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ABSTRACT These method do not rely on sparsity and must be tuned to a

) ) known, relatively small number of target sources.
We propose a novel sparse representation for heavily uaderd

termined multichannel sound mixtures., with much more "_1 this Paper, we propose a new sparse represer_wtation for
sources than microphones. The proposed approach operafBdltichannel signals in the complex Fourier domain. The
in the complex Fourier domain, thus preserving spatialcha<€Y Novelty is toestimatethe instantaneous phases of all in-
acteristics carried by phase differences. We derive a geneY°!ved signal spectra instead of ignoring them. The progose
alization of K-SVD which jointly estimates a dictionary cap decomposition may be viewed as blindly unmixing a mix-
turing both spectral and spatial features, a sparse dotivat (Uré Of & > M sources wherél/ is the number of mi-
matrix, and all instantaneous source phases from a set-of sig’Phones. The fundamental assumption is here that each
nal examples. The dictionary can then be used to extract tPUTCe contributes a specific complex-valued spectral com-
learned signal from a new input mixture. The method is apPOnent to the observation, and that the gain and the activati
plied to the challenging problem of ego-noise reduction fo®f €ach source is sparse along the time axis. We first derive
robot audition. We demonstrate its superiority relativeda- & Phase-optimized generalization of the well-knawthogo-

ventional dictionary-based techniques using recordingdem N2l matching pursuifOMP) method[[5.6]. This generaliza-
in a real room. tion allows sparse coding of a multichannel sigpabiven a

dictionaryD, independently of instantaneous source phases.
1. INTRODUCTION Moreover, we show that an optimal dictionébyas well as
all instantaneous source phases and sparse activatioh®can
Most interesting signals arstructured This is what distin-  blindly estimated from a set of signal exampt®nly. This
guishes them from mere random noise. This structure cai§ achieved by deriving a phase-optimized generalizatfon o
often be expressed in terms sparsityin a particular ba- the popular K-SVD algorithri[7].

sis. More precisely, iff = [y,,...,yr| representd’ sig- The proposed representation is applied to noise reduction
nal examples, there must exist a setfofatoms or adic-  in the context of a humanoid robot producing self-noisg¢-
tionary D = [dy, ..., dx]| such that each signal is a linear npjsg) when performing motor action§][8]. This problem is

combination of only a few atomse., Y ~ DX whereX is  extremely challenging for two reasons: First, the noisaaiig
sparse. EstimatinB andX fromYY is a sparse instance ofa-  is highly non-stationary due to fast and irregular motions a
trix factorization In audio signal processing, it is natural to collisions. This rules out the use of conventional spectral
seek such a factorization in the non-negapesver spectral  syptraction methods such as [9]. Second, ego-noise signals
density(PSD) domain, since the magnitude spectra of naturadyhipit nonzero spatial coherence between microphdnes [8]
sounds such as speech often feature redundancy and spargifywever, they cannot be modeled by a single point source,
This approach gave rise to a large number of methods for ayor even by a small set of point sources. In the case of a
dio signal representation and extraction within the framw \yalking robot, clicks generated by collisions with the flasr
of non-negative matrix factorizatiofiH4]. In contrast, com- el as full body and microphone movements are producing
plex spectra are usually considered uninformative anether sounds arriving at the microphones from many directions wit
fore not investigated. unknown transfer functions. This seriously limits the usef
While single-channel signals are well represented by theif€SS of spatial filtering methods such as beamforniing [10] or
PSD only, disregarding the phase comes with a substantiglind source separation [1,]12].
loss of information in multichannel signals. Indeed, ptdise On the positive side, motor noise signals are strongly
ferences carry important spatial cues. For this reasomlynea structured. This has been exploited using noise template
all existing NMF-based methods are limited to monauradatabased [18,114]. These approaches are based on vector
sound processing, although recent multichannel extessibn quantization, which can be seen as a particular instance of
NMF have been proposed for music signal separalitin [3,4K-SVD [7]. Some approaches estimate the instantaneous
The research leading to these results has received fundimgtiie Euro- noise PSD using Gaussian process models [15] or neural net-

pean Unions Seventh Framework Programme (FP7/2007-2 @@y grant Works @] Thelse methods rely on synchr.onizeq motor state
agreement 1609465 (EARS project). information, which may not be reliably available in praetic
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2. PHASE-OPTIMIZED DICTIONARY LEARNING magnitude spectra containeddnbut also their instantaneous
phases contained #;. The latter randomly varies over time,

