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ABSTRACT

In this paper, we propose a new method for singing voice detec-
tion based on a Bidirectional Long Short-Term Memory (BLSTM)
Recurrent Neural Network (RNN). This classifier is able to take a
past and future temporal context into account to decide on the pres-
ence/absence of singing voice, thus using the inherent sequential
aspect of a short-term feature extraction in a piece of music. The
BLSTM-RNN contains several hidden layers, so it is able to extract a
simple representation fitted to our task from low-level features. The
results we obtain significantly outperform state-of-the-art methods
on a common database.

Index Terms— Singing Voice Detection, Deep Learning, Re-
current Neural Networks, Long Short-Term Memory

1. INTRODUCTION AND PREVIOUS WORK

From the audio of a piece of music, localizing the portions that con-
tain singing voice is a strong information that can be useful for a va-
riety of applications including vocal melody extraction [1], singing
voice separation [2, 3] or singer identification [4].

State-of-the-art methods for singing voice detection are usually
based on machine learning techniques. They start by extracting a set
of features from a short-term analysis of the audio signal and provide
these features as an input to a classification system such as Support
Vector Machines (SVMs) [3, 5], Hidden Markov Models (HMMs)
[2], Random Forests [6, 7] or Artificial Neural Networks (ANNs)
[3]. The result of the classifier is then used to estimate the vocal
and non-vocal segments of the track, possibly adding a final step of
temporal smoothing, for instance by means of a median filter [6] or
a HMM [5]. One can also add a pre-processing step: in [2] features
are computed from a signal with vocal components enhanced by a
Harmonic/Percussive Source Separation (HPSS) technique proposed
by Ono et al. in [8].

The mostly used features come from the speech processing
field. In [3] the authors use a simple combination of MFCCs (Mel-
Frequency Cepstral Coefficients), PLPs (Perceptual Linear Predic-
tive Coefficients) and LFPCs (Log Frequency Power Coefficients)
as a feature set. According to [9], MFCCs and their derivatives
are the most appropriate features. Lehner et al. brought to light
in [6] the importance of optimizing the parameters for the MFCCs
computation, that is the filter bank size, the number of MFCCs and
the analysis window size. They obtain quite good results only using
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these features. In [10], Regnier et al. extract specific characteristics
of singing voice: vibrato and tremolo.

In order to improve state-of-the-art results, current singing voice
detection techniques usually focus on the feature set. One possible
approach is to combine a lot of different simple features. In [5], Ra-
mona et al. consider a very large set of quite low-level features ex-
tracted by two signal analyses with different time scales. They keep
the most discriminating ones and make use of an SVM for classifica-
tion. Another approach is to design high-level features that highlight
the information we want to extract. This approach is followed by
Lehner et al. in [7]; features used in this method allow a consider-
able reduction of the false-positive rate because they are designed to
discriminate singing voice from other confusing highly harmonic in-
struments (such as violin, flute, guitar...). They use a random forest
to decide on the presence of voice for each feature vector.

The approach we present here for singing voice detection is quite
different because we do not focus on elaborating the best set of fea-
tures. The main point of our work is the use of a deep BLSTM-
RNN to detect singing voice. We show that a deep architecture, with
several layers of processing, is able to perform well from low-level
features. Moreover, unlike making use of models for frame clas-
sification and temporal smoothing that cannot be easily optimized
simultaneously, the recurrent aspect of the network allows the sys-
tem to take a past and future temporal context into account to classify
each input vector.

The paper is organized as follows. Section 2 outlines RNNs and
LSTM blocks. In Section 3 we present the features we used and how
we built the network. We describe in Section 4 our results. Finally,
in Section 5 we present our conclusions.

2. RECURRENT NEURAL NETWORKS AND LONG
SHORT-TERM MEMORY

2.1. Recurrent Neural Networks

An ANN is an assembly of inter-connected neurons. A neuron com-
putes its output by applying a nonlinear activation function to the
weighted sum of its inputs. Weights are estimated during the train-
ing procedure. A Multi-Layer Perceptron (MLP) is a feedforward
ANN that maps inputs to outputs by propagating data from the in-
put layer to the output layer, through hidden layers. Adding recurrent
connections between neurons makes it possible to handle the sequen-
tial aspect of the inputs. Let us denote the sequence of input feature
vectors Sx = {x1, ...,xT}. In the most general framework, a deep
RNN withN hidden layers evaluates the sequence of hidden vectors
S

(n)
h = {h(n)

1 , ...,h
(n)
T } for n = 1 toN , and the sequence of output

vectors Sy = {y1, ...,yT} by the following iterative computation :



