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ABSTRACT

In this paper, we consider multi-sensor classification when
there is a large number of unlabeled samples. The problem
is formulated under the multi-view learning framework and
a Consensus-based Multi-View Maximum Entropy Discrim-
ination (CMV-MED) algorithm is proposed. By iteratively
maximizing the stochastic agreement between multiple clas-
sifiers on the unlabeled dataset, the algorithm simultaneously
learns multiple high accuracy classifiers. We demonstrate that
our proposed method can yield improved performance over
previous multi-view learning approaches by comparing per-
formance on three real multi-sensor data sets.

Index Terms— sensor networks, multi-view learning,
maximum entropy discrimination, kernel machine

1. INTRODUCTION
In many applications, e.g., in sensor networks, data is col-
lected from multiple sensors and, given that complementary
information is present within different sensors, classification
using all sensors is expected to yield higher performance as
compared to its single-sensor counterpart [1]. Furthermore,
as class labeling can be labor intensive, in many situations
many training samples may not be labeled. In the machine
learning literature, this problem falls under the framework of
semi-supervised multi-view learning [2], since the partially-
labeled samples are multi-modal in nature and each modality
corresponds to one view of physical event.

Most methods to multi-sensor or multi-view classification
either rely on feature fusion (early fusion) methods, that find
an intermediate joint representation of multiple views [3,4],
or, on decision fusion (late fusion) methods that combine de-
cisions from multiple models to improve the overall perfor-
mance [5]. Unless the features are optimized for multi-view
aggregation, there is no guarantee that feature fusion willlead
to good classification performance. In this paper, we pursue
a different approach that learns an intermediate model, or a
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consensus viewto fuse features from different views, and im-
proves simultaneously the performance of each single-view
classifier. Moreover, we propose to train a set ofstochastic
classifiersto handle the large number of unlabeled training
samples.

We follow the principle of the disagreement-based multi-
view learning [2, 6, 7, 8, 9, 10, 11]. In particular, it is shown
in [12] that the error rate of each classifier in the multi-view
system is bounded above by the rate of disagreement be-
tween multiple view-specific classifiers. In other word, the
algorithm that explicitly minimizes the disagreement between
multiple view-specific classifiers would learn a set of compat-
ible classifiers with high performance and low sample com-
plexity. In this paper, we propose a Consensus-based Multi-
View Maximum Entropy Discrimination (CMV-MED) algo-
rithm that learns a set of classifiers, one for each view, by
iteratively maximizing theirstochastic agreementon the un-
labeled training data. Our method is based on the Maximum
Entropy Discrimination (MED) by Jaakkola et al. [13]. MED
is a Bayesian learning approach that generalizes support vec-
tor machine (SVM) classifiers and explicitly incorporate the
large-margin training [14] into a unified maximum entropy
learning framework. We show the superior performance of
our model over previous multi-view learning approaches by
comparing performance on three real multi-sensor data sets.

This paper is structured as follows: an overview of the
MED model is given in Section 2 and we propose the general
model for CMV-MED in Section 3. The algorithm for solving
CMV-MED is discussed in Section 4. In Section 5, experi-
ments on a set of real multi-view data sets are discussed.

2. MAXIMUM ENTROPY DISCRIMINATION (MED)

We denote the multi-view data set asDV . DV consists of
the labeled part{(xn, yn), n ∈ L} and the unlabeled part
{xm,m ∈ U}, whereL andU represent the index set of la-
beled and unlabeled samples, respectively, and|L| ≪ |U |.
Define the multi-view featurexn = [x1

n, . . . ,x
V
n ], ∀n ∈

L ∪ U , wherexi
n ∈ R

di are the features extracted from view
i andV is the number of views. Here we consider thebinary
classificationtask, i.e.,y ∈ |Y| = {−1,+1} . LetDi be the
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set of samples collected from the single viewi. In this section,
we focus on the single-view MED on labeled subsetL.

