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ABSTRACT

This paper presents two approaches to derive an asymptotic distri-
bution of the robust Adaptive Normalized Matched Filter (ANMF).
More precisely, the ANMF has originally been derived under the
assumption of Gaussian distributed noise where the variance is dif-
ferent between the observation under test and the set of secondary
data. We propose in this work to relax the Gaussian hypothe-
sis: we analyze the ANMF built with robust estimators, namely
the M -estimators and the Tyler’s estimator, under the Complex
Elliptically Symmetric (CES) distributions framework. In this con-
text, we derive two asymptotic distributions for this robust ANMF.
Firstly, we combine the asymptotic properties of the robust esti-
mators and the Gaussian-based distribution of the ANMF at finite
distance. Secondly, we directly derive the asymptotic distribution of
the robust ANMF. Then, Monte-Carlo simulations show the good
approximation provided by the proposed methods. Moreover, for
a non-asymptotic regime, the simulations provide very promising
results.

Index Terms— Adaptive Normalized Match Filter,M -estimators,
Tyler’s estimator, Complex Elliptically Symmetric distributions,
non-Gaussian detection, robust estimation theory.

1. INTRODUCTION

In the general statistical signal processing area, the detection prob-
lem is an important topic of research. For instance, one can cite the
works in radar processing [1, 2, 3, 4]. Since in practice, the noise
parameters are unknown, an estimation step is required leading to
the so-called adaptive detection processes. Among these unknown
parameters, the noise Covariance Matrix (CM) is probably one of
the most important since the performance of main adaptive detectors
relies on the estimation accuracy of this CM. This is the case for
the Adaptive Matched Filter (AMF) [5], the Kelly’s test [6] and the
Adaptive Normalized Matched Filter (ANMF) [1]. Generally, the
CM is estimated by the Sample Covariance Matrix (SCM). Although
this estimator is simple and provides the optimal performance under
a Gaussian noise, the resulting adaptive detector performance can
strongly be degraded when the noise turned to be non-Gaussian,
heterogeneous or when it contains outliers/jammers.

To fill these gaps, a general framework on robust estimation
theory has been extensively studied in the statistical community
in the 1970s following the seminal works of Huber and Maronna
[7, 8]. The multivariate real case has been recently extended to the
complex case [9, 10, 11] more adapted for signal processing applica-
tions. Under this robust theory framework, most of recent works in
CM estimation considers the broader class of Complex Elliptically
Symmetric (CES) distributions. A complete review on CES applied

to array processing can be found in [9].

In this CES framework, the so-called M -estimators [8] and
the Tyler’s estimator [12, 11] are alternatives to the Gaussian-based
SCM. Although these robust estimators provide good results in prac-
tice [10], the statistical analysis of the resulting adaptive detectors
is a difficult point. This is mainly due to the non explicit form of
these estimators, defined through fixed point equations. However,
their asymptotic properties have been recently derived in [9, 10].
Following these works, the aim of this paper is to derive the asymp-
totic properties of the ANMF built with these estimators, namely
the M -estimators and the Tyler’s estimator. The interest of such
an analysis is to provide a better statistical characterization of the
ANMF than the one based on the NMF ([13]).

The paper is organized as follows. The next section provides
the background of this work while Section IIII contains the main
theoretical contribution, the asymptotic distribution of the ANMF
built with robust estimators. Then, Section IV validates the interest
of this results through Monte Carlo simulations. Finally, some con-
clusions and perspectives are drawn in the last section.

The following convention is adopted: italic indicates a scalar
quantity, lower (resp. upper) case boldface indicates a vector (resp.
matrix) quantity and upper case boldface a matrix. T and H repre-
sent respectively the transpose and the transpose conjugate opera-
tors, Tr(.) denotes the trace operator, vec the vec operator and CN
(resp N ) stands for the complex (resp. real) Gaussian distribution
while CES stands for the Complex Elliptically Symmetric distribu-
tion.