Fig. 1. RNN unfolded in time
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for n = 1, ..., N and t = 1, ..., T , where T is the number of frames.
The input layer is associated to n = 0 and the output layer to
n = N + 1. h(n)

t denotes the hidden vector at the output of hidden
layer n and at time frame t, it is set to zero at t = 0. W(n−1,n) is
the weight matrix characterizing the feed-forward connections from
layer n − 1 to n, while W(n,n) characterizes the recurrent connec-
tions of hidden layer n. b(n) denotes the bias vector and f (n)

act the
element-wise activation function for layer n, often chosen to be the
logistic sigmoid or hyperbolic tangent function. h

(n)
t depends not

only on the output of the layer below at time frame t, but also on the
output of the current layer n at time frame t − 1, so there are two
directions of propagation as represented on Figure 1: in the depth
of the layers, like standard MLP, and in time. RNNs are inherently
deep in time, since their hidden vectors are a function of all the pre-
vious ones. They are able to model the dynamic of the input stream,
they are thus classifiers that can handle the sequential aspect of input
features extracted from the short-term analysis of a musical audio
signal. In a classification task, an RNN considers a past temporal
context to classify each input vector, the length of this context is au-
tomatically learned through the weights associated to the recurrent
connections. However, a strong limitation for such a sequence clas-
sifier is that, with a gradient-based training algorithm, the temporal
context learned is in practice limited to only a few instants, because
of the vanishing gradient problem [11] : the temporal evolution of
the back-propagated error exponentially depends on the magnitude
of the weights. Thus, the error tends to either blow up or vanish as it
is back-propagated in time, leading to oscillating weights, or weights
which stay nearly constant. In both cases the training procedure is
ineffective and the network fails to learn long-term dependencies.

2.2. Long Short-Term Memory

To overcome this issue, we can use LSTM blocks instead of sim-
ple neurons in each hidden layer. As represented on Figure 2, each
LSTM block involves a memory cell. While the network is perform-
ing the classification, its content is controlled at each time step by
the input and forget gates. The cell can store the input of the block
it belongs to as long as necessary. The block output is controlled
by the output gate. During the training phase, error signals can be
trapped within a memory cell, multiplicative gates will have to learn

Fig. 2. LSTM block

which error to trap and when to release it. LSTM blocks are thus
designed to solve the vanishing gradient problem [12]. The previous
iterative procedure to compute the output vector of each hidden layer
(equation (2)) is modified as follows [13, 14]:
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where� denotes the element-wise product. σ(·) and tanh(·) are re-
spectively the element-wise logistic sigmoid and hyperbolic tangent
functions. i

(n)
t , f (n)

t , o(n)
t and c

(n)
t are respectively the input gate,

forget gate, output gate and memory cell activation vectors at hidden
layer n and time frame t. These vectors are of the same size as the
hidden vector h(n)

t , that is the number of LSTM blocks in hidden
layer n. Hidden vectors and memory cell vectors are set to zero at
t = 0. Note that equations (4) to (7) involve different weight ma-
trices W(·,n)

(·,·) , and bias vectors b(·)
(n). Moreover, the weight matri-

ces from memory cells to multiplicative gates W(n,n)

(c,·) are diagonal,
so that a multiplicative gate only considers the memory cell of the
LSTM block it belongs to.

2.3. Bidirectional Recurrent Neural Networks

RNNs are only able to make use of a past temporal context. When
the whole sequence of input features is available, it can be useful to
exploit the future context as well. This can be done using a bidirec-
tional RNN (BRNN). Each hidden layer of a BRNN contains two
independent layers: the forward layer (→) that applies equation (2)
from t = 1 to t = T and the backward layer (←) that proceeds in the
reverse order, replacing t−1 by t+1 and iterating over t = T, ..., 1.
For each time step t, the activations of the n-th forward and back-
ward hidden layers are concatenated in a single vector (equation (9))
and supplied as an input to the next layer:

h
(n)
t = [

−→

h
(n)
t ;

←−

h
(n)
t ] (9)



LSTM-RNNs have proven their superiority over standard RNNs
to learn long-term dependencies [12] and with a precise timing [15].
To make use of a long-range past and future temporal context to clas-
sify each input vector, the ideas of deep BRNNs and LSTM can thus
be combined to form deep BLSTM-RNNs. This is the architecture
we adopted in this study.

3. SYSTEM OVERVIEW

Fig. 3. System Overview

As represented on Figure 3, the proposed system first applies a
double stage HPSS as pre-processing. Features are then extracted
from a filter bank on a Mel scale and supplied as input to the deep
BLSTM-RNN. The blocks of our system are described in more de-
tails below.

3.1. Feature Extraction

Instead of presenting high-level features at the input of the classifier,
whose design is essentially handcrafted and possibly sub-optimal,
we chose to use low-level features, extracted from a filter bank dis-
tributed on a Mel scale. We were hoping that, through the hidden
layers, a deep architecture would be able to extract higher-level rep-
resentations of the input data, fitted to our task.

