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SCALE-ROBUST COMPRESSIVE CAMERA FINGERPRINT MATCHING WITH RANDOM
PROJECTIONS

Diego Valsesia, Giulio Coluccia, Tiziano Bianchi, Enrico Magli

Dipartimento di Elettronica e Telecomunicazioni – Politecnico di Torino, Italy

ABSTRACT

Recently, we demonstrated that random projections can pro-
vide an extremely compact representation of a camera fin-
gerprint without significantly affecting the matching per-
formance. In this paper, we propose a new construction
that makes random projections of camera fingerprints scale-
robust. The proposed method maps the compressed finger-
print of a rescaled image to the compressed fingerprint of
the original image, rescaled by the same factor. In this way,
fingerprints obtained from rescaled images can be directly
matched in the compressed domain, which is much more
efficient than existing scale-robust approaches. Experimental
results on the publicly available Dresden database show that
the proposed technique is robust to a wide range of scale
transformations. Moreover, robustness can be further im-
proved by providing reference scales in the database, with a
small additional storage cost.

Index Terms— PRNU, random projections

1. INTRODUCTION

Many important forensics tasks, including device identifica-
tion, device linking, recovery of processing history, detection
of digital forgeries, can be performed by relying on specific
sensor fingerprints that link each image to a particular acqui-
sition device. In this sense, the photo-response nonuniformity
(PRNU) of digital imaging sensor [1], which is due to slight
variations in the properties of individual pixels, is a widely
used fingerprint, since it provides robustness to common op-
erations like lossy compression and image resizing [2, 3].

Despite its good camera identification performance, prac-
tical use of PRNU as a sensor fingerprint must face two
important problems. The first one is that the PRNU pattern
has the same size as the imaging sensor, which typically
counts tens of millions of pixels. As a consequence, a re-
alistic database of a few thousand sensor fingerprints would
require to store more than 1010 individual pixel values in
uncompressed format. The second problem is that the test
image should be geometrically aligned with the fingerprint in
the database. Since many images are routinely resized and/or
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cropped, e.g., when they are posted on specific photo sharing
services, the required synchronization step can make camera
identification a very time consuming procedure.

As to the management of a large database of PRNU cam-
era fingerprints, several solutions have been proposed in the
literature. In [4, 5], the authors introduced a so-called finger-
print digest obtained by keeping only a fixed number of the
largest fingerprint values and their positions, which enables
a fast search strategy with constant size fingerprints [6]. In
[7], the authors proposed to represent sensor fingerprints in
binary-quantized form: even though the size of binary finger-
prints scales with sensor resolution, binarization can consid-
erably speed-up the fingerprint matching process.

Recently, in [8] we proposed a compact representation of
PRNU fingerprints based on a fixed number of random pro-
jections. Thanks to the Johnson-Lindenstrauss (JL) lemma
[9], the proposed representation achieves camera identifi-
cation performance very close to uncompressed PRNU fin-
gerprints. Moreover, random projections can be optionally
binary-quantized, leading to an extremely compact finger-
print representation. Results indicated that the proposed
compressed fingerprints sensibly outperform both fingerprint
digests and standard binary fingerprints with the same length.

Concerning the synchronization problem, existing ap-
proaches are based either on a generalized likelihood ratio
test (GLRT) approach [10], through a brute force search of
possible scale and/or crop parameters, or on defining the fin-
gerprint detector in a transform invariant domain [11]. How-
ever, the first strategy usually requires an expensive search,
while the second approach can only by applied to a specific
geometrical transformation. Even if fingerprint digests can be
used to speed up the GLRT approach [12], their complexity
is still too high in the case of very large databases.

In this paper, we propose to extend the random projection
technique by employing a specific construction of the pro-
jection matrix that is robust to image resizing. Namely, the
new compressed fingerprint has the property that a rescaled
version of the image corresponds to a rescaled version of the
fingerprint. In this way, fingerprint synchronization can be
performed directly in the compressed domain, leading to a
much more efficient matching process with respect to existing
approaches. The robustness of the method to different scale
factors can be further improved by providing in the database



a certain number of anchor points obtained by computing dif-
ferently rescaled version of the fingerprint for a fixed set of
scale factors.

