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Christian Scḧuldt1,2 and Peter Ḧandel1
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ABSTRACT

The estimation of the decay rate of a signal section is an integral
component of both blind and non-blind reverberation time estima-
tion methods. Several decay rate estimators have previously been
proposed, based on, e.g., linear regression and maximum-likelihood
estimation. Unfortunately, most approaches are sensitiveto back-
ground noise, and/or are fairly demanding in terms of computational
complexity. This paper presents a low complexity decay rateesti-
mator, robust to stationary noise, for reverberation time estimation.
Simulations using artificial signals, and experiments withspeech in
ventilation noise, demonstrate the performance and noise robustness
of the proposed method.

Index Terms— Reverberation time estimation, blind estimation,
decay rate estimation, backward integration

1. INTRODUCTION

The reverberation time of an enclosure,T60, defined as the time re-
quired for the reverberation to decay60 dB, has been studied since
the late 19th century. Traditionally (since the 1930s), a loudspeaker
producing an interrupted noise burst is used, and the decaying signal
in the enclosure is measured after the loudspeaker has gone silent, to
obtain aT60 estimate [1]. Multiple measurements are typically re-
quired, due to noise fluctuations. In 1965, Schröder showedthat
the ensemble average of decaying squared white noise is identi-
cal to a certain integral over the squared room impulse response
(RIR), implying that the reverberation time could be obtained di-
rectly from the RIR, rather than from measuring the decay of mul-
tiple noise bursts [2]. The integration scheme in [2] is commonly
denoted Schröder backward integration, or simply backward inte-
gration.

More recently, the concept ofblind T60 estimation has been ex-
plored. The word blind in this context means that only a reverberant
recording, typically containing speech, is used forT60 estimation,
and no information about the excitation signal is available. Some
methods based on machine learning have been proposed [3, 4],al-
though they tend to be computationally demanding and, obviously,
require prior training. A more common approach is to directly es-
timate the decay rate in sections of the signal where the reverber-
ation is dominant. Several such methods, based on direct linear
regression (LR) [5, 6, 7, 8, 9], and maximum-likelihood estima-
tion (ML) [10, 11, 12] have been presented, as well as methods
extending the backward integration approach to the blind estima-
tion case [13, 14]. Blind reverberation time estimation algorithms
typically require, in addition to straight-forward decay rate estima-
tion, other processing steps such as, e.g., segmentation (finding sig-

nal sections where the reverberation is dominant) [9, 12, 13], pre-
whitening [15, 16], and various post-filtering methods [5, 6, 8, 12].
The focus of this paper is, however, solely on the decay rate estima-
tion step, as this is typically the core of theT60 estimation algorithm.
Nevertheless, it should be emphasized that for a complete blind T60

estimation solution, pre- and post processing methods (such as men-
tioned above) should naturally be used as well, and that the decay
rate estimator proposed in this paper may be used in conjunction
with essentially any such method(s).

Motivated by a recent comparison of blindT60 estimation ap-
proaches [17], which noted that the performance of all compared es-
timators deteriorates in the presence of noise, this paper proposes a
noise robust decay rate estimator. The proposed method is based on
backward integration, requires low computational complexity, and
could be used for both blind- and non-blindT60 estimation. Monte-
Carlo simulations with artificial signals, as well as experiments with
speech signals corrupted by ventilation noise, are used to verify the
performance.

2. DECAY RATE ESTIMATION

A common model to describe the RIR, assuming a diffusive sound
field and a source-microphone distance greater than the critical dis-
tance [18], was introduced by Polack [19] as

f(t) = v(t)e−tρ + d(t) t ≥ 0, (1)

where t is the (continuous) time,ρ > 0 is the decay rate, and
v(t) and d(t) are two wide-sense stationary uncorrelated random
processes, representing the (decaying) reverberation andthe back-
ground noise, respectively. The decay rateρ is related to the rever-
beration time as

T60 =
3

ρ log
10
(e)

≈
6.91

ρ
. (2)

In non-blindT60 estimation, the decay rate can be estimated from
the RIR directly (using any type of decay rate estimator), toobtain
the reverberation time. In the blind case, it can be assumed that the
reverberated signal (either in full-band or in frequency sub-bands)
locally adheres to a similar exponential model [6, 10]. The same
type of decay rate estimation can, thus, be used for both blind and
non-blindT60 estimation.

