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ABSTRACT consensus vieto fuse features from different views, and im-
) ) ) o proves simultaneously the performance of each single-view
In this paper, we consider multi-sensor classification when,,ssifier. Moreover, we propose to train a sestichastic

there is a large number of unlabeled samples. The probleR)agsifiersto handle the large number of unlabeled training
is formulated under the multi-view learning framework andsamples.

a Consensus-based Multi-View Maximum Entropy DISCrim- yye tojiou the principle of the disagreement-based multi-
|nat|9n_ (.CMV'MED) aIgo_nthm is proposed. By |ter§1t|vely view learning [2[ 6] 17, 8,19, 10, 11]. In particular, it is show
maximizing the stochastic agreement between multiple clag, [12] that the error rate of each classifier in the multiwie

f'f'ers on ﬁhelur;llgkr)]eled dataselt, thi_algoc\tlhrg simultasigou system is bounded above by the rate of disagreement be-
earns multiple high accuracy classifiers. We demonsthate t tween multiple view-specific classifiers. In other word, the

our propose?.m.ethold can yield |mprcr)]vedbperformance Ove<£Igorithmthat explicitly minimizes the disagreement betw
previous multl-view learning approaches by comparing perFnultiple view-specific classifiers would learn a set of cotnpa

formance on three real multi-sensor data sets. ible classifiers with high performance and low sample com-
Index Terms— sensor networks, multi-view learning, plexity. In this paper, we propose a Consensus-based Multi-

maximum entropy discrimination, kernel machine View Maximum Entropy Discrimination (CMV-MED) algo-
rithm that learns a set of classifiers, one for each view, by
1. INTRODUCTION iteratively maximizing theistochastic agreemewin the un-

In manv apolications. e.d.. in sensor networks. data is ColI_abeled training data. Our method is based on the Maximum
y appiical ' €. : ’ Entropy Discrimination (MED) by Jaakkola et l. [13]. MED
lected from multiple sensors and, given that complementar% a Bayesian learning approach that generalizes support ve

information is present within different sensors, clasatfimn : L T
) . . ; tor machine (SVM) classifiers and explicitly incorporate th
using all sensors is expected to yield higher performance as

o arge-margin training([14] into a unified maximum entropy
compared to its single-sensor counterpart [1]. Furtheemor . - .

. : L ..~ learning framework. We show the superior performance of
as class labeling can be labor intensive, in many situations

many training samples may not be labeled. In the machin@ur model over previous multi-view learning approaches by

learning literature, this problem falls under the framehof comparing performance on three real multi-sensor data sets

semi-supervised multi-view learningl[2], since the pdistia gg's pgple_r IS stru_ctuSredt_ ;OHO(\;VS' an overv;ﬁw of thel
labeled samples are multi-modal in nature and each modali modet 1S given In Sectiol 2 and We propose the genera
- : odel for CMV-MED in SectionB. The algorithm for solving
corresponds to one view of physical event. o ) X . .
. o . .. CMV-MED is discussed in Sectidd 4. In Sectioh 5, experi-
Most methods to multi-sensor or multi-view classification

either rely on feature fusion (early fusion) methods, thad fi ments on a set of real multi-view data sets are discussed.

an intermediate joint representation of multiple viels4g,
or, on decision fusion (late fusion) methods that combine de

cisions from multiple models to improve the overall perfor-\we genote the multi-view data set &,. Dy consists of

mancel[5]. Unless the features are optimized for multi-viewha 1apeled part(x,,,y»),n € L} and the unlabeled part
aggregation, there is no guarantee that feature fusioteai Xm,m € U}, whereL andU represent the index set of la-

to good classification performance. In this paper, we pursUggled and unlabeled samples, respectively, [drid< |U].
a different approach that learns an intermediate model, or Befine the multi-view features, — I} xV],¥n €
n - ) n 12

nyce.

— . LUU,wherex! € R% are the features extracted from view
Acknowledgement: This research was partially supportetd ByArmy . . n . . .
Research Office (ARO) grants W911NF-11-1-0391 and WAliwa-1 ¢ @ndV'is the number of views. Here we consider teary
103A1. classificationtask, i.e..y € |Y| = {—1,+1}. Let D* be the

2. MAXIMUM ENTROPY DISCRIMINATION (MED)
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set of samples collected from the single viewn this section, D?,Vi = 1,...,V. This is accomplished by solving the fol-

we focus on the single-view MED on labeled subket lowing optimization problem

For a single viewi € [1,...,V], assume the pre- 14 .
dictive distribution is a generalized log-linear modeg.j. ~  min > Z [1 - Eqi(y,wi\xn){AFi(yvxniWi)}]+
log p; (y|x?, w;) o< %y (wlT fbi(xi)) = F;(y,x;w;) and vi=1,..,V, neLou L=l

