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ABSTRACT 

 

This paper proposes an improved variable step-size (VSS) 

scheme for zero-point attracting projection (ZAP) 

algorithm. The proposed VSS is proportional to the 

sparseness difference between filter coefficients and the true 

impulse response. Meanwhile, it works for both sparse and 

non-sparse system identification, and simulation results 

demonstrate that the proposed algorithm could provide both 

faster convergence rate and better tracking ability than 

previous ones. 
*
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1. INTRODUCTION 

 

In the sparse system identification problem, such as the 

network echo cancellation, only a small percentage of 

coefficients are active and most of the others are zero or 

close to zero. Considering that the classical least-mean-

square (LMS) algorithm is slow for sparse system 

identification [1], the family of proportionate algorithms 

has been proposed to exploit the sparse nature of the system 

to improve performance [2]-[4]. Besides to that, a new kind 

of method, zero-point attracting projection (ZAP), has been 

recently proposed to solve sparse system identification 

problem. The zero-attracting LMS (ZA-LMS) algorithm 

uses an l1 norm penalty in the standard LMS cost function 

[5] and l0 norm LMS was proposed in [6] too. When the 

solution is sparse, the gradient descent recursion will 

accelerate the convergence of near-zero coefficients of the 

sparse system.  

The above scheme was referred as zero-point attraction 

projection (ZAP) in [7]. The performance analysis of ZA-

LMS has been report in [8]-[10], and analysis showed that 

the step-size of the ZAP term denotes the importance or the 

intensity of attraction. A large step-size for ZAP results in a 

faster convergence, but the steady-state misalignment also 
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increases. So, the step-size of ZAP is also a trade-off 

between convergence rate and steady-state misalignment, 

which is similar to the step-size trade-off of LMS.  

There are some theoretical results about variable step-

size ZAP but they could not be calculated in practice [9]-

[11]. One practical variable step-size ZAP was proposed by 

You, et al. in [12], and You’s VSS ZAP was simply 

initialized to be a large value and reduced by a factor when 

the algorithm is convergent. However, this heuristic 

strategy cannot track the change in the system response due 

to the very small steady-state step-size.  

Another better VSS-ZAP was proposed in [13], in 

which a variable step-size based on the gradient of 

estimated filter coefficients’ sparseness was proposed and 

the gradient is approximated by the difference between the 

sparseness measure of current filter coefficients and an 

averaged sparseness measure. This variable step-size ZAP 

works in the way of being an indicator whether the current 

filter’s sparseness has reached the steady-state instead of 

measuring the real sparseness difference between the filter 

and true system response. Meanwhile, in this paper, a new 

variable step-size ZAP is proposed by defining the 

sparseness distance, then the proposed VSS is determined 

systematically based on sparseness difference between filter 

coefficients and true impulse response.  

This paper is organized as follows. Section 2 reviews 

the recently VSS algorithms for ZAP, and in Section 3 we 

present the proposed VSS ZA-LMS algorithm. The 

simulation results and comparison to the previous VSS 

algorithms are presented in Section 4. Finally conclusions 

are drawn in Section 5. 

 

2. REVIEW OF VSS ZAP 

 

In this section, we will review the ZAP algorithm and the 

variable step-size ZAP algorithms in previous literature. 

 

2.1. Introduction to ZAP 

 

Consider a linear system with its input  nx  and output 

 d n  related by 



      ( ),Td n n n v n x h  (1) 

where      [ 1 1 ]Tx n x n x n L   x is the input vector, 

0 1 1[ ]T

Lh h h h is unknown system with length L, and 

 v n  is the additive noise which is independent with 

 nx . The estimation error of the adaptive filter output 

with respect to the desired signal is defined as  

       1 .Te n d n n n  x w  
 

(2) 

This error,  e n  is used to adapt the adaptive filter 

 nw . The ZA-LMS algorithm with l1 norm constraint was 

proposed in [6], and its update equation is  

          1 sgn 1 ,n n n e n n     w w x w  (3) 

in which   is the step-size of adaption,   is the step-size 

of zero attractor, and  sgn   is a component-wise sign 

function defined as 
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2.2. Review of Variable Step-size ZAP Algorithms 

 

The variable step-size for ZAP used in [12] is rather direct: 

  is initialized to be a large value, and reduced by a factor 

  when the algorithm is convergent. This reduction is 

conducted until is sufficiently small, i.e. 
min  , which 

means that the error reaches a low level. However, as 

mentioned in the introduction, this heuristic strategy will 

not react to a change in the system response since it will get 

stuck due to the very small steady-state step-size.  