For a single viewi ∈ [1, . . . , V ], assume the pre-
dictive distribution is a generalized log-linear model, i.e.,
log pi(y|xi, wi) ∝

1
2y

(
w

T
i Φi(x

i)
)
≡ Fi(y,x;wi) and

Φi : Rdi 7→ Rpi is a prescribed feature map defined in view
i. Define the kernel functionKi : Rdi × Rdi 7→ R that sat-
isfies〈Φi(x

i
n), Φi(x

i
m)〉 = Ki(xn,xm), for ∀xi

n,x
i
m ∈ D

i

in view i andFi(y,x
i;wi) is the normalized log-likelihood

function parameterized bywi in the kernel space.
Denote the prior distribution ofwi asp0(wi). The goal for

Maximum Entropy Discrimination [13] is to learn a post-data
(posterior) distributionq(wi), by solving an entropic regu-
larized risk minimization problem with the prior on model
parameterwi specified asp0(wi)

min
q(wi)

KL (q(wi)‖p0(wi))

+
∑

n∈L

[
1−Eq(wi){∆Fi(yn,x

i
n;wi)}

]

+
, (1)

where [s]+ = max{s, 0}. KL(p‖q) is the Kullback-
Leibler divergence from distribution p to q, i.e.,

KL (q(wi)‖p0(wi)) =
∫
Θ q(wi) log

(
q(wi)
p0(wi)

)
dwi and

∆Fi(yn,xn;wi) ≡ Fi(yn,x
i
n;wi) − Fi(y 6= yn,x

i
n;wi) =

log
(

p(yn|x
i
n,wi)

p(y 6=yn|xi
n,wi)

)
is the log-odds classifier.

The second term in (1) is a hinge-loss that captures the
large-margin principle underlying the MED prediction rule,

y∗ = argmaxy Eq(wi)

[
F (y,xi;wi)

]
.

If we use aGaussian Process[15] as the prior onwi,
i.e., p0(wi) = N (wi; 0, σ

2Ipi
), a kernel SVM is obtained

by solving (1) in its dual formulation. For multi-view data,
it is necessary to learn multiple MEDs simultaneously. For
example, in [16], the author applies a joint sparsity prior on
(w1, . . . ,wV ) to achieve multi-task feature selection. Instead
of assuming a joint prior on all multi-view model parame-
ters, we utilize the available unlabeled samples and require
the class prediction of multiple models to agree with each
other.

3. CONSENSUS-BASED MULTI-VIEW MED: A
GENERAL FRAMEWORK

Define the consensus view modelas a parameter-
free distribution q(y|xn) ∈ Q on the unlabeled
set U , where xn = [x1

n, . . . ,x
V
n ], ∀n ∈ U ,

Q ≡
{
q(x) : q(x) ≥ 0,

∫
q(x)dx = 1

}
and q(y|xn) =

δ {y = yn} , n ∈ L. In each viewi, a joint post-data dis-
tribution is obtained asqi(y,wi|x) = q(y|x)q(wi), where
q(y|x) is shared among all views and the above equality
reflects the mean-field approximation.

The goal of Consensus-based Multi-view Maximum En-
tropy Discrimination(CMV-MED) is to simultaneously learn
the joint post-data distributionsqi(y,wi|x) = q(y|x)q(wi),
given the priorspi(y,wi|xi) = pi(y|wi,x

i)p0(wi) for xi ∈

Di, ∀i = 1, . . . , V. This is accomplished by solving the fol-
lowing optimization problem

min
qi(y,w

i|xn)∈Q,

∀i=1,...,V, n∈L∪U

∑

n∈L

V∑

i=1

[
1−Eqi(y,w

i|xn){∆Fi(y,x
i
n;wi)}

]

+

+λ
∑

n∈U

V∑

i=1

πiKL

(
qi(y,w

i|xn)‖p0(y,w
i|xi

n)
)
,

(2)

whereπi ∈
{
πj :