®; : R% — RP: is a prescribed feature map defined in view
i. Define the kernel functiofk; : R% x R% — R that sat-

v
+A Z Zm]K]L (qi(y,Wi|xn)|\po(y,wi|fo)) ,

nel i=1

isfies (®;(x%), ®:(x%,)) = K;(Xn, Xm), for vxi,xi, € D* )
in view i and F;(y, x*; w;) is the normalized log-likelihood v .
function parameterized by; in the kernel space. wherer; € {Wj =1 > OaVJ} IS a parame-

Denote the prior distribution of; aspo(w;). The goal for  ter for viewi and\ > 0 is regularization parameter. Note that
Maximum Entropy Discriminatior [13] is to learn a post-datag:(y, wi|x») = 6 {y = y»} g(w;) on the labeled sef and
(posterior) distribution;(w;), by solving an entropic regu- the second term can be further expanded as
larized risk minimization problem with the prior on model

parametew; specified apo(w;) KL (qi(y,WiIXn)Hpo(%Wi|Xf1)) = KL (q(Wi)Hpo(Wi))

tain KL (g(w)]lpo(w:)) FEq(wi) [IKE (Q(ylxn)l\pi(yIXimwi))] ji=1,...,V. (3)

+ z; [1 - Eq(wU{AFi(ymx:ﬂwi)}] 4’ () substituting[(B) intol(2), we have the following

ne
where [s]y = max{s,0}. KL(p|l¢) is the Kullback- ) 14 .
Leibler divergence from distribution p to ¢, i€, o edmer ;Z} [1 - IEq(w?‘){AFi(?JmXnéwi)}}+
w; g(wi), Vi=1,..., v n 1=

KL (q(w:)l[po(w:)) = Jo a(w:)log (4% ) aw;  and

1%
AF;(Yn, X Wi) = Fy(Yn, X33 Wi) = Fi(y # yn, X33 Wi) = +2)_ mKL (Q(Wz)”po(wl))

=1
p(y#£ynlxh, wi) 14 o
The second term if11) is a hinge-loss that captures the +A > > ™l wi) [lKlL (Q(y|xn)|\pi(ylxz,wl))} - @
large-margin principle underlying the MED prediction rule nel =1

y* = argmax, Eyw,) [F(y,x" ;1 w;)] . From [4), we see that the first and second term léaxiew-

If we use aGaussian Procesfl5] as the prior onw;, specific MED mod_el@_(wl_),i =1, '_"V’ smgltaneously. )
i.e., po(wi) = N(wi; 0,021,), a kernel SVM is obtained Our main contributionis the third term in[(#), which is
L} (2 - (2] ’ pPi) .
by solving [1) in its dual formulation. For multi-view data, referred as theonsensus-based disagreement temrunla-

it is necessary to learn multiple MEDs simultaneously. Fopeled set, Si”‘?e itis zero when view-specific predictive mod
. ) ) ;o i H H

example, in[[16], the author applies a joint sparsity prior o elSpl(nyn’W ) 3” ‘?q“a'f'l f_ L 'H’V’ while it penalizes

(w',...,w") to achieve multi-task feature selection. Instead™°"® When one deviates far from the consensus maget),

of assuming a joint prior on all multi-view model parame- which, by construction, is theenterof theseV distributions

ters, we utilize the available unlabeled samples and requirIn the information geometry over the space of probability

the class prediction of multiple models to agree with eact{néasures. This center is dete_rmined by informatiqn projec-
other. tion accomplished by the KL divergence id (4). By incorpo-

rating this term, we explicitly require all classifiers to kea
similar class predictions having similar confidence lewels
the unlabeled training samples. The benefit for enforcieg th
consensus-based disagreement is that the proposed model is
sensitive in the case when view-specific classifiers with low
confidence agree with each other, while it is lenient when all
of them are highly confident and agree. Thus the model is re-
liable in the situation where the initial view-specifc dders
Q = {q(z):q(x) 2 0, [ q(x)dx = 1}_ and ¢(y|xn) = only have low confidence results due to the limited size of la-
0{y =y}, n € L.In each viewi, a joint post-data dis- pejed training set. Fig] 1 is a graphical model representati
tr|but|or_1 is obtained aqi(y,wlﬂx) = q(y|x)q(w;), where_ for the information projection.
q(y|x) is sharedamong all views and the above equality
reflects the mean-field approximation. 4. SOLUTION VIA DETERMINISTIC ANNEALING

The goal of Consensus-based Multi-view Maximum En- EXPECTATION MAXIMIZATION
tropy Discrimination(CMV-MED) is to simultaneously learn
the joint post-data distributions (y, w;|x) = q(y|x)q(w;), ~ Oursolution for CMV-MED in[4) is based on thieterminis-
given the priorw; (y, w;|x") = p;(y|w;,x")po(w;) for x* €  tic annealing EM[17]. It is described as the following steps:

log (M) is the log-odds classifier.