2. BACKGROUND

2.1. The Adaptive Normalized Matched Filter (ANMF)

Detecting a complex signal corrupted by an additive Gaussian noise
c ∼ CN (0, σ2 M) in a m-dimensional complex observation vector
y can be stated as the following binary hypothesis test:{

H0 : y = c yi = ci i = 1, . . . , N
H1 : y = αp + c yi = ci i = 1, . . . , N

, (1)

where p is a perfectly known complex steering vector, α is the
unknown signal amplitude and where the ci ∼ CN (0,M) are
N signal-free independent measurements, traditionally called the
secondary data, used to estimate the background covariance matrix
M. When the variance σ2 is unknown, this binary hypothesis test
is solved by the Generalized Likelihood Ratio Test (GLRT) theory
leading to a well-known Normalized Matched Filter [13] denoted



H(.) and defined in [0, 1] by

H(M) =
|pHM−1y|2

(pHM−1pH)(yHM−1y)
. (2)

Under H0, H(M) follows a beta distribution β(1,m − 1) whose
PDF is

pβ(u) = (m− 1) (1− u)m−2
1[0,1](u) , (3)

where 1[0,1](.) is the indicator function on [0, 1]. The theoretical
relationship between the detection threshold λ and the Probability
of False Alarm (PFA) is defined as: Pfa = P(H(M) > λ|H0) =
(1 − λ)m−1. This last relation will serve as a benchmark as it
characterizes a perfectly known covariance matrix for the detection
test.
When an estimate is plugged into the NMF (two-step GLRT), this
detector is called the ANMF or ACE (Adaptive Coherence Es-
timator) [1, 3]. Assuming that the SCM, defined as M̂SCM =

1

N

N∑
k=1

ck cHk is used, the resulting PDF fH(M̂SCM ) of H(M̂SCM )

is given by [14]

fH(M̂SCM )(u) = K (1− u)a−2
2F1(a; a; b;u)1[0,1](u) . (4)

where K =
(a− 1)(m− 1)

(N + 1)
, a = N − m + 2, b = N + 2 and

2F1(.) is the hypergeometric function [15].

2.2. M-estimators, Tyler’s estimator and asymptotic properties

The purpose of this paper is to use robust alternatives to the SCM.
This section presents theM -estimators, the Tyler’s estimator as well
as their asymptotic properties. Details of the following results can be
found in [10, 9] for M -estimators and in [12, 11, 16] for the Tyler’s
estimator.

In the literature of radar detection and estimation, Spherically
Invariant Random Vector (SIRV) modeling and Complex Elliptical
Symmetric distributions (CES), originally introduced by Kelker in
[17], have been considered and studied for their good statistical prop-
erties and for their good fitting to experimental non-Gaussian radar
data. They provide a multivariate location-scale family of distribu-
tions that primarily serve as long tailed alternatives to the multivari-
ate Gaussian model. A good review on these distributions can be
found in [9, 18]. Let c be a m-dimensional complex random vector.
c follows a CES distribution if its PDF can be written as

gc(c) = |Σ−1|hc((c− µ)HΣ−1(c− µ)), (5)

where hc : R+ → R+ is any function such that (5) defines a PDF,
µ is the statistical mean and Σ is a scatter matrix. Σ reflects the
structure of the covariance matrix of c, i.e. the covariance matrix
is equal to Σ up to a scale factor. One can notice that the Gaussian
distribution is a particular case of CES. In this paper, we will assume
that µ = 0 and without loss of generality, the scatter matrix will be
taken equal to the covariance matrix M.

Now, let (c1, ..., cN ) be an N -sample of m-dimensional com-
plex independent vectors with ck ∼ CES(0,M), k = 1, . . . , N .
The M -estimators are defined as the unique solution of the follow-
ing equation

M̂ =
1

N

N∑
k=1

u
(
cHk M̂−1 ck

)
ck cHk , (6)

where u stands for any real-valued function that satisfies a set of
general assumptions (see [10, 9]), mainly for ensuring the existence,
uniqueness and convergence of the previous equation. Note that
MLEs are a particular solution of the previous equation.