2.1. Modeling Largeand Sparse Multichannel Mixtures  is hard to predict, and should therefore be estimated fram th
signal. This yields the following novel optimization prebh,

LetY = [yy,...,yyp| € CMF*T pe an observet/ —channel  which will be referred to aphase-optimized sparse coding

spectrogram with/" frequency bins andl’ time frames.

We use the decompositiog, = [y;,...,y5,] Where argmin ||y, — D{®;}x|]> subject to:

y; € CY is the captured\/-channel signal atf,t). We ..z,

assume tha is the recording of a finite but potentially large lzillo < Smaxand ¥V f ok, zk >0 L |dp k] =1 (3)

mixture of K sound sources, each emitting a specific spectral

shape. One intuitive interpretation of this model in the tar Note that due to the sparsity @f, only thoseyp ;. for which

get application of a robot recording its own noise is that therx: > 0 intervene in the target function. The others can be
sources correspond to all possible sounds that can be emignored, leading to a sparse matdx. Moreover, the non-
ted from the various mechanical parts of the moving robothegativity constraint omry; is not necessary, since for any
effectively forming a signal with an intricate spatial dibti- ~ complex pai(zy:, ¢, ;) the pair(|z:|, 1725 ¢, ;) leaves the
tion. We denote byr;, € CM the transfer function from cost function unchanged. This constraintis thus relaxéuen
sourcek to the M microphones at frequengy We denote by remainder of the paper.

o5k € Cwith [¢7, | = 1 the instantaneous phase of source

k at(f,t). Attimet, we assume that each sourcemits  2.2. Phase-Optimized Orthogonal Matching-Pursuit

a fixed magnitude spectrupy, = [p],,...,p5]" € RTF
multiplied by anactivation factor(gain) xx; > 0. A cen-
tral assumption of our model is that the activation vecto
x; = [x];,...,25,]" is sparsei.e, only a small number
Smax < K of sources is active at timg andx; has at most
Smax Nonzero elementd|&:|lo < Smax). For all f andt, the

mixing model reads:

Although finding an exact solution to sparse coding was
provento be NP-hard[16], a number of efficient approximate
methods have been proposed [5.6[17, 18], among wdrich
thogonal matching pursufOMP) [5,6] is one of the most
widely used due to its simplicity and high practical effiagign

In this section, we propose an algorithm inspired by OMP
that addresses the phase-optimized sparse coding problem
(1) @). This is referred to aghase-optimized orthogonal match-
ing pursuit(PO-OMP) and summarized in Algl 1.

wheree, € C" represents some residual noisé ). To Similarly to OMP, PO-OMP is a greedy algorithm that
simplify this expression, the transfer function and the magqqjects the best matching dictionary atom, indexed: &y,

nitude spectrum of sourck at frequencyf are combined ot gach iteration. This is repeated either until reaches

K
Y = Zkzl ¢ft.,kpfkafk$kt + eyy,

Into al\sf'pglf VeCt‘_)dfk, = Prr@fk € CM. We denote by 5 maximum desired sparsity numbSax or when the cost

D e CH77 " the S|gnaITsj|ct|0naTryv¥hose;\:ﬁmlumns Q&lOMS 7 nction [3) falls below a desired reconstruction thredhol

are the vectorgly, = [dy,...,dp;] € CUV. Inpractice, 14 ayoid carrying large sparse matrices, we use the vagable

each aton¥ can be normalized so thit, || = 1 and that () 0 P ~ (4) M Fi

each entry ofl;, associated to the first channel is real-valued®t € € @ € C"*andD = e CV7*". They re-

and positive. This comes without loss of generality becaussPectively correspond ta;, @, andD in which only rows

the source activations and instantaneous phases compens@t columns indexed byi(1). .. k(i) are kept. Letr” =