In the following, techniques for decay rate estimation, com-
monly used in the context of reverberation time estimation,are
briefly described.
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2.1. Linear regression

Perhaps the most basic decay rate estimator is based on simply fit-
ting a straight line toln f2(t), assuming that the influence of the
background noised(t) is negligible. The slope of the line then cor-
responds to the decay rate. This linear regression approachhas been
used for decay rate estimation in many blind reverberation time es-
timators; see, e.g., [5, 6, 7, 8, 9]. It has been shown that in anoise-
less scenario, this estimator is unbiased and achieves an estimation
variance approximately4 dB above the Cramér-Rao lower bound
(CRB) [20]. In the case of noise, however, the estimator suffers from
significant bias [20].

2.2. Non-linear regression

Unfortunately, in many cases the background noise is not negligi-
ble, meaning that the ensemble mean ofln f2(t) will not adhere to
straight line. Approaches for non-linear regression, where the influ-
ence of the noise is taken into account, has been proposed fornon-
blind reverberation time estimation [21, 22]. However, non-linear
regression requires numerical optimization and is thus demanding,
especially compared to simple linear regression, in terms of compu-
tational complexity.

2.3. Backward integration

Backward integration has been used extensively for non-blind re-
verberation time estimation, and is also part of the ISO 3382stan-
dard [1]. The concept, as introduced by Schröder [2], does not rely
on the Polack model assumption, although, under the assumption
of the Polack model (1), backward integration can also be used for
blind reverberation time estimation (see, e.g., [13, 14]),owing to the
fact that the integral of an exponentially decaying waveform also
is exponentially decaying. Integrating (1) significantly reduces the
variance, and the reverberation time can then be estimated,as in Sec-
tion 2.1, by fitting a line to the logarithm of the integrated curve.
However, practical problems exist due to background noise and the
use of a finite upper integration limit. This causes a bendingof the
tail of the integrated curve [20, 23, 24], resulting in a decay rate es-
timation bias. Methods for handling the background noise problem,
through, e.g., subtraction of a background noise estimate [25], or
by careful tuning of the line fitting and integration limits [24], have
been proposed. However, it has recently been shown that tuning of
the backward integration parameters is non-trivial, as theoptimal pa-
rameter selection depends (among other things) on the actual decay
rate [23], and that this is especially critical when the background
noise is strong, which typically can be the case for blind reverbera-
tion time estimation [23].

2.4. Maximum-likelihood estimation

In [11], a noise robust ML decay rate estimator was presented, ex-
tending the previous work in [10], which did not take background
noise into account. Assuming a time discrete version of (1),

fd(n) = vd(n)e
−nρd + dd(n), (3)

wheren ≥ 0 is the sample index, and assuming thatvd(n) and
dd(n) are two uncorrelated i.i.d. Gaussian signals with zero mean
and with variancesσ2

v,d and σ2

d,d, respectively, gives the log-
likelihood function forN observations (n = {0, · · · , N − 1})

of fd(n) as [11]

−
1

2

(

ln(2π) +

N−1
∑

n=0

ln(σ2

v,de
−2nρd + σ2

d,d)

+

N−1
∑

n=0

f2

d (n)

σ2

v,de
−2nρd + σ2

d,d

)

. (4)

Finding the maximum of (4), with respect toσv,d, σd,d andρd allows
estimation of the decay rate, and thus the reverberation time. The
maximum of (4) can be found directly through, e.g., expectation-
maximization [11], although this is a fairly demanding procedure
in terms of computational complexity. Another approach, denoted
Hybrid MLN [20], initially estimatesσv,d from the firstNL of the
N observations, where it is assumed that the noise can be negligible,
and then uses this information, together with a separately obtained
estimate ofσd,d, to find the decay rateρ. (For a more comprehensive
description of Hybrid MLN, the reader is referred to [20].)

Nevertheless, the disadvantage of these ML approaches is that
they all lead to transcendental equation that have to be solved numer-
ically. A low complexity approach has been presented in [26], using
the assumption ofvd(n) having Laplacian distribution, and using
polynomial approximation for root finding. However, this method
does not consider any noise.

3. PROPOSED DECAY RATE ESTIMATOR

The objective of the proposed decay rate estimator is to avoid the
well-know backward integration tail problem [23, 24], while incor-
porating noise robustness. This is achieved by intrinsically modeling
the bend of the tail, caused by both the finite upper integration as well
as the noise, similar to, e.g., [21]. However, the proposed method
is based onsuccessive integration[27], yielding a low complexity
estimator, in contrast to [21], where a computationally demanding
iterative approach is used. For the sake of simplicity, the backward
integration is altered so that the integration range is between0 and
t, instead of betweent and∞. The principal idea is, however, the
same. Practical issues regarding, e.g., the computation ofthe inte-
grals and the computational complexity, are discussed in Section 3.1.