2. COMPRESSIVE PRNU FORENSICS

PRNU [1, 13] of imaging sensors is a property unique to each
sensor array due to impurities in silicon wafers and its effect
is a noise pattern affecting every image taken by that specific
sensor. Hence, the PRNU can be thought of as a fingerprint
of the sensor used to take a specific picture or a set of pic-
tures. The PRNU has the same pixel size as the sensor, and
every optical sensor exhibits PRNU. It is stable under differ-
ent environmental conditions and is robust to several signal
processing operations. The PRNU characterizing one sensor
can be extracted from a set of (not completely dark) pictures
taken by the same camera (20 to 50), with the procedure de-
tailed in the references above. Its knowledge can solve a set of
problems, like i) The device identification problem [2], test-
ing whether a given picture was taken by a specific device;
ii) the device linking problem [14], presented with two im-
ages and determining whether they have been acquired by the
same device.; iii) the fingerprint matching problem, whose
goal is determining which device in a database (if present) has
acquired a given set of pictures taken by the same camera.

Due to its noise-like characteristic, PRNU cannot be eas-
ily compressed. Hence, a database containing a significant
number of length-n PRNU fingerprints, n being the pixel-size
of the optical sensor, can rapidly grow in size. For this reason,
in [8] we proposed a method to “compress” this database with
negligible information loss using Random Projections (RP),
exploiting the low correlation between different PRNUs. The
idea, based on the key property of the Johnson–Lindenstrauss
lemma [9], was to project the original n–dimensional data to
a m–dimensional subspace, with m < n, using a random ma-
trix Φ ∈ Rm×n. Hence, a collection of N n–dimensional
fingerprints of known cameras, D ∈ Rn×N , is reduced to a
m–dimensional subspace A ∈ Rm×N by

A = ΦD . (1)

For what concerns the fingerprint matching problem (and
the conceptually very similar problem of camera identifica-
tion), a test fingerprint (or its counterpart in the camera iden-
tification problem) k̂ ∈ Rn is first compressed using the same
Φ used to compress the database, namely

y = Φk̂ , (2)

then compared to each column of the compressed database A
to find the most correlated. Refer to [8] for further details.

Several technical issues may arise in this framework. The
first problem is the complexity related to the generation and
storage of a fully random sensing matrix. The second is the
complexity related to the matrix-matrix product of (1). Both
issues can be mitigated by using a partial circulant sensing
matrix, which allows to generate of a lower number of ran-
dom coefficients and to efficiently perform the product using

the FFT, maintaining the distance-preserving properties in the
compressed domain [15, 16].

Finally, further compression can be obtained with binary
quantization of the compressed database, i.e., reducing the
compressed database to the matrix of its signs only,

A = sign(ΦD) y = sign(Φk̂). (3)

In the case of binary measurements the correlation coefficient
is replaced by the Hamming distance as test metric.

3. SCALE–ROBUST RANDOM PROJECTIONS

A compressive camera identification system typically has
to deal with unknown image transformations of the query
image. In this section, we propose a method to cope with
rescaled images. Existing solutions typically rely on max-
imizing the the GLRT with respect to the transformation
parameter (i.e., the scale in this case) [10]. This solution
requires an expensive search to determine the scaling factor
because a cross-correlation function has to be computed from
high-dimensional fingerprints. Alternative solutions, like the
creation of a fingerprint digest [12], where only the d largest
components of the fingerprint and their relative positions are
stored, can be used to alleviate the computational burden.
However, even if this solution is competitive in terms of com-
putational complexity of the matching operation from scaled
pictures, it is not also good for compression as it was shown
to be outperformed by random projections [8]. We thus seek
solutions to make random projections robust to scale trans-
formations, so that when presented a scaled photo, the system
can correctly identify the imaging sensor that acquired it by
only keeping a database of random projections of PRNU
patterns and the information on the original sensor size and
computing random projections of the query pattern.

The ability to correctly match a rescaled query image with
the corresponding entry in the compressed database requires a
compression operation that ideally maps the compressed fin-
gerprint of the rescaled image to the compressed fingerprint
of the original image, rescaled by the same factor. To achieve
this goal, we propose a novel construction for the sensing ma-
trix, based on block circulant with circulant blocks (BCCB)
matrices, and a new matching process entirely in the com-
pressed domain.