this normalization in equatiof](1). 7 e T e CMF be the residual vector at itera-
Let®, = [¢; 1, ..., ¢, x] € CF*K denote the matrix of tion i, i.e, r =y, - D(l){‘I’EZ)}igl) andr{” =y, As

all source phases at frame We define thephase-corrected in OMP, each iteration of PO-OMP consists of two steps. In

dictionaryat framet by: the first step, the dictionary atom that best approximates th

current residual is found. This requires to solve:

d1e,1d11 - 1, xdik (-1)
D{®;} = : : e CMFXEK —(2) argmin [|ry 7 — di{ Py p tnel2 SV, [@pen| =1
’ ’ ka ¢t,k7 Tkt
Ori,1dry ... Ort KAFK ()
whered.{¢, ;} denotes thé:-th column of D{®;}. Us-

wherex; is a sparse vector. D{®,} is known, estimating '(;? the Lt?]gerasg?ftgﬁlg%ir :Qeéggrfgf?:,%ie th? chElnstt;a?f
x; in order to minimizee, giveny, is known as asparse Pt e ) 9

coding problem [6/7]. However in the considered case ofAlg. [l In the second step, all valuesizﬁi) and%il), includ-
a multichannel sound mixture, this would require the prioring values found in previous iterations, are optimized ade€o
knowledge of not only thé{ sources’ transfer functions and ing to thei atoms selected so far. This requires to solve:

The model[(ll) can now be rewritten gs = D{®;}x; + e;



Algorithm 1 PO-OMP

Algorithm 2 PO-KSVD

Input: Signaly, € CMF, dictionaryD € CMF*X | sparsity
numberSmax and reconstruction threshotd

Output: Sparse activation vectar; € R*TX and sparse
phase correction®; € C"*¥ so thaty, ~ D{®; }x;.

Input: Signal example¥ € CME*T | sparsity numbefmax
and reconstruction threshotd

Output: MatricesD € CMF*K X ¢ RTEXT (sparse) and
®,,...,®, € CI*K (sparse) so thay, ~ D{®,}x; V.

~(0) . = (0) (0) o) ._

1: Initialize D with K normalized, random columns &f,

83" = (i@ = [B7 = (lirl” =pii=0 2 repeal
2: Wh.||.672 .S ’Simax and|[r;" |2 > 7 do 3V, [CCt, t] = po- omp(yt, D, Smax 7);
3 =4l 4:  Vk, s® = sparse(z”); /l Non-zero indicator ofc*
4 Vfk, b= <7“ft ldgi); 5. fork=1— K do
5. Vk, ¢ = |Zf:1 brrlbrel 7 6: repeat
6: k(i) := argmax;(ck); 7: ComputeEy; // Large-bracketed term i [6)
7@ [:cff I)T,ck(i)]T; 8: Obtaind,, andz” from svd(Ek{if}/{SE});
~(i—1) s
B VL By = 85 boweo ol A T oL LU L
=) =(-1) _ , |<€ft kld ez’
o0 D =D Tdpyl 10: until A(||Ex|lr) <
10:  repeat 11:  end for
11: z (D {‘I> }) yt, // (* = pseudo-inverse) 12 until A(SL, [ly, — D{®:}m[|3) < e
12 T(z) D" {q> }~ ). 13: return matricesD, X and®,..., P, .
(ryducy) + 67075
13 Vi, f ¢ = ft Ik Opait_ dresses the challenging problenti@ining such a dictionar
v P ftg d > z) ~ z)| gingp g Ys
| |< L pni) + 657,25 based on a set of exampl¥s= [y,,...,y,] € CMF*T,
14:  until A(Hrgl) I2) < More formally, we seek a solution to:
15: end while , T DI 2 subiect to:
16: return sparser; and®, obtained fromz N(l and‘I>t . xSrgH_l_l.].(.l TZt:l = Dol subjectio

HthO < Smaxand v fa k, |¢ft7/€| =1 (5)

This is reminiscent of a sparse dictionary learning prob-
lem [19], except thaD is corrected by®; at eacht. Dic-

¢ tionary learning has been widely investigated, and the most
We could not find a general closed-form solution to thispopular method is probably K-SV [7], due to its simplic-
problem. However, it can be solved iteratively by sequenity and high efficiency. Following these lines, we propose

tially minimizing the obJect|ve function with respect fig”’? @ method that solves fofl(5), referred totsase-optimized
K-SVD(PO-KSVD). The corresponding algorithm is summa-

rized in Alg.[2.

