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ABSTRACT

This paper introduces a graph Laplacian regularization in the hyper-
spectral unmixing formulation. The proposed regularization relies
upon the construction of a graph representation of the hyperspectral
image. Each node in the graph represents a pixel’s spectrum, and
edges connect spectrally and spatially similar pixels. The proposed
graph framework promotes smoothness in the estimated abundance
maps and collaborative estimation between homogeneous areas of
the image. The resulting convex optimization problem is solved us-
ing the Alternating Direction Method of Multipliers (ADMM). A
special attention is given to the computational complexity of the al-
gorithm, and Graph-cut methods are proposed in order to reduce the
computational burden. Finally, simulations conducted on synthetic
data illustrate the effectiveness of the graph Laplacian regularization
with respect to other classical regularizations for hyperspectral un-
mixing.

Index Terms— Hyperspectral imaging, unmixing, graph Lapla-
cian regularization, ADMM, sparse regularization.

1. INTRODUCTION

Hyperspectral sensors provide both a spatial and a spectral represen-
tation of a scene. They acquire images throughout the visible and In-
frared portions of the spectrum, with a spectral resolution as narrow
as 1 nm. Depending on the working distance of the hyperspectral
camera, the spatial resolution can be of a few micrometers (labora-
tory measurements) up to a few meters (airborne remote sensing).
As a result every pixel in the hyperspectral image is a vector of re-
flectance values also known as the pixel’s spectrum. Unmixing [1]
is one of the most prominent tools to analyze hyperspectral data. It
consists of identifying the pure components in the captured scene,
the so-called endmembers, and then estimating their spatial distribu-
tions, also known as their abundance maps. Most unmixing meth-
ods in the literature focus on the Linear Mixing model [2], where
each pixel is modeled by a convex combination of the endmembers
weighted by their abundances.

The purpose of this paper is to introduce the graph Laplacian
regularization in the hyperspectral unmixing formulation. This is
motivated by the intuition that pixels with similar spectral structure
and similar spatial contextual information will have broadly simi-
lar abundances. Representing these pairwise similarities by edges
gives rise to a graph, where each node represents a pixel. The result-
ing graph structure provides additional relational information which
can improve the abundance estimation accuracy and complement ex-
isting pixel-by-pixel unmixing techniques. As we shall see further
ahead in Section 3, the graph Laplacian regularization provides an
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elegant and flexible way to incorporate this information in the un-
mixing problem by means of a closed form expression for penal-
izing the difference between the estimates of similar pixels via the
`2-norm. This regularization has been widely used in many fields
especially in semi-supervised learning also known as transductive
learning. The potential of this regularization has been demonstrated
for many applications including digit recognition and text classifi-
cation [3], web-page categorization [4], hyperspectral data classifi-
cation [5], manifold learning [6], and image denoising [7] to cite a
few.

The proposed strategy is closely related to the work in [8] where
the authors use a Total Variation (TV) regularization on top of sparse
`1-norm regularized unmixing. Similarly to [8], this communication
advocates the use of the graph Laplacian regularization on top of
`21-norm regularized unmixing. TV is restricted to the assumption
of local spatial similarity, and assumes that a pixel is only similar
to its four neighbors. However, the graph Laplacian regularization
is more flexible in the sense that it allows to connect a pixel with
as many other pixels in the image as long as they are similar. [9]
extends the TV spatial regularization to nonlinear unmixing models.
Several methods in the literature incorporate other spatial or spectral-
spatial information in the unmixing problem such as [10–13]. For a
detailed review of spectral unmixing methods and endmember ex-
traction techniques with spatial information, the reader is referred
to [14]. Very recently, the authors of [15] used the graph Laplacian
regularization on top of sparse `1/2 nonnegative matrix factorization
(NMF) for blind unmixing. The algorithm uses alternate minimiza-
tion in order to simultaneously estimate the endmembers and the
abundances. In this work, we use the ADMM algorithm [16] which
allows to take into account the abundances sum-to-one and positiv-
ity constraints, and a Group lasso regularizer frequently incorporated
in unmixing to allow the use of large libraries of endmembers [17].
Moreover, we exploit the graph structure and use an algorithm [18]
similar to normalized graph-cuts [19] in order to partition the graph
into several sub-graphs. Unmixing is then performed on each sub-
graph separately which allows to reduce the computational complex-
ity of the algorithm.

