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ABSTRACT

Non-negative Matrix Factorisation (NMF) is a commonly
used tool in many musical signal processing tasks, including
Automatic Music Transcription (AMT). However unsuper-
vised NMF is seen to be problematic in this context, and har-
monically constrained variants of NMF have been proposed.
While useful, the harmonic constraints may be constrictive in
mixed signals. We have previously observed that recovery of
overlapping signal elements using NMF is improved through
introduction of a sparse coding step, and propose here the
incorporation of a sparse coding step using the Hellinger
distance into a NMF algorithm. Improved AMT results for
unsupervised NMF are reported.

Index Terms— Non-negative matrix factorisation, sparse
coding, Hellinger distance, music transcription

1. INTRODUCTION

Given a matrix with all positive entries, V ∈ RM×N , Non-
negative Matrix Factorisation (NMF) seeks the approximation

V ≈WH s.t. W,H ≥ 0 (1)

where W ∈ RM×K is a dictionary matrix with an atom
in each column and H ∈ RK×N is an activation matrix,
with each row containing the activations for the correspond-
ing atom. NMF is a popular tool used in many application
areas, including face recognition[1], musical signal process-
ing [2] [3] and hyperspectral imaging [4], amongst others.

A variety of different approaches to NMF problem exist,
the earliest of which [5] used Non-negative Least Squares
(NNLS) to alternately update W and H. Multiplicative
update (MU) algorithms, equivalent to fixed step gradient
descent, were proposed by Lee & Seung [1] for the Euclidean
and Kullback Leibler (KL) divergence cost functions, and
have been extended to families of measures of fit such as the
generalised β- divergence [6]. Problems with MU approaches
include slow convergence and zero-locking, whereby a coeffi-
cient set to zero is maintained in that state. A general problem
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in NMF is the issue of separability, first noted in [7] which
implies that the factors may need to be linearly independent
to be recovered correctly.

Stepwise, sparse methods may help avoid some issues
with local minima in NMF [8]. Non-negative K-SVD (NN-
K-SVD) [9] and NMF-`0 [8], which seek to optimise an `0-
penalised NNLS cost function, use methods such as Orthog-
onal Matching Pursuit (OMP) to estimate an active set. NN-
K-SVD then uses a variant of the K-SVD sparse dictionary
learning algorithm to update each dictionary atom and its ac-
tivations simultaneously, while NMF-`0 uses NMF to update
the dictionary and activations with the active set maintained
due to zero-locking.

NMF is often used to factorise spectrograms in tasks such
as Automatic Music Transcription (AMT) [2] [10]. However,
overlap of musical signal elements due to harmonicity and the
logarithmic structure of the musical scale presents difficulty
to NMF. This separability issue in musical spectrograms was
noted in the first paper on NMF for AMT [2]. Some of the
more successful methods for NMF-based AMT use fixed dic-
tionaries [11], or harmonically constrained dictionaries [10]
[12]. While useful, these constrained methods may not be
so effective when presented with data which is not amenable,
and improved unsupervised NMF methods are desirable.

Incorporation of stepwise approaches into NMF presents
one avenue of enquiry in the search for such methods. How-
ever, methods such as NN-K-SVD and NMF-`0 use Euclidean
distance, generally considered to perform poorly for musical
signals [2] [10]. A stepwise algorithm for KL-divergence,
referred to as ASNA, was recently proposed [13]. However,
we have observed [14] that the gradient of the KL-divergence,
used as a selection criteria in ASNA, is badly conditioned, and
unsuitable for sparse coding. For this case a nearest neigh-
bour selection based on the Hellinger distance, which similar
to KL is an α-divergence [6], was proposed [14]. We now
propose a sparse NMF algorithm incorporating the Hellinger
sparse approximation step. In the rest of this paper, NMF
with α-divergence and ASNA are briefly outlined, before the
proposed method is described. Experimental results show im-
proved AMT using the proposed method relative to MU ap-
proaches.