Similarly to K-SVD, PO-KSVD alternates between a
sparse-coding sted,e., (3) and adictionary updatestep.
Since the former is solved by PO-OMP, we now focus on the
latter. The key idea responsible for the efficiency of K-S\¥D i
to sequentially update each atom and associated actigation

. =) (= (1) ~(s
argmin [ly, —D {®, "}z Dl st.¥f, 4, |¢ft7|71'
" &

and each column 01> “ separately. Convergence is consid-
ered reached when the relative variation of the residualerr
A(||r§z)||2) falls below a preset threshold e.g, less than

0.1%. The values ofif) and 5&1) found in previous itera-
tions provide a good initialization for this procedure. §#d
form solutions for this sequential minimization are given i

lines[TIETB of Alg[d. In practice, the residual vectdt while preserving the non-zero supportfound during the
is reupdated after each new est|mat|on¢q% in order to sparse coding step. Let® denote thek-th row vector ofX
improve convergence. The overall algonthm is guaranteed tand s* = sparse(z*) € {0;1}'*T denote the binary row
decrease the residual en1¢,ft1>||2 at each step. As in OMP, Vvector indicating the non-zero elementsidf after PO-OMP.
a local minimum may be reached due to the non-convexityet ®* = {4, k}j 11—1 € CF*T denote the sparse matrix
of the problem. However, OMP is known to perform well if of sourceks instantaneous phases. For each afanthe
Smax < K, and the same was observed with PO-OMP. associated optimization problem can be written:

2.3. Phase-Optimized K-SVD

) o _ argmin Y — djz?){®’ dyzh){®"
PO-OMP requires a known dictionaby, capturing the spec- dy,, ", ®* #Zk( s | = ( {2} -
tral shapes and transfer functions of tiesources in the mix- . ,
ture. This may not be available in practice. This section ad-S-t-: sparse(zy) = s, and V f. ¢, [¢fx] = 1. (6)



Waving noise Walking noise CTS
Method used| SDR (dB) | SIR (dB) PESQ | CKR | SDR (dB) | SIR (dB) PESQ | CKR | train | test
PO-KSVD+ | 2.314+4.2 | 225+2.8 | 2.09+0.3 | 829 | 1.83+4.5 | 22.3+3.2 | 2.00+0.2 | 884 | 9.99 | 0.59
PO-KSVD | 1.38+3.9 | 14.4+35 | 2.06:0.4 | 81.1 | 1.45:4.3 | 19.8+3.6 | 1.80+0.2 | 87.8 | 9.99 | 0.59
NMF 0.07+2.6 | 7.01+4.8 | 1.38+:0.2 | 50.6 | 1.62£3.2 | 17.94-3.1 | 1.514+0.2 | 65.2 | 4.13 | 0.01
K-SVD -3.9143.6 | -1.31:£4.2 | 1.46£0.3 | 45.7 | 1.10+4.4 | 6.08£2.4 | 1.38:0.1 | 70.1 | 0.22 | 0.04
mixture -5.37+4.0 | -3.87+4.8 | 1.42£0.3 | 43.9 | 0.76t4.2 | 4.78:2.4 | 1.33+0.1 | 67.1 - -

Table 1.Average and standard deviations (Av§td) of the signal-to-distortion-ratios (SDR), signalitterfer-ratios (SIR), PESQ measures
and correct keyword recognition rates%n(CKR) over 82 target speech signals, for waving and walkioiges. The last columns show the
average computation times (in secs) per second of signg&) @ training and testing the methods using MATLAB on a @ntional PC.