The paper is organized as follows. Section 2 introduces the hy-
perspectral and graph frameworks, Section 3 incorporates the graph
Laplacian regularization on top of sparse unmixing, Section 4 is de-
voted to testing the proposed approach using synthetic data. Finally,
Section 5 concludes the paper.

2. HYPERSPECTRAL IMAGE TO GRAPH MAPPING

Let us first introduce the linear mixing model and some notations
specific to the hyperspectral unmixing framework. In matrix form,
the linear mixing model is given by

S = RA+E (1)
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withS = (s1, . . . , sN ),R = (r1, . . . , rM ),A = (a1, . . . ,aM )>.
Here, sj is the L-dimensional spectrum of the j-th pixel, L is the
number of frequency bands, ri is L-dimensional spectrum of the
i-th endmember, M denotes the number of endmembers, ai is the
N -dimensional abundance map of the i-th endmember, N is the
number of pixels in the image, and E is an additive Gaussian noise.
In addition, let sλi be the i-th row of S that denotes the collection of
the N spectrum values at the i-th spectral band of S. All vectors are
column vectors. Model (1) means that the (i, j)-th entry Aij of A
is the abundance of the endmember ri in pixel sj . Two constraints
on the abundances are usually considered, the non-negativity and
sum-to-one constraints: Aij ≥ 0 for all (i, j), and

∑M
i=1Aij = 1

for all j.
The first step in the proposed graph-based unmixing approach

consists in mapping the hyperspectral image to a graph G where
each node represents a pixel’s spectra. LetW be theN ×N affinity
matrix of the graph, the entries Wij ofW satisfy the following con-
ditions. If pixels i and j are similar then Wi,j is set to some positive
value proportional to their degree of similarity. If pixels i and j are
dissimilar then Wij tends to zero. There are different heuristics for
choosing Wij . For example, this can be done by using a Gaussian
kernel

Wij = exp

(
−‖si − sj‖

2

2σ2

)
(2)

where σ is the kernel’s bandwidth [20, 21]. In addition to the pixel’s
spectrum, each pixel can be defined by a vector of spatial features,
for instance, the average of its surrounding area, its coordinates in the
image. This spatial information leads to a second spatial affinity ma-
trix which can be easily combined with the spectral one [5]. Finally,
k-nearest neighbors and thresholding are commonly used in order to
set to zero small weights in W [22]. The authors of [5, 20, 21] pro-
pose different strategies for defining an affinity matrix that takes into
account both the spatial and the spectral information of a pixel.

3. LAPLACIAN REGULARIZED UNMIXING

As previously mentioned, we consider the following interpretation
of the graph. If two nodes are connected, then they are likely to
have similar abundances. We shall now incorporate this information
in the unmixing problem using the graph Laplacian regularization.
This leads to the following convex optimization problem:

minA
1
2
‖S −RA‖2F + λtr(ALA>) + µ

∑N
k=1 ‖ak‖2

subject to Aij ≥ 0 ∀ i, j∑N
i=1Aij = 1 ∀ j.

(3)
where L is the graph Laplacian matrix given by L = D −W , D
is a diagonal matrix with Dii =

∑N
j=1Wij , µ ≥ 0 and λ ≥ 0 are

two regularization parameters. The first term in (3) is a data fidelity
term based on the `2-norm. The second term is the graph Laplacian
regularization. To see the relevance of this regularization in (3), we
rewrite it as follows [23]:

tr(ALA>) =
M∑
i=1

N∑
j=1

∑
k∼j

Wjk(Aij −Aik)2 (4)

where k ∼ j indicates that pixels j and k are similar (Wjk 6= 0).
For every abundance map (row inA), this term penalizes the square
of the difference between the abundances of similar pixels propor-
tionally to their degree of similarity. This quantity can also be seen
as a measure of the discrepancies between the abundance estimates

weighted by their degree of similarity Wjk. The regularization pa-
rameter λ controls the extent at which similar pixels estimate sim-
ilar abundances. The third term is the `21-norm regularization also
known as the Group lasso. We consider that R is a large dictionary
of endmembers, and only few of these endmembers are present in the
image. For this reason, we use the the Group Lasso regularization
to induce group sparsity [24] in the estimated abundance matrix by
possibly driving several rows ak ofA to zero, as proposed in [17].