2. BACKGROUND

2.1. NMF with α-divergence

The α-divergence [6] is a generalised measure of similarity,
given for two non-negative vectors

Cα(v|z) =
1

α(1− α)

∑
m

αvm+ (1−α)zm− vαmz1−α
m . (2)

Special cases include the KL-divergence (α→ 1)

CKL(v|z) =
∑
m

vm log(
vm
zm

)− vm + zm (3)

which is also a member of the better known β-divergence
[15]. The inverse KL divergence CKL(z|v) is given as α→ 0
and the Hellinger distance when α = 1

2 :

CH(v|z) = 2
∑
m

(
√
vm −

√
zm)2 (4)

which is seen as the squared `2 norm of the square roots of
two vectors. MUs for the α-divergence are given in [6] :

H←− H⊗

[
WT

[
V

WH

][α]

WT1M×N

][ 1
α ]

(5)

W←−W ⊗

[[
V

WH

][α]
HT

1M×NHT

][ 1
α ]

(6)

where ⊗ denotes elementwise multiplication, X[] denotes el-
ementwise exponentiation and all divisions are also elemen-
twise. Other approaches such as coordinate descent can also
be used for α-divergence [16].

2.2. Active Set Newton Algorithm

Recently a greedy active set method, employing the KL-
divergence cost function has been proposed [13] for use
with overcomplete dictionaries. This method, referred to as
ASNA, is outlined in Algorithm 1. ASNA is similar to OMP
[17], starting with an empty active set and iteratively adding
an atom according to a selection criteria based on a signal es-
timate using the current active set. After each atom is added
the current estimate is updated. In ASNA, the inactive atom
with largest negative KL gradient

k̂ = arg min
k

wT
k

(
1M −

v

Wh

)
(7)

is added to the active set, Γ, and the coefficient of the newly
added atom is initialised to a small value (10−5). The authors
of [13] propose the use of two Newton steps

h←− h + µH−1(h)∇(h) (8)

Algorithm 1 ASNA [13] and HSC
Input v,W,Γ = {}
Do

Select atom, indexed by k̂ using (7) (10)
Add to active set and initialise

Γ←− Γ ∪ k̂;
Set initial value of hk̂

Re-estimate h using Newton step(s) (8)
Until stopping condition

to perform the coefficient estimation step where H(h) is the
Hessian matrix,∇(h) denotes the gradient and µ is a step size
equal to 1 in the general case. A small valued diagonal matrix
is added to the Hessian in order to better condition the inver-
sion [13]. In ASNA the stepsize µ may be set to a smaller
value than 1 in order to maintain the non-negative constraint
h ≥ 0. This decreased stepsize is given by µ = minvk>0 vk
where v = h�H−1(h)∇(h) where � denotes elementwise
division. When used, this smaller stepsize results in at least
one atom, presenting a zero coefficient, being removed from
the active set. Faster convergence is reported using the New-
ton approach in comparison to multiplicative updates [13].

3. PROPOSED METHOD

We have observed difficulty in recovering toy harmonic atoms
[18] using NMF with MUs, a problem that was ameliorated
by incorporation of greedy pursuits, and consider that such
modifications to NMF may improve AMT performance. Fur-
thermore, we have recently observed improved non-negative
sparse coding using a Hellinger distance related selection cri-
teria [14] relative to the ASNA (7) and OMP [17] criteria
in the case of musical signals. In light of these observa-
tions, an NMF algorithm incorporating Hellinger Sparse Cod-
ing (HSC) is proposed.

3.1. Hellinger Sparse Coding

A minimum gradient selection criteria similar to (7)

k̂ = arg min
k

wT
k 1−wT

k

[ v

Wh

][ 12 ]

(9)

may be used for the Hellinger distance. However, a nearest
neighbour approach based on the cosine distance, yTx

‖y‖2‖y‖2 ,
similar to OMP is proposed. As the residual r = v −Wh
may contain negative values, an alternative vector given by
r̄m = sgn(rm)

√
|rm| is used, leading to the selection criteria

k̂ = arg max
k

w
[0.5]
k

T r̄√
wT
k 1

(10)

which considers an extension of Hellinger distance for mixed
signs described in [14] along with other extensions.



Otherwise, HSC proceeds similar to ASNA, with both de-
scribed in Algorithm 1. Initialisation of the coefficient of the
newly selected atom is performed using

hk̂ =

(
w

[0.5]
k

T r̄

wT
k 1

)2

. (11)

The Hessian matrix for the Hellinger distance, given by

H = WT
Γ diag

(
v[0.5]

[Wh][1.5]

)
WΓ (12)

is used to perform a Newton update (8) with ∇(h) =

2WT
Γ

(
1− v[0.5]

[Wh][0.5]

)
using a similar mechanism to ASNA

to enforce the non-negative constraint. It is found that the use
of a reasonable initialisation (11) for a newly added atom in
HSC results in one full (µ = 1) step of the Newton method
(8) being sufficient.