By assuming the Polack model in (1), and that the random pro-
cessesv(t) andd(t) are zero mean, wide-sense stationary and uncor-
related, the (ensemble) mean of the integrated curve can be written
as

∫ t

0

E{f2(τ )}dτ = tσ2

d +
σ2

v

2ρ
(1− e−2tρ), (5)

whereσ2

d = E{d2(t)} andσ2

v = E{v2(t)}, andE{·} denotes
expected value. In many cases,σ2

d can be estimated separately; in
the blind estimation case, one could estimateσ2

d in periods of si-
lence [11], and in the non-blind estimation case, one could simply
increase the number of estimated RIR coefficients sufficiently so that
the last samples are guaranteed to contain onlyd(n). If σ2

d is esti-
mated separately, the estimate can simply be subtracted from (5),
i.e.,

g(t) =

∫ t

0

E{f2(τ )}dτ − tσ̂2

d

= t(σ2

d − σ̂2

d) +
σ2

v

2ρ
(1− e−2tρ), (6)

and the noise influence can thus be neglected ifσ̂2

d ≈ σ2

d, yielding
a noise compensated signalg(t). (Note the similarity to the noise



power subtraction in [25], although in that case linear fitting to the
backward integrated curve formed the basis of the decay rateestima-
tor.) The method of successive integration [27] is also based on the
fact that the integral of an exponentially decaying waveform is ex-
ponentially decaying as well. Hence, integrating (6) againaccording
to

∫ t

0

g(τ ) dτ =
σ2

v

2ρ

(

t−
1

2ρ

(

1− e−2tρ
)

)

=
1

2ρ

(

σ2

vt+ g(t)
)

, (7)

gives thatg(t) can be written as a function of its own integral, i.e.,

g(t) =

(

σ2

vt− 2ρ

∫ t

0

g(τ ) dτ

)

. (8)

It can then be seen that a simple two dimensional function

ĝ(t, s) = α0t+ α1s+ α2, (9)

can be fitted to (8), where the parameterα2 is added to somewhat
lessen the influence of modeling errors (i.e., if the model in(1) is not
entirely correct). Given a total ofN ≥ 3 measurements ofg(t) at
times{t0, t1, · · · , tN−1}, the unknown parametersα0, α1 andα2

can then be found through a standard least-squares approach, i.e.,

min

N−1
∑

n=0

(

g(tn)− ĝ
(

tn, gI(tn)
)

)2

, (10)

wheregI(tn) =
∫ tn

0
g(τ ) dτ . The minimum squared error is ob-

tained by setting the partial derivatives of the expressionin (10) with
respect toα0, α1 andα2 to zero, and solving for the unknown pa-
rameters. This gives the linear system




〈t, t〉 〈t, gI〉 〈t,1〉
〈gI , t〉 〈gI , gI〉 〈gI ,1〉
〈1, t〉 〈1, gI〉 〈1,1〉









α0

α1

α2



 =





〈t, g〉
〈gI , g〉
〈1, g〉



 , (11)

where〈·, ·〉 denotes inner product,t = [t0, t1, · · · , tN−1]
T , gI =

[gI(t0), gI(t1), · · · , gI(tN−1)]
T , g = [g(t0), g(t1), · · · ,

g(tN−1)]
T and1 = [1, 1, · · · , 1]T . Solving (11) forα0, α1 and

α2 then gives the estimated decay rate asρ̂ = −α1/2 (compare (8)
with (9)). Hence, an estimate ofρ is obtained directly, and the bend-
ing of the integrated curve (see, e.g., [20, 24]) requires nospecial
attention.

3.1. Practical considerations

It should be noted that one typically has constant time interval be-
tween the measurements ofg(t), meaning that the time instances ef-
fectively can be written ast = [0, 1, 2, · · · , N − 1]T . This, in turn,
means that some of the inner products can be calculated directly, e.g.,
〈t, t〉 = N(N − 1)(2N − 1)/6. The other inner products in (11)
can be obtained using a total of3N multiplications (note that, e.g.,
〈gI , 1〉 can be calculated through a cumulative sum). When calculat-
ing g(t) in (6), the measured values off2(t) are used, instead of the
ensemble average. This can be done owing to the variance reducing
effect of the integration. If integral trapezoid approximation is used
(see [27] for details on how this affects the estimation performance),
N multiplications (the squaring off(t)) are required to calculate
the vectorsg andgI . This gives a total of4N multiplications re-
quired for the linear equation system in (11). The multiplications
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Fig. 1. MSE of the estimators forρ = 0.008 and varyingN , in the
case of i.i.d. Gaussian signals.
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Fig. 2. MSE of the estimators forρ = 0.004 and varyingN , in the
case of i.i.d. Gaussian signals.

required to solve the system can be neglected sinceN is typically
large (> 100). In comparison, the method in [20], denoted hybrid
MLN, requiresR(3(N +1) +NL +1) multiplications, whereR is
the number of recursions for numerical root finding andNL ≤ N
is the length of the window used for estimatingσ2

v. Hence, hybrid
MLN requires approximatelyR times more multiplications (R = 5
was used in [20]) in total, compared to the method proposed here.

