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ABSTRACT

We propose a novel sparse representation for heavily underde-
termined multichannel sound mixtures,i.e., with much more
sources than microphones. The proposed approach operates
in the complex Fourier domain, thus preserving spatial char-
acteristics carried by phase differences. We derive a gener-
alization of K-SVD which jointly estimates a dictionary cap-
turing both spectral and spatial features, a sparse activation
matrix, and all instantaneous source phases from a set of sig-
nal examples. The dictionary can then be used to extract the
learned signal from a new input mixture. The method is ap-
plied to the challenging problem of ego-noise reduction for
robot audition. We demonstrate its superiority relative tocon-
ventional dictionary-based techniques using recordings made
in a real room.

1. INTRODUCTION

Most interesting signals arestructured. This is what distin-
guishes them from mere random noise. This structure can
often be expressed in terms ofsparsity in a particular ba-
sis. More precisely, ifY = [y1, . . . ,yT ] representsT sig-
nal examples, there must exist a set ofK atoms or adic-
tionary D = [d1, . . . ,dK ] such that each signal is a linear
combination of only a few atoms,i.e., Y ≈ DX whereX is
sparse. EstimatingD andX from Y is a sparse instance ofma-
trix factorization. In audio signal processing, it is natural to
seek such a factorization in the non-negativepower spectral
density(PSD) domain, since the magnitude spectra of natural
sounds such as speech often feature redundancy and sparsity.
This approach gave rise to a large number of methods for au-
dio signal representation and extraction within the framework
of non-negative matrix factorization[1–4]. In contrast, com-
plex spectra are usually considered uninformative and there-
fore not investigated.

While single-channel signals are well represented by their
PSD only, disregarding the phase comes with a substantial
loss of information in multichannel signals. Indeed, phasedif-
ferences carry important spatial cues. For this reason, nearly
all existing NMF-based methods are limited to monaural
sound processing, although recent multichannel extensions of
NMF have been proposed for music signal separation [3, 4].

The research leading to these results has received funding from the Euro-
pean Unions Seventh Framework Programme (FP7/2007-2 013) under grant
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These method do not rely on sparsity and must be tuned to a
known, relatively small number of target sources.

In this paper, we propose a new sparse representation for
multichannel signals in the complex Fourier domain. The
key novelty is toestimatethe instantaneous phases of all in-
volved signal spectra instead of ignoring them. The proposed
decomposition may be viewed as blindly unmixing a mix-
ture of K ≫ M sources whereM is the number of mi-
crophones. The fundamental assumption is here that each
source contributes a specific complex-valued spectral com-
ponent to the observation, and that the gain and the activation
of each source is sparse along the time axis. We first derive
a phase-optimized generalization of the well-knownorthogo-
nal matching pursuit(OMP) method [5, 6]. This generaliza-
tion allows sparse coding of a multichannel signalyt given a
dictionaryD, independently of instantaneous source phases.
Moreover, we show that an optimal dictionaryD as well as
all instantaneous source phases and sparse activations canbe
blindly estimated from a set of signal examplesY only. This
is achieved by deriving a phase-optimized generalization of
the popular K-SVD algorithm [7].

The proposed representation is applied to noise reduction
in the context of a humanoid robot producing self-noise (’ego-
noise’) when performing motor actions [8]. This problem is
extremely challenging for two reasons: First, the noise signal
is highly non-stationary due to fast and irregular motions and
collisions. This rules out the use of conventional spectral-
subtraction methods such as [9]. Second, ego-noise signals
exhibit nonzero spatial coherence between microphones [8].
However, they cannot be modeled by a single point source,
nor even by a small set of point sources. In the case of a
walking robot, clicks generated by collisions with the flooras
well as full body and microphone movements are producing
sounds arriving at the microphones from many directions with
unknown transfer functions. This seriously limits the useful-
ness of spatial filtering methods such as beamforming [10] or
blind source separation [11,12].