3.2. NMF-HSC Algorithm

The HSC approach is incorporated into an NMF algorithm
outlined in Algorithm 2. After initialisation of W as a pos-
itive matrix random matrix and H as a uniform valued ma-
trix an iterative loop is entered. This main loop consists of
a number, L, of iterations of the NMF updates (5) (6) using
the Hellinger distance (α = 1

2 ) followed by application of
HSC to reset the activation matrix H and ascertain the active
set. After J iterations, the main loop exits at which point the
dictionary, W is finalised. A further, final regression is per-
formed with this fixed dictionary. In this way it is hoped to
counter errors that may have occurred during the sparse cod-
ing step.

Algorithm 2 NMF-HSC
Input V,W,H, α = 0.5
For 1:J

For 1:L
Perform multiplicative updates (6) (5)

End For
Reset H by performing HSC

End For
Re-initialise [H]k,n = 0.01∀{k, n}
Re-estimate H by iterating (5)

3.3. Post-processing for AMT

Some common steps are required to convert a NMF factorisa-
tion into a pitch-time representation, or piano roll.

3.3.1. Pitch Estimation

First, pitch estimation needs to be performed on each atom of
the dictionary. Given the fundamental frequency for the pth

pitch on the piano scale note with MIDI number p+ 20

fpo = 2
p−49
12 × 440

the expected frequency of the rth harmonic partial is given
by fr = rf0. Pitch estimation is performed through weighted
addition of the coefficients at the expected locations, and side-
lobes, of harmonic partials of a note. Given that fr is most
closely associated with the ρth dimension of the frequency
spectrum the strength of the pth pitch in the kth atom is

Spk =
1

Rp

Rp∑
r=1

1√
r

∑
e=ρ−1:ρ+1

[W ]e,k (13)

where Rp = fs/(2 × f0) is the number of partials of the pth
pitch that can be expected to be found in the spectrum and fs
is the sampling frequency. In practiceRp us set to a maximum
of 10. The strongest pitch is then assigned to the kth atom

p̂k = arg max
p

Spk . (14)

3.3.2. Pitch Salience

Similar to [19], the pitch salience matrix X is calculated by
gathering the contributions of a collection of atoms W(p),
and their activations H(p) that share the pth pitch label

xp,n = ‖W(p)Hn(p)‖2 (15)

Thresholding is applied to X [19] [10] with a thresholding pa-
rameter, δ applied to the maximum value of the pitch salience
matrix in order to determine the threshold

λ = δ ×max
p,n

[X]p,n (16)

with all elements of X with values less than λ set to zero.

3.4. Relationship to Prior Work

NMF-HSC approach bears a similarity to other NMF, or Non-
negative Sparse Dictionary Learning (SDL) [9] approaches
utilising stepwise methods, particularly the NMF-`0, [8]. A
subtle difference in the algorithm flow is found in the fact that
NMF-HSC performs better when NMF, with random initial-
isation, is performed prior to the initial sparse coding, while
the SDL approaches stipulate sparse coding as the initial step.
The most obvious difference, to NMF-`0 [8] is the use of the
Hellinger distance cost function, both in active set selection
(HSC) and in NMF gradient steps. We have recently found
HSC to outperform ASNA and OMP in the context of AMT
experiments using fixed dictionaries [14]. HSC is similar to
the ASNA algorithm [13], which uses the KL-divergence, em-
ploying a Newton-based projection step after each active set
addition. A notable modification relative to ASNA is the use
of a nearest neighbour-based selection approach (with a mod-
ification for negative coefficients in the residual) rather than a
minimum gradient selection.