Here,||.|| » denotes the Frobenius normBf denotesthe ma- the ego-noise signals were estimated from test mixtures us-
trix between large brackets, the above cost function is lequang PO-OMP. The residuals were used as desired speech out-
to HEk{é]j} — dpx¥||p where@f denotes the complex con- put. To further improve output signals, time-frequencyp®i

jugate ofcpf, andd,x” is an M F x T rank- matrix. For for which the residual PSD was less than the estimated ego-
fixed phasegb®, the solution ofd;, andz* is obtained via noise PSD were set to the average background noise magni-

singular value decomposition (SVD) Efc{i)]:}/{sf} where tude, while preserving the phase. This masking technique is

/{s"} means that columns correspondingsig = 0 have referred to as PO-KSVD+.
been removed (more details [ [7]). For fixdg andz” , the PO-KSVD was compared to conventional K-SVD [7] us-
update of®” is closed-form, and provided at lifie 9 of Alg. 2. ing the same protocol and parameters. We also compared it to
This sequential minimization is iterated until convergené  NMF using the versatile implementation provided byl [22]. As
|Ex | 7, similarly to Alg.[D. As in K-SVD, the convergence suggested iri]1], the magnitude spectra of the left microgho
of PO-KSVD relies on the ability of PO-OMP to decrease thesignal raised to the powéx7 were used as input. The term
residual error with respect to the dictionary update sotuti  A[|X||; was added to the conventional NMF cost function to
While this is not guaranteed, it can be solvedexyernal in-  enforce sparsity. Several valuesofc [0, 4] and dictionary
ferencei.e, for eacht, the output of PO-OMP is only kept SizesK € [5,40] were tested, and best results were obtained
if it improves the reconstruction af,. Convergence is then Wwith A = 2, K' = 20 for waving and\ = 1, K = 40 for walk-
guaranteed. ing. Once a non-negative dictionary is trained, a single NMF
multiplicative update can be used to estimate the ego-noise
PSD from a test signal. The residuals are then used as desired
3. EXPERIMENTAL RESULTS magnitude spectra, while the mixture phases are preserved.

Table[d summarizes the signal-to-distortion and signal-
The commercial robot NAO of Aldebaran Roboticds [[20] to-interfer ratios SDR and SIR [23], as well as the PESQ
was used to gather 4-channel recordings downsampled t@easure[[24], the correct keyword recognitionﬁla(@KR)
16 kHz in a real room with moderate reverberation leveland computational times for all methods. Scores obtained
(T60~200ms). Two one-minute recordings of NAO walking from the unprocessed mixtures are given in the last row.
on place or repeatedly waving the right arm were used fopO-KSVD and PO-KSVD+ significantly outperforms con-
training. The fan of the robot was on, resulting in additiona yentional factorization methods in terms of all the metrics

stationary ego-noise which was reduced using multichanngjsed. Sound excerpts and spectrograms are provided at
Wiener filtering, as described ial[8]. For testing, 82 reeordiyrobot—ears.eu/po_ksvd/l

ings lasting approximately 1s each of a loudspeaker emittin
speech utterances from the GRID corpus [21] were made with 4. CONCLUSION

the fan turned off. The loudspeaker was placed 1 meter awaj, the pest of the authors’ knowledge, PO-KSVD is the first
in front of the robot, at null elevation. These speech recordmeihod that combines sparse factorization with instamase
ings were summed with out-of-training waving or walking hhase estimation in the complex Fourier domain. This paves
sequences to generate test mixtures. Spectrograms Wef yoad to numerous applications in multichannel audie sig
computed using4ms Hamming windows witli0% overlap.  ha) processing and beyond. Compared to traditional mohaura
PO-KSVD was used to learn a dictionary for each of theapproaches, this methods preserves and exploits spagisl cu
two training signals, using several values I§f € [5,100] In the future, we plan to further investigate this by adding
and Smax € [1,5]. Best performances were obtained with spatial constraints to the dictionary in order to achievaarn
K = 40, Smax = 3 for waving, K = 10, Smax = 2 for ~ determined blind source separation and localization.
walking. The reconstruction threshold was fixed to a low 11, speech recognizeocketsphinf25] was used to recognize the key-
valueT = 10~%. Once ego-noise dictionaries were trained,words in the GRID corpus[21], as defined by the CHIME chalief2f].



robot-ears.eu/po_ksvd/
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