∑V

j=1 πj = 1, πj ≥ 0, ∀j
}

is a parame-

ter for viewi andλ > 0 is regularization parameter. Note that
qi(y,wi|xn) = δ {y = yn} q(wi) on the labeled setL and
the second term can be further expanded as

KL

(
qi(y,w

i|xn)‖p0(y,w
i|xi

n)
)
= KL

(
q(wi)‖p0(w

i)
)

+Eq(wi)

[
KL

(
q(y|xn)‖pi(y|x

i
n,w

i)
)]

, i = 1, . . . , V. (3)

Substituting (3) into (2), we have the following

min
q(y|xn)∈Q,n∈U

q(wi), ∀i=1,...,V

∑

n∈L

V∑

i=1

[
1−Eq(wi){∆Fi(yn,x

i
n;wi)}

]

+

+λ

V∑

i=1

πiKL

(
q(wi)‖p0(w

i)
)

+λ
∑

n∈U

V∑

i=1

πiEq(wi)

[
KL

(
q(y|xn)‖pi(y|x

i
n,w

i)
)]

. (4)

From (4), we see that the first and second term learnV view-
specific MED modelsq(wi), i = 1, .., V, simultaneously.

Our main contributionis the third term in (4), which is
referred as theconsensus-based disagreement termon unla-
beled set, since it is zero when view-specific predictive mod-
els pi(y|x

i
n,w

i) all equal,i = 1, ..., V , while it penalizes
more when one deviates far from the consensus modelq(y|x),
which, by construction, is thecenterof theseV distributions
in the information geometry over the space of probability
measures. This center is determined by information projec-
tion accomplished by the KL divergence in (4). By incorpo-
rating this term, we explicitly require all classifiers to make
similar class predictions having similar confidence levelson
the unlabeled training samples. The benefit for enforcing the
consensus-based disagreement is that the proposed model is
sensitive in the case when view-specific classifiers with low
confidence agree with each other, while it is lenient when all
of them are highly confident and agree. Thus the model is re-
liable in the situation where the initial view-specifc classifiers
only have low confidence results due to the limited size of la-
beled training set. Fig. 1 is a graphical model representation
for the information projection.

4. SOLUTION VIA DETERMINISTIC ANNEALING
EXPECTATION MAXIMIZATION

Our solution for CMV-MED in (4) is based on thedeterminis-
tic annealing EM[17]. It is described as the following steps:



Fig. 1: A graphical model representation for consensus-based multi-view
learning via information projection.

1. Set the regularization parameterλ0 = 0 in (4) at initial-
ization and trainV independent MED classifiers simul-
taneously to findq0(wi), i = 1, . . . , V . Set the prior
distributionp0(wi) = N (wi : 0, σ2I) andπi =

1
V
, ∀i.

Let T be the maximum number of iterations.

2. Fort = 1, . . . , T , do

(a) Given the post-data distributionqt−1(w
i), i =

1, . . . , V from MED, find the consensus view on
unlabeled dataU via information projection, i.e.
qt(y|xn)

= argminq

1

V

V∑

i=1

Eq(wi)

[
KL

(
qn(y)‖pi,n(y|w

i)
)]

⇒ log qt(y|xn) =
1

V

V∑

i=1

log pi,n(y|ŵ
i
t−1)− logZ(xn),

∀n ∈ U,

whereqn(y) ≡ q(y|xn), pi,n(y|wi) ≡ pi(y|x
i
n,

w
i) for n ∈ U , Z(xn) is the normalization factor

andŵi
t−1 is the mean of the post-data distribution

qt−1(w
i), i = 1, . . . , V .