3. CONSENSUS-BASED MULTI-VIEW MED: A
GENERAL FRAMEWORK

Define the consensus view modehs a parameter-
free distribution ¢(y|x,) € Q on the unlabeled
set U, where x, = [x.,....xY],vn € U,

n?
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Fig. 1. A graphical model representation for consensus-basedi-weit
learning via information projection.

KL(q lip2)

1. Set the regularization paramefer = 0 in (@) at initial-
ization and trainl” independent MED classifiers simul-
taneously to findy(w?), i = 1,...,V. Set the prior
distributionpo(w’) = N'(w' : 0,0%]) andr; = 3, Vi.
Let T" be the maximum number of iterations.

2. Fort=1,...,T,do

(@) Given the post-data distributiop_1(w?), i
1,...,V from MED, find the consensus view on

unlabeled dat& via information projection, i.e.
@)
.1 i
= argming 7 > By [IKIL (qn (1) lpi.n (y|w ))]

i=1
Vv

1 i
v Z log pi,n (y|Wi_1) — log Z(xn),

i=1

= log q:(y|xn)
Vn e U,

whereq, (y) = q(y[xn), pin(yIw') = pi(ylxy,
w") forn € U, Z(x,) is the normalization factor
andw!_, is the mean of the post-data distribution
g—1(w*),i=1,...,V.

(b) Given the consensus view(y|x,),¥n € U, sub-
stitute it into [4) to obtain the following optimiza-

tion problem
V .
min [1 — By (wi) {AF; (yn, X5 Wi ]
q(wi’),Vizl,m,Vnze:Lizz:l a ){ (y )} i
1 v o
thy 2 By [Eqm\xn) [— logpi(yIX%,wz)H
nelU i=1

+imm (aw")lIpo(w")

For each view;, compute they, (w’|D’, o) with
dual parameteny’ = [a4, ..., a% |7 by solving the
following dual programming problem, i.e.,

max1’a’ - (@) (K0 yy)a' (5)

st.0<a'=<1,
wherel = [1,...,1]T and® is piece-wise product.
In (), a new kerneK; is computed via
K, =K.,

e (ki) [1/0* M7 + MKu] k1 (6)
= [(Bi(xh) , ®i(xk))]nmerL, @)

where KL,i = [Kl(le, Xin)]mmeL,
Ky = [Ki (x4, x5 |nmev and
k%]L = [Ki(xiw X:n)]nGU,mGL- Mz =
diag {v1,...,vg} € RV with v, =

Eq, (yxn) [—vai 1ogpi(y|xfl,W§71)} ,nelU.

Then the post-data distributiop (w*|D?, )
N (wi, H;), where the mean is given by!
S ymal, ®i(xi). The covariance matrix
H; (0’2 I+ P, (XU)T M; ‘I’Z(XU)) with
®(Xy) = [®i(x1), ..., Pi(xE)]|T € RIVIXP:,

(c) Seth, =1 —e 95 — 1 ast increases.

(d) ¢+ t+1.

3. Finally, make prediction based on consensus view
y* = argmax, Z Eqey,w:) [5 {y =9} F(y,xi;wi)} .
1<i<V
Note that the Step 2(b) can be performed in parallel, as g doe
not rely on information from other views.

5. EXPERIMENTS

We compare the proposed CMV-MED model with the SVM-
2K model proposed by Farquhar et al.l [7], the MV-MED
model by Sun et al.[ [11] as well as the conventional MED
for each view on several real multi-view data sets. In the
following experiments, we focus on two-view learning, i.e.
V = 2 and use the Gaussian Kernel functiin(x?,, x?,)
exp(c||xt, —x¢ ||?),i = 1,2. For all MED-based methods,

a Gaussian Process prigs(w?) = N(0,021) is assigned

for view i = 1,2. The view parameter; = m, = 1. All

other parameters for each model are obtained by 5-foldseros
validation. All the experiments are repeatedfotimes, with
randomly choset, andU.