4. EVALUATION

AMT experiments were performed to compare the proposed
method, NMF-HSC, with standard multiplicative update
based NMF using both the KL and Hellinger cost func-
tions. A standard dataset consisting of the first 30s of 30
classical piano pieces, recorded live on a Disklavier pi-
ano, from the MAPS database [20] was used. Each piece
was transformed into a time-frequency representation using
ERB transforms, using code supplied by the authors of [10].
ERBTs of varying dimensions were used, similar to [21];
two ERBTs with a sampling frequency of 22.05kHz and
dimensions M = {250, 512} respectively, and an ERBT
with dimension M = 1024 using a sampling frequency of
44.1kHz. For each transform a random dictionary ofK = 88
atoms, the number of keys on a grand piano, was generated
from a flat distribution. These dictionaries were used as the
initial dictionary for all pieces and for all algorithms.

The proposed NMF-HSC was run for J = 10 iterations
of the main loop each with L = 50 inner iterations of NMF.
When HSC was employed for sparse approximation, the stop-
ping condition was set to 11 iterations allowing selection of
no more than 1/8 of atoms in the dictionary. The KL-NMF
and H-NMF algorithms were run until convergence, which
was typically seen to take of the order of 300 iterations. Pitch
estimation was subsequently performed on all learnt atoms.

In order to measure the AMT performance related to the
various approaches, a standard thresholding setup [10] [19]
[21] is used. For a variety of values of δ ∈ {15, ...45}, thresh-
olding is performed on each piece as per (16). Comparison of
the thresholded activation matrix and the ground truth activ-
ity, supplied with the MAPS dataset, is performed and true
positives, T P , false positives, FP and false negatives, FN ,
are denoted, and the common pattern recognition measures

P =
|T P|

|T P|+ |FP|

R =
|T P|

|T P|+ |FN |

F =
2|T P|

2|T P|+ |FP|+ |FN |

are then derived. Recorded results for each approach relate
the maximum F-measure at one value of δ across all pieces
and the corresponding precision, P , and Recall,R.

4.1. Results

The results for the experiments are given in Table 1. First it is
seen that the performance for the H-NMF and KL-NMF are
almost identical, validating the choice of the Hellinger dis-
tance for AMT tasks. A large difference is seen between the
performance using the multiplicative NMF approaches across

M Alg. P R F
250 KL-NMF 56.2 55.5 55.9

H-NMF 56.5 55.2 55.9
NMF-HSC 66.1 62.4 64.2

512 KL-NMF 59.7 60.8 60.2
H-NMF 59.2 61.5 60.3

NMF-HSC 69.0 64.0 66.4
1024 KL-NMF 60.8 65.1 62.9

H-NMF 63.0 62.4 62.7
NMF-HSC 67.0 66.0 66.5

SS-β-NMF [10] 70.3 65.5 67.7

Table 1. Precision, Recall and F-measures in AMT experi-
ments for various ERB dimensions, M , using NMF with KL
and Hellinger distances and the proposed NMF-HSC. Results
also given for Hamonic NMF [10]

the various transforms, with the difference between the small-
est and largest dimension ERBTs being of the order of 7%.
We note that the corresponding improvement, using super-
vised NMF with fixed dictionaries, reported in [21] was of
the order of 3%.

The proposed NMF-HSC method improves over the mul-
tiplicative update approaches by between 4% and 8% depend-
ing on the transform, with the largest improvements seen with
the ERB of smallest dimension and worst performance. In
doing this the difference between the different transforms is
muted, with a maximum difference in F-measure relative to
transform of only 2.3%. The results for the Harmonic NMF
method of Vincent et al [10] for the same dataset are also
shown in Table 1 and this method is seen to perform better
than NMF-HSC, however the difference is small, less than
1.5% and the proposed method is unsupervised.

5. CONCLUSIONS

A large improvement in AMT using unsupervised NMF has
been presented through incorporation of a sparse coding step
using a cost function that is generally overlooked in musical
signal processing. The proposed approach was applied to a
live piano dataset, with AMT performance close to harmon-
ically constrained methods recorded. The use of transforms
which have previously been observed to lead to less corre-
lated dictionaries was also seen to enhance the performance.
However, separability issues are still evident. Close inspec-
tion of the results reveals atoms containing energy from two,
or possibly more, note spectra, often corresponding to notes
that are played few times in a piece. A harmonic filtering post-
processing step may be introduced in order to further improve
the AMT performance. Optimisation strategies other than the
Newton method may also be explored. Furthermore, a coarse
sparse coding strategy was used, selecting a fixed number of
atoms. Other stopping criteria may be considered.
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