An attractive and powerful estimator, independent of the CES
distribution, is the Tyler’s estimator also called the Fixed Point and
defined as the solution of

M̂ =
m

N

N∑
k=1

ck cHk

cHk M̂−1 ck
. (7)

For all M -estimator M̂ which verifies equation (6), one has the
important asymptotical statistical behaviour:

√
N
(

vec(M̂−M)
)

d−→ GCN
(
0m2,1,ΣM ,ΩM

)
, (8)

where M is the consistent limit of M̂ and GCN (0,ΣM ,ΩM ) de-
notes the Generalized Complex Normal distribution with ΣM the
covariance matrix and ΩM the pseudo-covariance matrix defined as

ΣM = ν1 MT ⊗M + ν2 vec(M) vec(M)H ,
ΩM = ν1 (MT ⊗M) K + ν2 vec(M) vec(M)T ,

(9)

where K is the commutation matrix which transforms vec(A) into
vec(AT ), ν1 and ν2 are real scalars relying on the CES distribution
and given in [19, 9].

It is important to notice that the previous result is also valid for
the SCM when the observations are Gaussian (ν1 = 1 and ν2 =
0, see e.g. [20]) and for the Tyler’s estimator for CES-distributed
observations (ν1 = (m + 1)/m and ν2 = −(m + 1)/m2, see
e.g. [16]). This shows that, asymptotically, the behaviour of all
these estimators is similar. More precisely, the M -estimators and
the Tyler’s estimator behaves asymptotically as the SCM, it differs
only from the quantities ν1 and ν2.

2.3. Asymptotic properties of the ANMF built with M-estimates

The asymptotic behaviour of all the presented estimators can then be
extended to the ANMF thanks to the following result.

Let H(.) be a r-dimensional multivariate function on the set of
m × m positive-definite symmetric matrices with continuous first
partial derivatives and such as H(M) = H(αM) for all α > 0.
For all M̂ that verifies equation (8), one has the following result,
derived in [19, 9]:
√
N
(
H(M̂)−H(M)

)
d−→ GCN (0r,1,ΣH ,ΩH) , (10)

where ΣH and ΩH are defined as

ΣH = ν1H
′(M) (MT ⊗M)H ′(M)H ,

ΩH = ν1H
′(M) (MT ⊗M) KH ′(M)T ,

(11)

and H ′(M) =
∂H(M)

∂vec(M)
= (h′ij) with h′ij =

∂hi

∂mj
and mj’s de-

note the elements of vec(M), for j = 1, ...,m2.
When comparing to the asymptotical behavior of any function H
with SCM argument M, we obtain ν1 = 1. For any functionH with
Tyler’s argument M, we obtain ν1 = (m + 1)/m. This explains
that any function H of M-estimators has the same asymptotic distri-
bution than those of a Wishart matrix (SCM) with N/ν1 degrees of
freedom. It also means that under Gaussian assumption, M-estimates
need ν1 times more secondary data than for SCM estimates to reach
the same performances.



3. ASYMPTOTIC BEHAVIOR OF THE ANMF TEST

The goal of the this section is to propose two ways of deriving an
approximate distribution of the test H(M̂). The first approach con-
sists in using the asymptotic distribution presented in section 2.3 of
the different estimators while the second approach is to compute an-
alytically the parameters ΣH and ΩH characterizing the asymptotic
distribution of the ANMF, equation (8).

3.1. Correction of the degrees of freedom, compared to the
Gaussian-based SCM

Let us first consider the PDF given by (4) under a Gaussian hypoth-
esis for the noise. Note that equation (4) provides the exact distribu-
tion of H(M̂SCM ) when the observations y,y1, ...,yN are Gaus-
sian distributed. Now, for N sufficiently large, equation (8) states
that a M -estimator built with N/ν1 observations behaves like the
SCM built with N observations. Consequently, combining this re-
sult with equation (4) leads to the following approximate distribution
for H(M̂) where M̂ stands for any M -estimator or for the Tyler’s
estimator:

fH(M̂)(x) = K (1− x)a−2
2F1(a; a; b;x)1[0,1](x) , (12)

whereK =
(a− 1)(m− 1)

(N/ν1 + 1)
, a = N/ν1−m+2 and b = N/ν1+2

and the theoretical relationship between the detection threshold λ
and the PFA Pfa = P(H(M̂) > λ|H0) is therefore given by:

Pfa = (1− λ)a−1
2F1(a, a− 1; b− 1;λ) . (13)

As illustrated in the simulations and although no rigorous proof
is given, the previous result provides a very accurate PDF forH(M̂)
even for small N .

3.2. Asymptotic covariance of the ANMF

Let us now turn to the asymptotic distribution of the ANMF for any
CM estimator.