5.1. Footstep Classification

We test onARL-Footstep [18,[19] data, which is a multi-
sensor data set that contains acoustic signals collectliby
well-synchronized sensors (labeled as Sensor 1,2,3,4) in a
natural environment. The task is to discriminate between hu
man footsteps and human-leading animal footsteps. We only
use Sensor, 2 in our experiment. It involves40 segments
from human subjects angb0 segments from human-animal
subjects. We choosé00 segments from each class as the
training set with|L| = 50, and the rest is designated as the
test set. A200-dimensional mel-frequency cepstral coeffi-
cients (MFCCs) vector is computed from the corresponding
segments in all the views, with normalization ag/in/[19].

In Table[1, we see that our CMV-MED outperforms both
SVM-2K and MV-MED, and it improves over the single-
view MED. This is likely because our method utilizes the
confidence as well as decision as a disagreement measure,



Classification Accuracy%) mean4 standard error
Dataset. MED (single views) SVM-2K MV-MED CMV-MED
ARL FOTtLS‘te:p %ensor 1.2, 71.1+5.3 62.3 £ 10.2 73.3+5.2 75.6 + 6.5 85.5+ 6.1
WebKB4 (| L| = 15) 76.6 + 10.2 77.1+10.1 79.0 +10.0 77.94+ 8.7 91.7+5.8
Internet Ads (] L| = 50) 87.3+0.9 86.2+1.4 82.5+4.3 88.8 £2.3 92.7+ 0.7

Table 1: Classification accuracy with different data set, with thetlperformance shown ioold.
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Fig. 2: The classification accuracy vs. the size of labeled set johRL-Footstep data set, (b)WebKB4 data set and (dnternet Ads data set. The proposed
CMV-MED outperforms MV-MED, SVM-2K and two single-view ME®(view 1 and 2) and it has good stability when the number afliabsamples is small.

In ARL-Footstep data, since the signal is contaminated by5.3. Internet Advertisement Classification
background noise, the original MED on two single views doeSrhe |nternet Ads [27] data set consists df279 instances

not perform well, and both the decision regularization a”qncluding 458 ads images and820 non-ads images. The
marginregularization are not as reliable as the confide®®e r fist view describes the image itself, i.e., words in images’
ularization implemented by CMV-MED. URL and caption, while the other view contains all other fea-
Fig. [A(a) shows the accuracy and the standard deviatiofures, i.e., words from URLs of pages that contain the im-
for the four methods as the size of the labeled set increasegge and pages which the image points to. For each view,
As more ground truth labels are used, the performances @fe extract the bag-of-words representations, which resuilt
all training methods increases, while CMV-MED shows itsg 587—dimensional vector in view 1 and @7—dimension
superior performance consistently. vector in view 2. We set the size of training set6a$ and
|L| = 50.
From Tabldll and Figl12(c) , we see that our CMV-MED
still performs better than SVM-2K, MV-MED and single-
The WebKB4 [20] data set is widely-used in multi-view jew MED. It is seen that CMV-MED is more stable as the

learning literature{[6, 10]. It consists ab51 two-view web  sjze of the labeled training set increases, while SVM-2K has
pages collected from computer science department web sitgg,ch worse stability performance.

at four universities. There ag30 course pages arg21 non-
course pages. The two natural views are words in a web page 6. CONCLUSION

and words appearing ,in the IinI§s pointing to that page. WEfn this paper, we propose a consensus-based multi-view max-
LQ"OW the pr;aprocessmg step ”;] [1b0]’ a?d exctiracfﬁ(mo— imum entropy learning model that incorporates large-nmargi
Imensional feature vector via the bag-ol-words represent ¢, gjfication and Bayesian learning when a large amount of

tion in the page view and 8840-dimensional feature vector |, ;ahejed samples from multiple sources are available. The

in the link view. Then we compute the term frequency-invers%xperimemal results on three different real data sets shew
document frequency weights (TF-IDF) features from the doc'superiority of the proposed CMV-MED over other multi-view

ument word matrix. The feature vector is length normanzed'large-margin classification methods in terms of classificat

In Table[1, we see that our CMV-MED has significantly accuracy, especially when the number of labeled samples is
better performance as compared to SVM-2K and MV-MED ,small compared to the unlabeled ones.
when the labeled set is small, i.¢L| = 15. Also, accord-
ing to Fig. [2(b), when more labeled samples are included,
all four methods have similarly good performance, even for
the single-view MED. The CMV-MED performs better with
a few labeled samples because its stability relies on a good e [1] Ning Xiong and Per Svensson, “Multi-sensor manage-
timate of confidence on the unlabeled training samples,lwhic ment for information fusion: issues and approachkes,”
is less affected by the amount of the labeled training sasnple formation fusionvol. 3, no. 2, pp. 163-186, 2002.

5.2. Web-Page Classification
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