Therefore, in order to solve this issue, a new variable 

step-size ZAP algorithm was proposed in [13] by us, which 

is based on the measurement of the sparseness gradient 

approximated by the difference between the sparseness 

measure of current filter coefficients and an averaged 

sparseness measurement as below.  

The averaged sparseness measure could be estimated 

adaptively with a forgetting factor  : 

        1 1 , 0 1,n n J n         w  (5) 

where   J nw  is a sparseness measure of the filter 

coefficients, and we will use the following l1 norm 

sparseness measure through this paper  
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The difference between the sparseness measure of 

current filter coefficients and the averaged sparseness 

measurement is calculated by: 

      1n J n n   w  (7) 

In order to obtain a good and stable estimate of the 

gradient, a long-term average using infinite impulse 

response filters is used to calculate the proposed variable 

step-size  

       1 1 , 0 1.n n n           (16) 

As mentioned in the introduction, this variable step-

size ZAP indicates whether the current filter’s sparseness 

has reached the steady-state instead measuring the 

sparseness distance between the filter and real system. 

Therefore, we will propose a variable step-size algorithm 

for ZA-LMS which is derived based on the difference 

between current filter coefficients’ sparseness and the real 

sparseness in next section. 

 

3. PROPOSED VSS ZA-LMS 

 

In this section, we will propose the variable step-size ZAP, 

and further improve its performance for non-sparse system 

identification. 

 

3.1. The Proposed Scheme of Variable Step-size ZAP 

 

Our proposed new variable step-size ZAP algorithm is 

based on the idea that the step-size should be proportional 

to the sparseness distance which is defined as the difference 

between the sparseness measure of current filter coefficients 

and real sparseness of the system. Based on l1 norm, we 

define the following averaged sparseness distance 
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Then we rewrite (8) as 
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However, considering the real system is unknown, we 

argue that   sgn nh  could be approximated by 

  sgn nw . This assumption is acceptable because it holds 

for the coefficients with large magnitude, and for the small 

and unstable coefficients close to zero, considering that its 

magnitude is relatively small, it will not cause large error in 

the approximation. We will verify the performance of this 

assumption in the simulation section later, and using this 

assumption in (9), we have 
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The system mismatch is defined as      n n n  h h w . 

Using the similar approximation in [14], we have 
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It should be noted that we use the following 

assumptions in [14] 

         2 2, and .T T

xx x xn n n n n L  R = x x I    x x  (12) 

Furthermore, the residual error is defined as 

     .Tn n n  h x  (13) 

Substituting (11) and (13) into (10), we could rewrite 

(10) as 
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However, the residual error in (14) is still unknown, 

but similar to [13], to avoid over-shoot, a long-term time 

average should be used to calculate the proposed variable 

step-size as below  

       1 1 , 0 1,n n n           (15) 

in which   is a smoothing factor and   is a correction 

factor. Meanwhile, considering the additive noise is 

independent with input, the cross-correlation between the 

input and residual error is the same as the cross-correlation 

between input and error. Therefore, we could replace the 

residual error in (14) with the error signal, which gives us 
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3.2. Improved Variable Step-size ZAP for Both Sparse 

and Non-sparse System 

 

Besides to the l1 norm sparseness measures defined in 

(6), another popular measurement of channel sparsity was 

used in [13], and for a channel  nh , its sparsity 

  n h can be defined as 
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where L > 1 is the length of the channel  nh , and  
1

nh  

and  
2

nh  are the l1 norm and l2 norm of  nh . The 

value of   n h  is between 0 and 1. For a sparse channel 

the value of sparsity is close to 1 and for a dispersive 

channel, this value is close to 0. In [13], this property was 

used to remove the ZAP term when the channel is 

dispersive, which is preferable.  