3.1. Construction of the sensing matrix
While [8] investigated the use of circulant matrices thanks to
the fast implementation allowed by such operator and the sig-
nificant body of theoretical work around them, this work uses
BCCB matrices as sensing matrices Φ in the products (1) and
(2). The performance of random BCCB matrices was studied
in [17, 18] where they were shown to satisfy the Restricted
Isometry Property (RIP) [19]. The RIP is concerned with em-
beddings of sparse signals, while here we seek an embedding
satisfying the Johnson–Lindenstrauss lemma (JL) [9]. How-
ever, Krahmer and Ward [20] showed that randomizing the
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Fig. 1: Block diagram of the proposed technique. Above: cre-
ation of an entry in the database. Below: matching technique.

column signs of a matrix satifying the RIP, provides a JL em-
bedding, satisfying our goal. We remark that we are interested
in a very particular class of signals, PRNU patterns, which
can be modeled as white Gaussian noise. Randomizing the
column signs of the sensing operator amounts to randomizing
the signs of the signal and using the original operator. How-
ever, since our signals of interest are made of white Gaussian
noise, the randomization of the signs has no effect and it is
possible to omit it.

BCCB operators can be efficiently implemented via the
two-dimensional discrete Fourier transform. In practice, we
move from considering vectorized versions of the fingerprint
to be compressed to a two dimensional representation, since

Φ · vec {X} = vec {ϕ~ X} ,
where ϕ is a random matrix (i.i.d. Gaussian) of the same size
of X such that vec {ϕ} is the first row of the BCCB sensing
matrix Φ, and ~ is the two-dimensional circular convolution,
which can be efficiently implemented as

ϕ~ X = IDFT2[DFT2[X] ·DFT2[ϕ]] . (4)

Hence, the scale-robust system will create the random ma-
trix ϕmax of size nmax

x ×nmax
y , where the size coincides with

the maximum sensor size the system deals with.

3.2. Creation of an entry in the database
Referring to the above part of Fig. 1, the procedure to create
a compressed database entry is the following. Given a finger-
print K of size nx × ny , first ϕmax is resized to match the
size of K, to obtain ϕ. Then, the convolution between K and
ϕ is efficiently performed using (4), obtaining Y. Finally, to
effectively obtain dimensionality reduction, a contiguous area
of Y of size mx ×my is cropped, obtaining Ycrop, which is
then stored as an entry of the database. A way to crop the
same area from an arbitrarly resized version of Y (e.g., al-
ways crop the top-left corner and store the ratios mx

nx
and my

ny
)

is stored, as well. The algorithm is reported in Alg. 1.
In case of binary measurements, the database stores the

1-bit quantized version of Y.

3.3. Matching
As for the matching operations, we refer to the bottom part
of Fig. 1. The matching between a test fingerprint K′ of a

Algorithm 1 Creation of an entry in the database
Require: A fingerprint K of size nx × ny , ϕmax

ϕ← resize of ϕmax to size nx × ny
Y ← IDFT2[DFT2[K] ·DFT2[ϕ]]
Ycrop ← top-left crop from Y of size mx ×my

Store Ycrop in database A: Ai = Ycrop

Store mx

nx
and my

ny

rescaled image and the i-th entry in the database Ai is per-
formed as follows. Given a fingerprint K′ of size n′x × n′y ,
first ϕmax is resized to match the size of K′, to obtain ϕ′.
Then, the convolution between K′ and ϕ′ is efficiently per-
formed using (4), obtaining Y′. Y′ is then cropped to the
same contiguous area of Ai as in the database (e.g., if it was
top-left, then crop the top-left mx

nx
n′x ×

my

ny
n′y pixels), obtain-

ing Y′crop. Finally, Y′crop is resized to mx × my , obtaining
Y′′. Hence, Y′′ is synchronized with Ai, making the correla-
tion evaluation possible. The entire process is summarized in
Alg. 2. Note that the resizing of the cropped random projec-
tions of the test fingerprint must be repeated for every entry of
the database because of the different values of mx

nx
and my

ny
. In

Algorithm 2 Scale-robust matching process
Require: A test fingerprint K′ of size n′x × n′y , ϕmax, the

database A
for all entries in the database A do

ϕ′ ← resize of ϕmax to size n′x × n′y
Y′ ← IDFT2[DFT2[K

′] ·DFT2[ϕ
′]]

Y′crop ← top-left crop from Y′ of size mx

nx
n′x ×

my

ny
n′y

Y′′ ← resize of Y′crop to size mx ×my

ρi ← corr(Y′′,Ai)
end for

Ensure: i = argmaxi ρi

case of binary measurements, the cropped test measurement
is first resized and then its sign is kept. Finally, Hamming
distance is used as dissimilarity metric.