On the positive side, motor noise signals are strongly
structured. This has been exploited using noise template
databases [13, 14]. These approaches are based on vector
quantization, which can be seen as a particular instance of
K-SVD [7]. Some approaches estimate the instantaneous
noise PSD using Gaussian process models [15] or neural net-
works [13]. These methods rely on synchronized motor state
information, which may not be reliably available in practice.
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2. PHASE-OPTIMIZED DICTIONARY LEARNING

2.1. Modeling Large and Sparse Multichannel Mixtures

LetY = [y1, . . . ,yT ] ∈ CMF×T be an observedM−channel
spectrogram withF frequency bins andT time frames.
We use the decompositionyt = [y⊤

1t, . . . ,y
⊤
Ft]

⊤ where
yft ∈ C

M is the capturedM -channel signal at(f, t). We
assume thatY is the recording of a finite but potentially large
mixture ofK sound sources, each emitting a specific spectral
shape. One intuitive interpretation of this model in the tar-
get application of a robot recording its own noise is that the
sources correspond to all possible sounds that can be emit-
ted from the various mechanical parts of the moving robot,
effectively forming a signal with an intricate spatial distribu-
tion. We denote byafk ∈ C

M the transfer function from
sourcek to theM microphones at frequencyf . We denote by
φft,k ∈ C with |φft,k| = 1 the instantaneous phase of source
k at (f, t). At time t, we assume that each sourcek emits
a fixed magnitude spectrumpk = [p⊤1k, . . . , p

⊤
Fk]

⊤ ∈ R+F

multiplied by anactivation factor(gain) xkt ≥ 0. A cen-
tral assumption of our model is that the activation vector
xt = [x⊤

1t, . . . , x
⊤
Kt]

⊤ is sparse, i.e., only a small number
Smax ≪ K of sources is active at timet, andxt has at most
Smax nonzero elements (‖xt‖0 ≤ Smax). For all f andt, the
mixing model reads:

yft =
∑K

k=1 φft,kpfkafkxkt + eft, (1)

whereeft ∈ C
M represents some residual noise at(f, t). To

simplify this expression, the transfer function and the mag-
nitude spectrum of sourcek at frequencyf are combined
into a single vectordfk = pfkafk ∈ CM . We denote by
D ∈ CMF×K the signal’sdictionarywhose columns oratoms
are the vectorsdk = [d⊤

1k, . . . ,d
⊤
Fk]

⊤ ∈ CMF . In practice,
each atomk can be normalized so that‖dk‖2 = 1 and that
each entry ofdk associated to the first channel is real-valued
and positive. This comes without loss of generality because
the source activations and instantaneous phases compensate
this normalization in equation (1).

Let Φt = [φt,1, . . . ,φt,K ] ∈ CF×K denote the matrix of
all source phases at framet. We define thephase-corrected
dictionaryat framet by:

D{Φt} =




φ1t,1d11 . . . φ1t,Kd1K

...
...

φFt,1dF1 . . . φFt,KdFK


 ∈ C

MF×K . (2)

The model (1) can now be rewritten asyt = D{Φt}xt + et
wherext is a sparse vector. IfD{Φt} is known, estimating
xt in order to minimizeet given yt is known as asparse
coding problem [6, 7]. However in the considered case of
a multichannel sound mixture, this would require the prior
knowledge of not only theK sources’ transfer functions and

magnitude spectra contained inD, but also their instantaneous
phases contained inΦt. The latter randomly varies over time,
is hard to predict, and should therefore be estimated from the
signal. This yields the following novel optimization problem,
which will be referred to asphase-optimized sparse coding:

argmin
Φt,xt

‖yt − D{Φt}xt‖2 subject to:

‖xt‖0 ≤ Smax and ∀ f, k, xkt ≥ 0 , |φft,k| = 1. (3)

Note that due to the sparsity ofxt, only thoseφft,k for which
xkt > 0 intervene in the target function. The others can be
ignored, leading to a sparse matrixΦt. Moreover, the non-
negativity constraint onxkt is not necessary, since for any
complex pair(xkt,φt,k), the pair(|xkt|,

xkt

|xkt|
φt,k) leaves the

cost function unchanged. This constraint is thus relaxed inthe
remainder of the paper.