To compute the features, we work on mono signals resampled
at 16kHz and normalized to lie between −1 and 1. We first ap-
ply a double stage HPSS as proposed in [16]. The original idea of
HPSS [8] is to decompose the spectrogram of the input signal into
one spectrogram smooth in time direction, associated to harmonic
components, and another spectrogram smooth in frequency direc-
tion, associated to percussive components. Singing voice is a fluc-
tuating sound, not as stationary as harmonic instruments like piano
or guitar, but obviously much more than percussive ones, it thus lies
between harmonic and percussive components in HPSS. By control-
ling the time/frequency resolution through the analysis window, we
thus can consider the partials of singing voice as smooth in time or
frequency direction. From a first HPSS with a long (256ms) anal-
ysis window, singing voice is associated to percussive components
into a signal p1(t), and separated from temporally-stable, harmonic
sounds contained in a signal h1(t). Applying a second HPSS from
p1(t), with a short analysis window (32ms), singing voice is then
associated to harmonic components into a signal h2(t), and isolated
from percussive sounds that will be contained in a signal p2(t). Fi-
nally, h2(t) is a rough estimation of the singing voice signal.

For each of the three signals h1(t), p2(t) and h2(t), we com-
puted the Short-Time Fourier Transform (STFT) with a 32ms Hann
window and 50% overlap. 40 coefficients are then extracted from
40 triangular filters linearly spaced on a Mel scale with 50% over-
lap. A frequency equal to f Hertz is mapped to Mel by fMel =
2595 log(1 + f/700) [17]. We tried different combinations of fea-
tures from the three signals, we obtained the best results by keep-
ing features from signals associated to singing voice and percussive

components. Our feature vector is thus 80 coefficient-long corre-
sponding to the concatenation of the outputs of the filter bank ap-
plied to h2(t) and p2(t). We consider the logarithm of this vector,
in order to reduce the dynamics of the data. Finally, each dimension
of the input vector is normalized so as to have a mean close to zero
and a standard deviation close to 1 over the training database. This
conditioning, along with weights initialization, is important in order
to prevent neurons saturation and to make the learning fast [18].

3.2. Building the Network by Incremental Training

bn : 10 20 30 40 50
80-b1-1 15.5 14.6 13.5 14.1 14.2

80-30-b2-1 11.4 10.7 12.2 12.4 14.0
80-30-20-b3-1 9.4 9.3 10.5 8.5 9.6

80-30-20-40-b4-1 9.3 10.0 9.4 12.0 9.4

Table 1. Classification error (%) on the Jamendo test dataset (cf.
Section 4.1) according to the network architecture - The left column
gives layer sizes from input to output - bn is the number of LSTM
blocks in hidden layer n.

A difficulty with neural networks is that there is no theoretical
evidence to define the architecture a priori for a given task, that is the
number of hidden layers and the number of neurons or LSTM blocks
within each layer. The input layer size is fixed by the dimension of
the input vector, 80 for our experiments. As we are working on a
binary classification task, there is one unique neuron in the output
layer with a logistic sigmoid activation function. Its output is an
estimation of the probability of singing voice presence.

For a deep RNN with several hidden layers, an incremental pro-
cedure to train the network has been proposed in [19], which pro-
gressively adds the hidden layers. It allows each layer to have some
time during training in which it is directly connected to the output
layer. When a hidden layer is added, the weights previously learned
from the layers below are kept and then the whole network is trained.
For the current hidden layer and the output one, we choose to initial-
ize the weights according to a Gaussian distribution with mean 0 and
standard deviation 0.1. We found this training procedure to be more
effective than a raw training of the whole network. The explanation
is suggested in [20], the authors experimentally show that in a super-
vised gradient-trained deep neural network with random weights ini-
tialization, layers far from the outputs are poorly optimized. The au-
thors thus propose an independent pre-training of each hidden layer.
The incremental procedure we used here is another solution.

In our work, we extended this procedure in order to automati-
cally learn the network architecture during the training: we add hid-
den layers progressively and for each one we choose the size bn that
minimizes the classification error on the test dataset, as represented
in Table 1. The procedure is stopped when adding a new hidden layer
does not improve the classification results. When training a neural
network, we are not much interested in the optimization problem,
but rather in the generalization one. By considering the classifica-
tion error on the test dataset, we are looking for the model that best
generalizes to unseen data.

As we can see from the results in Table 1, the best architecture
we found is a BLSTM-RNN with three hidden layers whose sizes are
30, 20 and 40. Within each layer, LSTM blocks are fairly distributed
between forward and backward layers.