It is important to note that the first and second term of the cost
function (3) can be grouped in a single quadratic form. However the
resulting Quadratic Problem has N × M non-separable variables.
The transpose being on the second A instead of the first one in (4)
makes the problem non-separable with respect to the columns ofA.
The solution of problem (3) can be obtained in a simple and flexible
manner using the Alternating Direction Method of Multipliers [16].

3.1. ADMM algorithm

We consider the canonical form and the following variable splitting:

minX,Y ,Z
1
2
‖S −RX‖2F + λtr(Y LY >) + µ

∑N
k=1 ‖zk‖2

+I(Z)
subject to BX +CZ = F

X = Y
(5)

with

B =

(
I

1>

)
, C =

(
−I
0>

)
, F =

(
0

1>

)
,

where I is the indicator of the positive orthant guarantying the pos-
itivity constraint, that is, I(Z) = 0 if Z � 0 and +∞ otherwise.
The constraints impose the consensus X = Y , X = Z, and the
sum-to-one. In matrix form, the augmented Lagrangian for prob-
lem (5) is given by

Lρ(X,Y ,Z,V ,Λ) =
1

2
‖S −RX‖2F + µ

N∑
k=1

‖zk‖2 + I(Z)

+ λtr(Y LY >) + tr(V >(X − Y )) +
ρ

2
‖X − Y ‖2F

+
ρ

2
‖BX +CZ − F ‖2F + tr(Λ>(BX +CZ − F ))

(6)

where Λ and V are the matrices of the Lagrange multipliers, and
ρ is the penalty parameter. The flexibility of the ADMM lies in the
fact that it splits the initial optimization problem into three subprob-
lems. At iteration k + 1, the ADMM algorithm is outlined by four
sequential steps.

X minimization step: The augmented Lagrangian is quadratic with
respect to X . The minimizer has an analytical expression that is
obtained by setting the gradient of the augmented Lagrangian with
respect toX to zero:

Xk+1 = (R>R+ ρB>B + ρIN )−1(R>S

−B>[Λk + ρ (CZk − F )]− V k + ρY k).
(7)

Y minimization step: Similarly to the first step, Y k+1 is obtained
by setting the gradient of the augmented Lagrangian with respect to
Y to zero, which yields:

Y k+1 = (V k + ρXk+1)(2λL+ ρI)−1. (8)



Assume that we did not use Y , and assigned the same ADMM vari-
ableX for both the fidelity term and the graph Laplacian regulariza-
tion. In this case, theX minimization reduces to solving a Sylvester
equation [25]. The exact solution of this problem can not be com-
puted efficiently due to the high dimensionality of the problem. In
fact it requires the inversion of a NM ×NM matrix where N and
M can be both very large. Iterative methods have been proposed to
perform this task [26]. These iterative methods are similar to the first
two steps of our ADMM solution in the sense that the initial variable
is split into two variables and alternating updates of these variables
are performed.

Z minimization step: After discarding the terms that are indepen-
dent of Z, the minimization of the augmented Lagrangian with re-
spect to Z reduces to solving the following problem:

minZ µ
∑N
k=1 ‖zk‖2 + tr(Λ>CZ)

+ ρ
2
‖BX +CZ − F ‖2F

subject to Z � 0.
(9)

This minimization step can be split intoN problems given the struc-
ture of matricesB andC, one for each row of Z, that is,

minz
1
2
‖z − v‖22 + α‖z‖2 + I(z) (10)

where v = x + ρ−1λ, α = ρ−1µ. Vectors λ, x and z correspond
to a given row of Λ,X andZ, respectively. The minimization prob-
lem (10) admits a unique solution given by the proximity operator of
function f(z) = α‖z‖2 + I(z):{

z∗ = 0 if ‖(v)+‖2 < α

z∗ =
(
1− α

‖(v)+‖2

)
(v)+ otherwise, (11)

where (·)+ = max(0, ·). Operator (11) was recently used in [27,
28]. The derivation of this operator can be found in [28].