2.2. Phase-Optimized Orthogonal Matching-Pursuit

Although finding an exact solution to sparse coding was
proven to be NP-hard [16], a number of efficient approximate
methods have been proposed [5, 6, 17, 18], among whichor-
thogonal matching pursuit(OMP) [5, 6] is one of the most
widely used due to its simplicity and high practical efficiency.
In this section, we propose an algorithm inspired by OMP
that addresses the phase-optimized sparse coding problem
(3). This is referred to asphase-optimized orthogonal match-
ing pursuit(PO-OMP) and summarized in Alg. 1.

Similarly to OMP, PO-OMP is a greedy algorithm that
selects the best matching dictionary atom, indexed byk(i),
at each iterationi. This is repeated either untili reaches
a maximum desired sparsity numberSmax or when the cost
function (3) falls below a desired reconstruction threshold τ .
To avoid carrying large sparse matrices, we use the variables

x̃
(i)
t ∈ Ci, Φ̃

(i)

t ∈ CF×i and D̃
(i)

∈ CMF×i. They re-
spectively correspond toxt, Φt and D in which only rows
or columns indexed byk(1) . . . k(i) are kept. Letr(i)

t =

[r
(i)⊤
1t , . . . , r

(i)⊤
Ft ]⊤ ∈ CMF be the residual vector at itera-

tion i, i.e., r(i)
t = yt − D̃

(i)
{Φ̃

(i)

t }x̃
(i)
t andr(0)t = yt. As

in OMP, each iteration of PO-OMP consists of two steps. In
the first step, the dictionary atom that best approximates the
current residual is found. This requires to solve:

argmin
k,φt,k, xkt

‖r
(i−1)
t − dk{φt,k}xkt‖2 s.t.∀f, |φft,k| = 1

(4)
wheredk{φt,k} denotes thek-th column of D{Φt}. Us-
ing the Lagrange multiplier method to enforce the constraints
on φt,k, the solution of (4) is obtained through lines 4-8 of

Alg. 1. In the second step, all values iñx(i)
t andΦ̃

(i)

t , includ-
ing values found in previous iterations, are optimized accord-
ing to thei atoms selected so far. This requires to solve:



Algorithm 1 PO-OMP

Input: Signalyt ∈ CMF , dictionaryD ∈ CMF×K , sparsity
numberSmax and reconstruction thresholdτ .
Output: Sparse activation vectorxt ∈ R+K and sparse
phase correctionsΦt ∈ C

F×K so thatyt ≈ D{Φt}xt.

1: x̃
(0)
t := [ ]; Φ̃

(0)

t := [ ]; D̃
(0)

:= [ ]; r(0)
t := yt; i := 0;

2: while i ≤ Smax and‖r(i)t ‖2 > τ do
3: i := i+ 1;
4: ∀f, k, bfk := 〈r

(i−1)
ft |dfk〉;

5: ∀k, ck := |
∑F

f=1 bfk|bfk|
−1|;

6: k(i) := argmaxk(ck);

7: x̃
(i)
t := [x̃

(i−1)⊤
t , ck(i)]

⊤;

8: ∀f, φ̃
(i)

ft := [φ̃
(i−1)

ft , bfk(i)|bfk(i)|
−1];

9: D̃
(i)

:= [D̃
(i−1)

,dk(i)];
10: repeat

11: x̃
(i)
t := (D̃

(i)
{Φ̃

(i)

t })†yt; // († = pseudo-inverse)

12: r
(i)
t := yt − D̃

(i)
{Φ̃

(i)

t }x̃
(i)
t ;

13: ∀j, f, φ̃
(i)
ft,j :=

〈r
(i)
ft |dfk(j)〉+ φ̃

(i)
ft,j x̃

(i)
jt

|〈r
(i)
ft |dfk(j)〉+ φ̃

(i)
ft,j x̃

(i)
jt |

;

14: until ∆(‖r
(i)
t ‖2) < ǫ

15: end while
16: return sparsext andΦt obtained from̃x(i)

t andΦ̃
(i)

t .

argmin

x̃
(i)
t , Φ̃

(i)

t

‖yt − D̃
(i)
{Φ̃

(i)

t }x̃
(i)
t ‖2 s.t.∀f, j, |φ̃(i)

ft,j | = 1.