(b) Given the consensus viewqt(y|xn), ∀n ∈ U , sub-
stitute it into (4) to obtain the following optimiza-
tion problem

min
q(wi), ∀i=1,...,V

∑

n∈L

V∑

i=1

[
1−Eq(wi){∆Fi(yn,x

i
n;wi)}

]

+

+λt

1

V

∑

n∈U

V∑

i=1

Eq(wi)

[
Eqt(y|xn)

[
− log pi(y|x

i
n,w

i)
]]

+

V∑

i=1

πiKL

(
q(wi)‖p0(w

i)
)

For each viewi, compute theqt(wi|Di,αi) with
dual parameterαi = [αi

1, . . . , α
i
L]

T by solving the
following dual programming problem, i.e.,

max
α

i
1
T
α

i −
σ2

2
(αi)T (K̃i ⊙ y y

T )αi (5)

s.t.0 � α
i � 1,

where1 = [1, . . . , 1]T and⊙ is piece-wise product.
In (5), a new kernel̃Ki is computed via

K̃i = KL,i

−λt (k
i
UL)

T
[
1/σ2

M
−1
i + λtKU,i

]−1
k
i
UL(6)

≡ [〈Φ̃i(x
i
n) , Φ̃i(x

i
m)〉]n,m∈L, (7)

where KL,i = [Ki(x
i
n,x

i
m)]n,m∈L,

KU,i = [Ki(x
i
n,x

i
m)]n,m∈U and

k
i
UL = [Ki(x

i
n,x

i
m)]n∈U,m∈L. Mi =

diag {ν1, . . . , νU} ∈ R|U|×|U|, with νn ≡
Eqt(y|xn)

[
−∇2

w
i log pi(y|xi

n, ŵ
i
t−1)

]
, n ∈ U .

Then the post-data distributionqt(wi|Di,αi) =
N (ŵi

t,Hi), where the mean is given bŷwi
t =∑L

m=1 ymαi
mΦ̃i(x

i
n). The covariance matrix

Hi =
(
σ2 I +Φi(XU )

T
MiΦi(XU )

)
with

Φ(XU ) ≡ [Φi(x
i
1), . . . ,Φi(x

i
U )]

T ∈ R|U|×pi .

(c) Setλt = 1− e−0.5t → 1 ast increases.

(d) t← t+ 1.

3. Finally, make prediction based on consensus view

y∗ = argmaxŷ

∑

1≤i≤V

Eq(y,wi)

[
δ {y = ŷ}F (y,xi;wi)

]
.

Note that the Step 2(b) can be performed in parallel, as it does
not rely on information from other views.

5. EXPERIMENTS

We compare the proposed CMV-MED model with the SVM-
2K model proposed by Farquhar et al. [7], the MV-MED
model by Sun et al. [11] as well as the conventional MED
for each view on several real multi-view data sets. In the
following experiments, we focus on two-view learning, i.e.
V = 2 and use the Gaussian Kernel functionKi(x

i
n,x

i
m) =

exp(c ‖xi
n − x

i
m‖

2), i = 1, 2. For all MED-based methods,
a Gaussian Process priorp0(wi) = N (0, σ2

i I) is assigned
for view i = 1, 2. The view parameterπ1 = π2 = 1

2 . All
other parameters for each model are obtained by 5-fold-cross-
validation. All the experiments are repeated for20 times, with
randomly chosenL andU .

5.1. Footstep Classification
We test onARL-Footstep [18, 19] data, which is a multi-
sensor data set that contains acoustic signals collected byfour
well-synchronized sensors (labeled as Sensor 1,2,3,4) in a
natural environment. The task is to discriminate between hu-
man footsteps and human-leading animal footsteps. We only
use Sensor1, 2 in our experiment. It involves840 segments
from human subjects and660 segments from human-animal
subjects. We choose600 segments from each class as the
training set with|L| = 50, and the rest is designated as the
test set. A200-dimensional mel-frequency cepstral coeffi-
cients (MFCCs) vector is computed from the corresponding
segments in all the views, with normalization as in [19].