4. SIMULATIONS

Simulations were conducted to evaluate the proposed algorithm, here
denoted NI (noise robust integration). First, a discrete version of
the Polack model in (1) was considered, where both random pro-
cesses were zero-mean i.i.d. Gaussian with variancesσ2

v = 1 and
σ2

b = 0.01, respectively. Three different decay rates were used,ρ =
{0.008, 0.004, 0.002} (corresponding toT60 reverberation times of
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Fig. 3. MSE of the estimators forρ = 0.002 and varyingN , in the
case of i.i.d. Gaussian signals.

approximately0.1, 0.2 and 0.4 seconds for a sample rateFs of
8 kHz). The decay rate was estimated with each considered method:
LR (linear regression, see Section 2.1), ML that does not take the
noise into account [10], hybrid MLN [20] and the proposed NI,for a
observation window lengths of up toN = 1000 samples (125 ms for
Fs = 8 kHz). It was assumed that the noise levelσ2

b was known for
both noise robust methods NI and hybrid MLN. A total of100000
Monte-Carlo simulations were performed for each of the three decay
rates, and the results are shown in Fig. 1, Fig. 2 and Fig. 3, respec-
tively. The CRB (see [20]) is also shown for reference.

From the figures, it can be seen that the proposed NI exhibits
lower estimation mean square error (MSE) than the LR approach for
all N , and that it indeed is robust to the noise. Moreover, the MSE
of NI is only slightly above that of that of the hybrid MLN, while
having significantly lower computational complexity.

4.1. Experiments with recorded RIRs and speech signals

To test the performance in a more realistic scenario, the proposed NI
method was also evaluated using a speech file, with sampling fre-
quency8 kHz, containing utterances from different speakers (both
male and female) recorded in an anechoic room. The speech was
convoluted with20 different RIRs, measured in rooms with different
reverberation time. The RIRs were taken from the AIR database [28]
and downsampled to8 kHz. Recorded ventilation noise was added
to the reverberant speech (except for the benchmark method de-
noted “ML (Noiseless case)”, in which case no noise was added),
resulting in speech-to-noise ratios ranging between9 dB and17 dB,
depending on the RIR. A total of20 different segments of varying
length, containing dominating reverberant decaying power, were
manually selected from the speech file, and the reverberation time
was estimated from each segment. Fig. 4 a) shows the median
estimated reverberation time over the20 speech segments for the
compared methods, plotted against the reverberation time obtained
by Schröder’s method [2] for the20 different RIRs, here used as
ground-truth. Fig. 4 b) shows the respective error variances. It can
clearly be seen that the ML approach performs well in absenceof
noise, but lacks noise robustness, especially whenT60 is low. (The
performance of LR is very similar, although not shown in order
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to improve the readability of the figure.) On the other hand, NI
and hybrid MLN manage to fairly accurately estimate the rever-
beration time, despite the noise. The performance of both these
methods appear fairly equal (in accordance to what is illustrated
in Fig. 1, Fig. 2 and Fig. 3) also in this case, and the significantly
lower computational complexity of NI (see section 3.1) should be
kept in mind.

It should, however, be emphasized that how the segmentationis
done affects the performance. For example, the ML approach would
benefit from having the segmentation step be very careful about in-
cluding noise. The noise robust methods NI and hybrid MLN, on
the other hand, do not suffer from degraded performance by includ-
ing noise in the segments, hence relaxing the segmentation require-
ments. It should also be noted that the proposed method wouldprob-
ably facilitate blindT60 approaches that do not rely on explicit seg-
mentation, such as, e.g., [5, 6, 15].

5. CONCLUSION

A noise robust decay rate estimator requiring low computational
complexity was proposed for blind and non-blindT60 estimation.
Simulations using artificial signals, as well as experiments with
speech signals convoluted with RIRs measured in rooms with dif-
ferent reverberation time and added recorded ventilation noise,
demonstrate that the method indeed is robust to the noise, while
having performance similar to the non-robust decay rate estimator
in the absence of noise.



6. REFERENCES

[1] ISO 3382-2, “Acoustics - Measurement of room acoustic pa-
rameters - Part 2: Reverberation time in ordinary rooms,” Inter-
national Standards Organization, Geneva, Switzerland, 2008.
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