We could not find a general closed-form solution to this
problem. However, it can be solved iteratively by sequen-
tially minimizing the objective function with respect tõx(i)

t

and each column of̃Φ
(i)

t separately. Convergence is consid-
ered reached when the relative variation of the residual error
∆(‖r

(i)
t ‖2) falls below a preset thresholdǫ, e.g., less than

0.1%. The values of̃x(i)
t andΦ̃

(i)

t found in previous itera-
tions provide a good initialization for this procedure. Closed
form solutions for this sequential minimization are given in
lines 11-13 of Alg. 1. In practice, the residual vectorr

(i)
t

is reupdated after each new estimation ofφ̃
(i)

t,j in order to
improve convergence. The overall algorithm is guaranteed to
decrease the residual error‖r

(i)
t ‖2 at each step. As in OMP,

a local minimum may be reached due to the non-convexity
of the problem. However, OMP is known to perform well if
Smax ≪ K, and the same was observed with PO-OMP.

2.3. Phase-Optimized K-SVD

PO-OMP requires a known dictionaryD, capturing the spec-
tral shapes and transfer functions of theK sources in the mix-
ture. This may not be available in practice. This section ad-

Algorithm 2 PO-KSVD

Input: Signal examplesY ∈ CMF×T , sparsity numberSmax

and reconstruction thresholdτ .
Output: MatricesD ∈ CMF×K , X ∈ R+K×T (sparse) and
Φ1, . . . ,Φt ∈ C

F×K (sparse) so thatyt ≈ D{Φt}xt ∀t.

1: Initialize D with K normalized, random columns ofY;
2: repeat
3: ∀t, [xt,Φt] = po omp(yt,D, Smax, τ);
4: ∀k, sk∗ = sparse(xk

∗); // Non-zero indicator ofxk
∗

5: for k = 1 → K do
6: repeat
7: ComputeEk; // Large-bracketed term in (6)
8: Obtaindk andxk

∗ from svd(Ek{Φ̄
k
∗}/{sk

∗
});

9: ∀f, t, φft,k =
〈eft,k|dfkxkt〉
|〈eft,k|dfkxkt〉|

;

10: until ∆(‖Ek‖F ) < ǫ
11: end for
12: until ∆(ΣT

t=1‖yt − D{Φt}xt‖
2
2) < ǫ

13: return matricesD, X andΦ1, . . . ,Φt .

dresses the challenging problem oftraining such a dictionary,
based on a set of examplesY = [y1, . . . ,yT ] ∈ CMF×T .
More formally, we seek a solution to:

argmin
X,D,Φ1,...,ΦT

∑T
t=1 ‖yt − D{Φt}xt‖

2
2 subject to:

‖xt‖0 ≤ Smax and ∀ f, k, |φft,k| = 1. (5)

This is reminiscent of a sparse dictionary learning prob-
lem [19], except thatD is corrected byΦt at eacht. Dic-
tionary learning has been widely investigated, and the most
popular method is probably K-SVD [7], due to its simplic-
ity and high efficiency. Following these lines, we propose
a method that solves for (5), referred to asphase-optimized
K-SVD(PO-KSVD). The corresponding algorithm is summa-
rized in Alg. 2.