Update of the Lagrange multipliers Λ and V : The last step con-
sists of updating the Lagrange multipliers Λ and V using the fol-
lowing expressions

Λk+1 = Λk + ρ(BXk+1 +CZk+1 − F ),
V k+1 = V k + ρ(Xk+1 − Y k+1).

(12)

As suggested in [16], a reasonable stopping criteria for this iterative
algorithm is that the primal and dual residuals must be smaller than
some tolerance thresholds.

3.2. A note on complexity

Finally, we pay particular attention to the computational complexity
of the resulting ADMM algorithm. The most expensive step is the
X minimization, since it requires the inversion of anN ×N matrix,
N being very large in real images. We propose to exploit the graph
representation of the pixels and apply the algorithm of [18] in order
to partition the nodes of the graph into k clusters or subgraphs. Then
the ADMM algorithm can be applied on each subgraph where the
number of pixels is now smaller than N . The affinity matrix of each
subgraph is a subset of the original graph affinity, therefore it does
not need to be recomputed.

The purpose of this step is to reduce the computational com-
plexity while preserving the global knowledge captured by the graph
structure. For this reason the segmentation must be “conservative”.
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Fig. 1. Affinity matrix of Data2 obtained with SNR = 20 dB and
d2min = 1.8.

4. EXPERIMENTS

The performance of the proposed approach was evaluated using
two simulated data sets, namely, Data1 and Data2 designed with
different levels of homogeneity. Data1 is the same data set used
in the experiments of [8, 9]. The image consists of 75 × 75 pix-
els generated using 5 endmembers [e1, e2, · · · e5] with 224 bands
extracted from the USGS library. The background of the image
is a mixture of the 5 endmembers with the following abundances
[0.1149 0.0741 0.2003 0.2055 0.4051]>. There are 25 squares in
the image disposed in a 5 × 5 grid fashion (see Figure 2). Each
square is an homogeneous surface where its pixels have the same
abundances. The first 20 squares are different from each other,
each one contains a different mixture of the endmembers, whereas
the last 5 horizontally aligned squares are identical. Most of the
abundances in Data1 verify the assumption of local consistency.
Data2 is generated similarly to Data1, except that it is created using
15 distinct endmembers, and the squares in each row are identical.
In addition to local consistency, there exists distant homogeneous
surfaces in Data2 that are identical. As a result a pixel has local
similar neighbors and distant ones too.

The first step in the proposed approach consists of defining the
affinity matrix W . In all the experiments we simply threshold the
square of the spectral distance and set the weights according to 13:{

Wij = 1 if ‖si − sj‖22 < d2min

Wij = 0 otherwise, (13)

where d2min represents the maximum squared spectral distance re-
quired in order to consider that two pixels are similar. As previously
explained in Section 2, there are different heuristics for choosing the
weights. (13) was sufficient in our experiments to demonstrate the
effectiveness of the method. The most appropriate definition of W
is out of the scope of this paper. Figure 1 shows the affinity matrix of
Data2 when we have SNR = 20 dB, d2min = 1.8. For the purpose of
display the points have been re-ordered in such a way that the pixels
belonging to the 5 squares of the first row appear first, then those of
the squares of the second one appear second, and so on. The pixels
of the background are moved to the end. Note that the affinity matrix
has 6 white blocks (corresponding entries Wij are 1), the first white
blocks indicates that all the squares on the row are similar. The algo-
rithm described in [29] is then used to cut the graph into 10 disjoint
subgraphs and then unmixing is performed on each subgraph.

We compared the performances of FCLS [2] and SUnSAL-TV
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Fig. 2. First row: Abundance maps for endmember 2 in Data1 obtained with SNR = 30 dB. Second row: Abundance maps for endmember 7
in Data2 obtained with SNR = 30 dB. From left to right: The true abundance map, FCLS, SUnSAL-TV, GLUP-Lap. The parameters are the
reported in Table 1.