In Table 1, we see that our CMV-MED outperforms both
SVM-2K and MV-MED, and it improves over the single-
view MED. This is likely because our method utilizes the
confidence as well as decision as a disagreement measure,



Classification Accuracy (%) mean± standard error
Dataset. MED (single views) SVM-2K MV-MED CMV-MED

ARL Footstep (Sensor 1,2,
|L| = 50)

71.1 ± 5.3 62.3± 10.2 73.3± 5.2 75.6± 6.5 85.5± 6.1

WebKB4 (|L| = 15) 76.6± 10.2 77.1± 10.1 79.0 ± 10.0 77.9± 8.7 91.7± 5.8

Internet Ads (|L| = 50) 87.3 ± 0.9 86.2± 1.4 82.5± 4.3 88.8± 2.3 92.7± 0.7

Table 1: Classification accuracy with different data set, with the best performance shown inbold.
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Fig. 2: The classification accuracy vs. the size of labeled set for (a) ARL-Footstep data set, (b)WebKB4 data set and (c)Internet Ads data set. The proposed
CMV-MED outperforms MV-MED, SVM-2K and two single-view MEDs (view 1 and 2) and it has good stability when the number of labeled samples is small.

In ARL-Footstep data, since the signal is contaminated by
background noise, the original MED on two single views does
not perform well, and both the decision regularization and
margin regularization are not as reliable as the confidence reg-
ularization implemented by CMV-MED.

Fig. 2(a) shows the accuracy and the standard deviation
for the four methods as the size of the labeled set increases.
As more ground truth labels are used, the performances of
all training methods increases, while CMV-MED shows its
superior performance consistently.

5.2. Web-Page Classification

The WebKB4 [20] data set is widely-used in multi-view
learning literature [6, 10]. It consists of1051 two-view web
pages collected from computer science department web sites
at four universities. There are230 course pages and821 non-
course pages. The two natural views are words in a web page
and words appearing in the links pointing to that page. We
follow the preprocessing step in [10], and extract a3000-
dimensional feature vector via the bag-of-words representa-
tion in the page view and a1840-dimensional feature vector
in the link view. Then we compute the term frequency-inverse
document frequency weights (TF-IDF) features from the doc-
ument word matrix. The feature vector is length normalized.

In Table 1, we see that our CMV-MED has significantly
better performance as compared to SVM-2K and MV-MED,
when the labeled set is small, i.e.,|L| = 15. Also, accord-
ing to Fig. 2(b), when more labeled samples are included,
all four methods have similarly good performance, even for
the single-view MED. The CMV-MED performs better with
a few labeled samples because its stability relies on a good es-
timate of confidence on the unlabeled training samples, which
is less affected by the amount of the labeled training samples.

5.3. Internet Advertisement Classification

The Internet Ads [21] data set consists of3279 instances
including 458 ads images and2820 non-ads images. The
first view describes the image itself, i.e., words in images’
URL and caption, while the other view contains all other fea-
tures, i.e., words from URLs of pages that contain the im-
age and pages which the image points to. For each view,
we extract the bag-of-words representations, which results in
a 587−dimensional vector in view 1 and a967−dimension
vector in view 2. We set the size of training set as600 and
|L| = 50.

From Table 1 and Fig. 2(c) , we see that our CMV-MED
still performs better than SVM-2K, MV-MED and single-
view MED. It is seen that CMV-MED is more stable as the
size of the labeled training set increases, while SVM-2K has
much worse stability performance.

6. CONCLUSION

In this paper, we propose a consensus-based multi-view max-
imum entropy learning model that incorporates large-margin
classification and Bayesian learning when a large amount of
unlabeled samples from multiple sources are available. The
experimental results on three different real data sets showthe
superiority of the proposed CMV-MED over other multi-view
large-margin classification methods in terms of classification
accuracy, especially when the number of labeled samples is
small compared to the unlabeled ones.
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