Similarly to K-SVD, PO-KSVD alternates between a
sparse-coding step,i.e., (3) and adictionary updatestep.
Since the former is solved by PO-OMP, we now focus on the
latter. The key idea responsible for the efficiency of K-SVD is
to sequentially update each atom and associated activations,
while preserving the non-zero support ofX found during the
sparse-coding step. Letxk

∗ denote thek-th row vector ofX
andsk∗ = sparse(xk

∗) ∈ {0; 1}1×T denote the binary row
vector indicating the non-zero elements ofxk

∗ after PO-OMP.
Let Φk

∗ = {φft,k}
F,T
f=1,t=1 ∈ CF×T denote the sparse matrix

of sourcek’s instantaneous phases. For each atomk, the
associated optimization problem can be written:

argmin

dk,x
k
∗ ,Φ

k
∗

∥∥∥∥∥∥



Y −
∑

j 6=k

(djx
j
∗){Φ

j
∗}



− (dkx
k
∗){Φ

k
∗}

∥∥∥∥∥∥
F

s.t.: sparse(xk
∗) = sk∗ and ∀ f, t, |φft,k| = 1. (6)



Waving noise Walking noise CTS
Method used SDR (dB) SIR (dB) PESQ CKR SDR (dB) SIR (dB) PESQ CKR train test
PO-KSVD+ 2.31±4.2 22.5±2.8 2.09±0.3 82.9 1.83±4.5 22.3±3.2 2.00±0.2 88.4 9.99 0.59
PO-KSVD 1.38±3.9 14.4±3.5 2.06±0.4 81.1 1.45±4.3 19.8±3.6 1.80±0.2 87.8 9.99 0.59

NMF 0.07±2.6 7.01±4.8 1.38±0.2 50.6 1.62±3.2 17.9±3.1 1.51±0.2 65.2 4.13 0.01
K-SVD -3.91±3.6 -1.31±4.2 1.46±0.3 45.7 1.10±4.4 6.08±2.4 1.38±0.1 70.1 0.22 0.04
mixture -5.37±4.0 -3.87±4.8 1.42±0.3 43.9 0.76±4.2 4.78±2.4 1.33±0.1 67.1 - -

Table 1.Average and standard deviations (Avg±Std) of the signal-to-distortion-ratios (SDR), signal-to-interfer-ratios (SIR), PESQ measures
and correct keyword recognition rates in% (CKR) over 82 target speech signals, for waving and walking noises. The last columns show the
average computation times (in secs) per second of signal (CTS) for training and testing the methods using MATLAB on a conventional PC.

Here,‖.‖F denotes the Frobenius norm. IfEk denotes the ma-
trix between large brackets, the above cost function is equal
to ‖Ek{Φ̄

k
∗} − dkx

k
∗‖F whereΦ̄

k
∗ denotes the complex con-

jugate ofΦk
∗ , anddkx

k
∗ is anMF × T rank-1 matrix. For

fixed phasesΦk
∗ , the solution ofdk andxk

∗ is obtained via

singular value decomposition (SVD) ofEk{Φ̄
k
∗}/{sk

∗
} where

/{sk∗} means that columns corresponding toskt = 0 have
been removed (more details in [7]). For fixeddk andxk

∗ , the
update ofΦk

∗ is closed-form, and provided at line 9 of Alg. 2.
This sequential minimization is iterated until convergence of
‖Ek‖F , similarly to Alg. 1. As in K-SVD, the convergence
of PO-KSVD relies on the ability of PO-OMP to decrease the
residual error with respect to the dictionary update solution.
While this is not guaranteed, it can be solved byexternal in-
ference, i.e., for eacht, the output of PO-OMP is only kept
if it improves the reconstruction ofyt. Convergence is then
guaranteed.

3. EXPERIMENTAL RESULTS

The commercial robot NAO of Aldebaran Robotics [20]
was used to gather 4-channel recordings downsampled to
16 kHz in a real room with moderate reverberation level
(T60≈200ms). Two one-minute recordings of NAO walking
on place or repeatedly waving the right arm were used for
training. The fan of the robot was on, resulting in additional
stationary ego-noise which was reduced using multichannel
Wiener filtering, as described in [8]. For testing, 82 record-
ings lasting approximately 1s each of a loudspeaker emitting
speech utterances from the GRID corpus [21] were made with
the fan turned off. The loudspeaker was placed 1 meter away
in front of the robot, at null elevation. These speech record-
ings were summed with out-of-training waving or walking
sequences to generate test mixtures. Spectrograms were
computed using64ms Hamming windows with50% overlap.

