data points, the number of harmonics to be
dN/2e − 1, and the delay to be an integer value. We demonstrated
how the latter assumption can easily be lifted by using symmetric
frequency indices around zero. This followed automatically from
the proposed model where the fundamental frequency and the num-
ber of harmonics are modelled as unknown parameters. Moreover,
the derived approximate likelihood estimator for this model was
demonstrated to outperform the cross-correlation method on both
synthetic and real-world data.

2This was evident from results not presented in this paper.
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