We remark here that the matching process could be also
performed by resizing the test fingerprint of a rescaled im-
age to the size of the entry stored in the database (the original
nx×ny). Nevertheless, this would require to perform the sub-
sequent operations in the image size domain rather than in the
compressed domain, with larger sizes and hence additional
complexity. Moreover, we tested (but omit the corresponding
results for brevity) the performance of the scheme of [8] ap-
plied to a rescaled test image interpolated to the original size,
proving that it is lower than the scheme proposed here.

3.4. Redundant Dictionaries

The work in [8] and the previous section consider the cre-
ation of a database of compressed fingerprints where each



camera sensor is associated to a single entry. An extension
of this concept is possible by associating multiple entries to
the same camera sensor in order to improve the robustness of
the system to transformations (and, more specifically, to scal-
ing). We call this construction of the database a redundant
database. This represents a trade-off between storage and re-
silience to transformations, since experiments show that ro-
bust performance is observed locally around a reference scale.

It is observed that the technique proposed in section 3 best
performs for detection of small scaling factors due to the in-
terpolation processes occurring at various stages. It is thus
advisable to introduce some redundancy in the database of
compressed fingerprints in the form of compressed versions
of fingerprints at various scales. Such redundant elements will
serve as reference scales, ideally providing a closer match to
the unknown scale of the fingerprint under test.

4. NUMERICAL RESULTS

We tested the method presented in Section 3 to provide ro-
bustness to scale transformations with and without reference
scales in a redundant database assembled from the publicly
available Dresden image database [21]. We used the flatfield
images to extract the database fingerprints and the natural im-
ages for testing. The results show that the method works both
for floating point measurements and binary measurements.
As expected a degradation of the performance is observed as
the scaling factor σ (σ2 is the ratio of the number of pixels
in the resized image to original number of pixels) decreases.
This effect can be mitigated by introducing some reference
scales in the database. Surprisingly, it is observed that in-
troducing a reference scale σref boosts the detection perfor-
mance even for higher scales, i.e. σ > σref , and not only
lower scales. We refer to the metrics defined in [8] for per-
formance assessment, i.e. probability of correct/wrong fin-
gerprint to be above a threshold (PD,PFA), and probability
of only/not only the correct fingerprint to be above threshold
(PC ,PF ). All the tests used mx = 715, my = 715. Ob-
serving Fig. 2, it can be noticed that the system performs
close to the one in [8, Fig. 3] thanks to including reference
scales σ = 0.8, 0.55 in addition to σ = 1. Notic The relative
performance of binary measurements with respect to float-
ing point measurements is aligned with what observed in [8].
Fig. 3 shows the maximum detection (correct detection) rates
for a fixed false alarm (false detection) rate, as function of
the scale. This highlights the robustness of the system to a
wide range of scale transformations, especially in presence
of a moderately redundant database (bottom curves represent
the system without additional reference scales). As a final re-
mark, all the tests used bicubic interpolation for all rescaling
operations, including the creation of scaled versions of the test
images of the Dresden database. It was noticed that bilinear
interpolation works equally well. A mismatch between the
two methods (e.g. photos scaled using bilinear interpolation
and measurements scaled with bicubic) does not change the
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Fig. 2: ROC curves for the Dresden database at various scales
σ. m = 7152 floating point/binary measurements. With ref-
erence scales.
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Fig. 3: True Positive and True Detection rates for the Dresden
database at various scales σ. m = 7152 ' 512, 000 float-
ing point/binary measurements. With and without reference
scales (RS).

performance. However, it was observed that nearest neighbor
interpolation of the measurements does not provide satisfac-
tory results.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we showed how the compression of camera fin-
gerprints with random projections, originally introduced in
[8], can be extended to deal with images subject to an ar-
bitrary scaling. This is a relevant issue in real applications
since photos are often resized either manually by users or au-
tomatically by photo-sharing websites. The proposed tech-
nique allows to perform all operations in the compressed do-
main, thanks to a novel construction of the sensing matrix.
The resulting system displays excellent resilience to a wide
range of scale transformations and can be further improved
by including reference scales in the database of fingerprints,
thus trading off storage and resilience. Finally, we remark that
BCCB sensing matrices open the way to novel compressed-
domain applications, thanks to the ability to directly map 2D
signal processing operations to the domain of random projec-
tions as explained in [22]. Thus, future work will focus on the
use of such techniques to deal with cropped images and other
detection metrics like the Peak-to-Correlation Energy (PCE).
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