PO-KSVD was used to learn a dictionary for each of the
two training signals, using several values ofK ∈ [5, 100]
andSmax ∈ [1, 5]. Best performances were obtained with
K = 40, Smax = 3 for waving, K = 10, Smax = 2 for
walking. The reconstruction threshold was fixed to a low
valueτ = 10−4. Once ego-noise dictionaries were trained,

the ego-noise signals were estimated from test mixtures us-
ing PO-OMP. The residuals were used as desired speech out-
put. To further improve output signals, time-frequency points
for which the residual PSD was less than the estimated ego-
noise PSD were set to the average background noise magni-
tude, while preserving the phase. This masking technique is
referred to as PO-KSVD+.

PO-KSVD was compared to conventional K-SVD [7] us-
ing the same protocol and parameters. We also compared it to
NMF using the versatile implementation provided by [22]. As
suggested in [1], the magnitude spectra of the left microphone
signal raised to the power0.7 were used as input. The term
λ‖X‖1 was added to the conventional NMF cost function to
enforce sparsity. Several values ofλ ∈ [0, 4] and dictionary
sizesK ∈ [5, 40] were tested, and best results were obtained
with λ = 2,K = 20 for waving andλ = 1,K = 40 for walk-
ing. Once a non-negative dictionary is trained, a single NMF
multiplicative update can be used to estimate the ego-noise
PSD from a test signal. The residuals are then used as desired
magnitude spectra, while the mixture phases are preserved.

Table 1 summarizes the signal-to-distortion and signal-
to-interfer ratios SDR and SIR [23], as well as the PESQ
measure [24], the correct keyword recognition rate1 (CKR)
and computational times for all methods. Scores obtained
from the unprocessed mixtures are given in the last row.
PO-KSVD and PO-KSVD+ significantly outperforms con-
ventional factorization methods in terms of all the metrics
used. Sound excerpts and spectrograms are provided at
robot-ears.eu/po_ksvd/.

4. CONCLUSION

To the best of the authors’ knowledge, PO-KSVD is the first
method that combines sparse factorization with instantaneous
phase estimation in the complex Fourier domain. This paves
the road to numerous applications in multichannel audio sig-
nal processing and beyond. Compared to traditional monaural
approaches, this methods preserves and exploits spatial cues.
In the future, we plan to further investigate this by adding
spatial constraints to the dictionary in order to achieve under-
determined blind source separation and localization.

1The speech recognizerpocketsphinx[25] was used to recognize the key-
words in the GRID corpus [21], as defined by the CHiME challenge [26].

robot-ears.eu/po_ksvd/
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[8] H. Löllmann, H. Barfuss, A. Deleforge, and W. Kellermann,
“Challenges in acoustic signal enhancement for human-robot
communication,” inITG Fachtagung Sprachkommunikation,
September 2014, p. 4.

[9] Rainer Martin, “Spectral subtraction based on minimum statis-
tics,” in Proc. Eur. Signal Processing Conf., 1994, pp. 1182–
1185.

[10] W. Herbordt and W. Kellermann, “Adaptive beamforming for
audio signal acquisition,” inAdaptive Signal Processing, pp.
155–194. Springer, 2003.

[11] H. Buchner, R. Aichner, and W. Kellermann, “Trinicon: A
versatile framework for multichannel blind signal processing,”
in Proc. Int. Conf. Acoustics, Speech, Signal Processing. IEEE,
2004, vol. 3, pp. 889–892.