[8] with the proposed approach denoted by GLUP-Lap (Group Lasso
with Unit sum, Positivity constraints and graph Laplacian regular-
ization). We used the Root Mean Square Error (RMSE) defined as

RMSE =
√

1
NL
× ‖Â−A‖2F as the evaluation metric. We tested

SUnSAL-TV and GLUP-Lap for different combinations of the spar-
sity and the spatial tuning parameters µ and λ. Table 1 reports the
best performance of each algorithm for a given data set and a given
SNR with the corresponding optimal pair of regularization parame-
ters. GLUP-Lap requires the tuning of an additional parameter d2min
which is also reported in the table. Both, SUnSAL-TV and GLUP-
Lap, outperformed FCLS. GLUP-Lap had the lowest RMSE for all
cases. As the SNR increases the the rate at which GLUP-Lap im-
proves with respect to FCLS increases. This is due to the fact that
the observations contain less noise, thus the adjacency matrix be-
comes more reliable. The simulations performed with Data2 show
that this data set is more difficult than the previous since it contains
a large number of endmembers: 15 compared to 5 in Data1. As be-
fore, GLUP-Lap outperformed FCLS and SnSAL-TV. It is important
to note that GLUP-Lap and SUnSAL-TV were run under the same
ADMM conditions. The penalty parameter was set to 0.05, and the
maximum number of iterations to 200 in both algorithms.

The first row of Figure 2 shows the true abundance map of end-
member e2 in Data1, and the estimated maps obtained with FCLS,
SUnSAL-TV and GLUP-Lap with SNR=30dB. It can be seen from
these maps that both SUnSAL-TV and GLUP-Lap estimated smooth
abundance maps compared to FCLS. Note that the squares that were
not correctly estimated by SUnSAL-TV were better estimated with
GLUP-Lap. This is possibly due to the fact that these squares are
similar, for this reason they were encouraged to have similar esti-
mates and appeared as consistent blocks in the abundance map es-
timated by GLUP-TV. The same observation can be made in the
second row of Figure 2 that shows the abundance map for e11 in
Data2 with SNR=30dB. FCLS was not able to correctly estimate the
abundance of this endmember in the figure. SUnSAL-TV, possibly
due to the links it form with its surrounding estimates also failed

to correctly estimate the abundances of e11. despite the difficulty of
this abundance map, GLUP-Lap perfectly recovered the abundances.
Even if the 5 squares are separated by the background, the corre-
sponding pixels are connected in the graph due to their similarity
and collaboratively estimate their abundances.

Table 1. RMSE obtained with different values of the SNR, with the
optimal values of the couple (µ; λ) for SUnSAL-TV and GLUP-Lap,
the penalty parameter was set to ρ = 0.05 for both algorithms.

SNR 20 dB SNR 30 dB SNR 40 dB
Data1

FCLS 0.262 0.0173 0.0101
SUnSAL 0.0165 0.0101 0.0031

TV (5 10−4; 0.05) (5 10−4; 0.01) (5 10−4; 0.05)
GLUP 0.0152 0.0049 0.0012

Lap (0.01; 0.5) (5 10−4; 0.5) (5 10−5; 0.5)
d2min = 2.5 d2min = 0.3 d2min = 0.05

Data2
FCLS 0.0307 0.0240 0.0151

SUnSAL 0.0250 0.0132 0.0073
TV (0.05; 0.3) (10−4; 0.005) (5 10−5; 10−3)

GLUP 0.0174 0.0078 0.0023
Lap (0.01; 1) (10−4; 1) (5 10−5; 1)

d2min = 1.8 d2min = 0.5 d2min = 0.5

5. CONCLUSION

In this work we used the affinity matrix of the image in order to
incorporate the graph Laplacian regularization within the sparse un-
mixing formulation. We showed that the resulting graph regularized
framework has potential in improving the abundances’ estimation
accuracy and creates more consistent areas at the local and global
level. Future work includes validating the proposed approach using
real data sets and studying the potential of spatial-spectral weights



for further improving the performance of the proposed approach.
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