3.3. Training Algorithm

As the output of the network is an estimation of the probability of
singing voice presence, we used the cross-entropy error as loss func-
tion. Each training phase is done by Back-Propagation Through
Time (BPTT) in the context of LSTM networks [21, 14]. We used
the open-source CURRENNT Toolkit1 which implements BPTT on
a Graphics Processing Unit (GPU). Weights are updated after each
sequence. Within each epoch, sequences are selected randomly.

Over-fitting is controlled by early-stopping: training starts with
a step for the gradient descent η = 10−5 and a momentumm = 0.9.
If the cross-entropy error does not improve on the validation set af-
ter 20 epochs, we set η = 10−6 and the training continues from the
weights associated with the last improvement. After 10 epochs, if
there is no improvement, we set η = 10−7 and the training contin-
ues as before, and finally, if there is no improvement with this last
step during 10 epochs, training is stopped. The momentum is cho-
sen close to one in order to keep inertia high enough to avoid local
minima and to attenuate the oscillatory trajectory of the stochastic
gradient descent.

4. RESULTS

4.1. Jamendo : A Common Benchmark Dataset

For our experiments, we used the Jamendo Corpus, a publicly avail-
able dataset including singing voice activity annotations. It contains
93 copyright-free songs, retrieved from the Jamendo website2. The
database was built and published along with [5]. The corpus is di-
vided into three sets: the training set contains 61 files, the validation
and test sets contain 16 songs each. This is a common database,
which provides a fair comparison of our approach with others from
the literature.

4.2. Network Functioning

Fig. 4. Network functioning on a 7s excerpt of ”03 - Say me good-
bye” from the Jamendo test database - color scale between -1 (white)
and +1 (black) - ”Output” belongs to [0,1] - ”Decision” and ”Truth”
belong to {0,1} in which 0 (grey segments) denotes voice absence
and 1 (black segments) denotes voice presence.

1http://sourceforge.net/p/currennt
2http://www.jamendo.com

To highlight the network internal functioning, we represent on
Figure 4 the sequence of input vectors (h2(t) at the lower half and
p2(t) at the upper one, cf. Section 3.1), the output of each hidden
layer, the output of the network which is an estimation of the prob-
ability of singing voice presence, the decision taken by the network
by thresholding this probability at 0.5, and the ground truth for about
7s of a track from the Jamendo test dataset. Through the depth of the
network, the outputs of the layers are more and more stable and a
clear temporal structure emerges, with the appearance of segments
associated to singing voice presence/absence. From a low-level rep-
resentation, which is highly temporally variable, extracted by a filter
bank on a Mel scale, the network is able to extract a simple repre-
sentation at the output of the third hidden layer, highlighting singing
voice presence. The track we used here contains a long total silence
section. We can see that the outputs of the hidden layers continue to
vary during this section while inputs remain constant. This observa-
tion shows that the network has learned a temporal context.

4.3. Results

To evaluate the performance of our system, we compute four com-
mon evaluation measures [22] considering all the frames of the test
set. The classification Accuracy is the proportion of frames correctly
classified. The Recall is the proportion of frames labeled as voiced
in the ground truth that are estimated as voiced by the algorithm.
The Precision is the proportion of frames estimated as voiced by the
algorithm that are effectively voiced in the ground truth. Finally, the
F-measure (also called F1 score) is a global performance measure
corresponding to the harmonic mean of precision and recall.

Table 2 compares the results of our method with those from [5],
[6] and [7], the latter being the one which provided the best results
on this database to the best of our knowledge. We see that over all
the measures, our system performs better. This is remarkable consid-
ering that we used simple low-level features and no post-processing.
In [7], Lehner et al. improved precision by means of specifically de-
signed features but to the detriment of recall compared to their pre-
vious method in [6]. In fact, manually designing high-level features
can be sub-optimal. Conversely, the deep BLSTM-RNN we used
has automatically learned how to extract useful information from
low-level features to finally improve both recall and precision. This
is noticeable and explains the particularly high F-measure we obtain.

RAMONA [5] LEHNER(a) [6] LEHNER(b) [7] NEW
Accuracy (%) 82.2 84.8 88.2 91.5

Recall (%) n/a 90.4 86.2 92.6
Precision (%) n/a 79.5 88.0 89.5

F-measure 84.3 84.6 87.1 91.0

Table 2. Singing voice detection results on Jamendo test database

5. CONCLUSION

In this paper we presented a new approach for singing voice detec-
tion. Instead of working on defining a complex feature set, we took
advantage of neural networks to extract simple representations fitted
to our task from low-level features. Furthermore, the BLSTM-RNN
we used is a classifier that inherently takes a temporal context into
account, thus discarding the necessity of post-processing to handle
sequential aspects. This new method significantly improved state-of-
the-art results on a common database. This performance encourages
further work with BLSTM-RNN in music information retrieval for
sequence classification tasks, for instance in the context of automatic
melody estimation.
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