[12] M.I. Mandel, R.J. Weiss, and D.P.W. Ellis, “Model-based
expectation-maximization source separation and localization,”
Transactions on Audio, Speech, and Language Processing, vol.
18, no. 2, pp. 382–394, 2010.

[13] G. Ince, K. Nakadai, T. Rodemann, Y. Hasegawa, H. Tsujino,
and J. Imura, “Ego noise suppression of a robot using template
subtraction,” inInt. Conf. on Intelligent Robots and Systems.
IEEE/RSJ, 2009, pp. 199–204.

[14] G. Ince, K. Nakamura, F. Asano, H. Nakajima, and K. Nakadai,
“Assessment of general applicability of ego noise estimation,”
in Int. Conf. on Robotics and Automation. IEEE, 2011, pp.
3517–3522.

[15] K. Furukawa, K. Okutani, K. Nagira, T. Otsuka, K. Itoyama,
K. Nakadai, and H.G. Okuno, “Noise correlation matrix es-
timation for improving sound source localization by multi-
rotor uav,” in Int. Conf. on Intelligent Robots and Systems.
IEEE/RSJ, 2013, pp. 3943–3948.

[16] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy
approximations,”Constructive approximation, vol. 13, no. 1,
pp. 57–98, 1997.

[17] S.S. Chen, D.L. Donoho, and M.A. Saunders, “Atomic decom-
position by basis pursuit,”Journal on scientific computing, vol.
20, no. 1, pp. 33–61, 1998.

[18] P.O. Hoyer, “Non-negative sparse coding,” inWorkshop on
Neural Networks for Signal Processing. IEEE, 2002, pp. 557–
565.

[19] M. Elad,Sparse and redundant representations: from theory to
applications in signal and image processing, Springer, 2010.

[20] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux,
P. Lafourcade, B. Marnier, J. Serre, and B. Maisonnier, “The
nao humanoid: a combination of performance and affordabil-
ity,” CoRR abs/0807.3223, 2008.

[21] M. Cooke, J. Barker, S. Cunningham, and X. Shao, “An audio-
visual corpus for speech perception and automatic speech
recognition,”The Journal of the Acoustical Society of America,
vol. 120, no. 5, pp. 2421–2424, 2006.

[22] Y. Li and A. Ngom, “Versatile sparse matrix factorization
and its applications in high-dimensional biological data anal-
ysis,” in Pattern Recognition in Bioinformatics, pp. 91–101.
Springer, 2013.

[23] E. Vincent, R. Gribonval, and C. Févotte, “Performance mea-
surement in blind audio source separation,”Transactions on
Audio, Speech, and Language Processing, vol. 14, no. 4, pp.
1462–1469, 2006.

[24] A.W. Rix, J.G. Beerends, M.P. Hollier, and A.P. Hekstra, “Per-
ceptual evaluation of speech quality (PESQ)-a new method for
speech quality assessment of telephone networks and codecs,”
in Proc. Int. Conf. Acoustics, Speech, Signal Processing. IEEE,
2001, vol. 2, pp. 749–752.

[25] D. Huggins-Daines, M. Kumar, A. Chan, A.W. Black, M. Rav-
ishankar, and A.I. Rudnicky, “Pocketsphinx: A free, real-time
continuous speech recognition system for hand-held devices,”
in Proc. Int. Conf. Acoustics, Speech, Signal Processing. IEEE,
2006, vol. 1, pp. 185–188.

[26] E. Vincent, J. Barker, S. Watanabe, J. Le Roux, F. Nesta,and
M. Matassoni, “The second CHiME speech separation and
recognition challenge: Datasets, tasks and baselines,” inProc.
Int. Conf. Acoustics, Speech, Signal Processing. IEEE, 2013,
pp. 126–130.


	1  Introduction
	2  Phase-Optimized Dictionary Learning
	2.1  Modeling Large and Sparse Multichannel Mixtures
	2.2  Phase-Optimized Orthogonal Matching-Pursuit
	2.3  Phase-Optimized K-SVD

	3  Experimental Results
	4  Conclusion
	5  References