We could also take advantage of this property and 

propose the following averaged sparseness distance as 

variable step-size for ZA-LMS 

       

 
 

 

 

 
1 1

2 2

1

1
.

1

n n n
L

n n

n nL L

   

 


h w

h w

h w

 
(18) 

We assume the gain of the real channel and filter 

coefficients are the same, i.e. 
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However, this assumption might not be accurate, 

especially at the initial phase of the adaption. Therefore, a 

reasonable minimum threshold of  
2

nw  should be used 

to avoid this issue. Then we could further simplify (19) as  
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Considering (16), we obtain the proposed variable step-

size for ZA-LMS which could work for both dispersive and 

sparse channel as below 
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4. SIMULATION RESULTS 

 

In this section, we do the results of computer simulations in 

the scenario of echo cancellation. We use both sparse 

impulse response and a dispersive random impulse 

response. They are both with the same length, L=512, and 

the LMS adaptive filter is with the same length.  

      The convergence state of adaptive filter is evaluated 

using the normalized misalignment which is defined as 

10 2 2
20log ( )h w h  (22) 

The input is white Gaussian noise signal and independent 

white Gaussian noise is added to the system background 

with a signal-to-noise ratio, SNR = 30 dB. 

  



In the first simulation, we would like to verify the 

performance of the approximation      sgn sgnn nh w  

in (10) as in Fig. 1. In order to demonstrate the tracking 

ability, there is an echo path change at sample 5000 by 

switching from one sparse impulse response to another 

sparse impulse response. It is observed that, even though 

the approximation is not very accurate in the initial phase, 

it could be very good for tracking the change of the echo 

path. This is predictable since the filter coefficients are 

initialized as zeros, then there will be larger difference 

between   sgn nh  and   sgn nw . However, this 

assumption is still good enough for the application scenario 

of proposed variable step-size ZAP, which will be verified 

by the following simulations.  

In the second simulation, we compare the proposed 

VSS algorithm to LMS, fixed step-size ZA-LMS, You’s 

VSS in [12] and Liu’s VSS in [13] for sparse system 

identification. It should be noted that sparseness measure 

(17) is used in Liu’s VSS, and (21) is used as the proposed 

variable step-size. Meanwhile, to evaluate the performance 

of the tracking ability, there is also an echo path change at 

sample 5000, and according to the simulation result in Fig. 

2, the parameters of the variable step-size are intentionally 

set to have similar steady-state misalignment for the first 

adaption before echo path change. It is observed that, 

because You’s VSS cannot react to echo path change, it 

could only obtain similar tracking performance with 

original ZAP. Meanwhile, Liu’s VSS and proposed VSS 

could track the echo path change quickly, and the proposed 

VSS outperforms the previous ones.   

Next, in order to demonstrate the performance for 

dispersive channel, we switch one dispersive impulse 

response to another dispersive response at sample 5000, 

and use the same VSS algorithms and parameters as the 

second simulation. As shown in Fig. 3, it is clear that the 

proposed VSS ZAP could also obtain much better tracking 

performance under non-sparse system than previous ones 

and avoid the possible performance degradation. 

 

5. CONCLUSION 

 

An improved variable step-size zero-point attraction 

projection algorithm was proposed based on the estimation 

of l1 sparseness distance, which could work for both sparse 

and non-sparse system identification. Simulation results 

verify that the proposed VSS ZAP could provide better 

tracking ability than previous VSS ZAP algorithms for both 

sparse and non-sparse system identification.  
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Fig.1 Performance demonstration of approximation 

     sgn sgnn nh w  in (10). 
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Fig.2 Comparison of normalized misalignment for sparse 

system identification. 
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Fig.3 Comparison of normalized misalignment for 

dispersive system identification. 
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