Proposition 3.1 Let us consider the ANMF test defined by

H(M̂) =
|pH M̂−1 y|2

(pH M̂−1 pH)(yH M̂−1 y)
. (14)

For any estimator M̂ satisfying equation (8), one has

√
N
(
H(M̂)−H(M)

)
d−→ N (0,ΣH) , (15)

where the asymptotic variance ΣH of the ANMF statistic is given by

ΣH = 2 ν1H(M) (H(M)− 1)2 . (16)

Proof 3.1 First, when proving (10), one can easily show that if H
is a real-valued function, one has ΣH = ΩH . Consequently, let us
focus on ΣH . For simplicity matters and without loss of generality,
let us consider M as a real symmetric positive-definite matrix and

let us derive H ′(M) =
∂H(M)

∂vec(M)
.

To find this term, the following results are required [21]:

∂ Tr (X) = Tr (∂X) , (17a)
∂vec (X) = vec (∂X) , (17b)
∂A−1 = −A−1∂AA−1, (17c)

∂(A&B) = ∂(A)&B + A&∂(B), (17d)
where & stands for × or ⊗,

Tr (AB) = Tr (BA) , (17e)
M−1 ⊗M−1 = (M⊗M)−1 , (17f)

Tr
(
AHB

)
= vecH (A) vec (B) , (17g)

vec (ABC) =
(
CT ⊗A

)
vec (B) . (17h)

The first step is to derive ∂(aHM−1b). For that purpose, let us set
u = aHM−1b, then one has:

∂u = ∂ Tr(aHM−1b)

= Tr(∂(aH∂(M−1)b)) from (17a)

= Tr(aHM−1∂(M)M−1b) from (17c)

= −Tr(∂(M)M−1baHM−1) from (17e)

= −vecH(∂M)vec(M−1baHM−1) from (17g)

Thus, from (17b), (17h) (17f), one has ∀a,b ∈ Cm,

∂(aHM−1b) = −∂(vecH(M)) (MT ⊗M)−1vec(baH). (18)

Moreover, ∀a,b, c,d ∈ Cm, one has

vecH(abH)

aHM−1b
(MT ⊗M)−1 vec(cdH)

dHM−1c

=
vecH(abH)vec((M−1cdHM−1)

aHM−1b dHM−1c

=
Tr(baHM−1cdHM−1)

aHM−1b dHM−1c
=

aHM−1c dHM−1b

aHM−1b dHM−1c

Moreover, since that ∂(uv) = ∂u v + u ∂v and ∂
u

v
=

∂u v − u ∂v
v2

, one can derive ∂H(M) as follows

∂H(M) =
∂(yHM−1p)pHM−1y + ∂(pHM−1y)yHM−1p

(pHM−1pH)(yHM−1y)

−
H(M)

(
∂(yHM−1y)pHM−1p + ∂(pHM−1p)yHM−1y

)
(pHM−1pH)(yHM−1y)

Now, applying equation (18) to the derivatives of the quadratic
forms in previous equation leads to

∂H(M) = −∂(vecH(M)) (MT ⊗M)−1H(M)

×

[
vec(pyH)

yHM−1p
+

vec(ypH)

pHM−1y
−

vec(ppH)

pHM−1p
−

vec(yyH)

yHM−1y

]
(19)

Thus it follows that

H ′(M) = −H(M)

[
vecH(pyH)

pHM−1y
+

vecH(ypH)

yHM−1p

−
vecH(ppH)

pHM−1p
−

vecH(yyH)

yHM−1y

]
(MT ⊗M)−1



since M is a real symmetric matrix. Then, replacing this result in
equation (11) and using equation (19) leads to

ΣH = ν1H(M)2
[

2

H(M)
+ 2H(M)− 4

]
, (20)

which can be rewritten as ΣH = 2 ν1H(M) (H(M)− 1)2.

Notice that, contrary to the first approach, the previous asymptotic
distribution is a distribution conditional to the observation y that ap-
pears in H(M). Consequently, a supplementary step is required to
obtain the asymptotic distribution ofH(M̂). Let us rewrite the result
of Proposition 3.1 as

H(M̂)
d−→ N

(
H(M),

2 ν1

N
H(M) (H(M)− 1)2

)
. (21)

For N large enough, considering that H(M̂) ∼ N
(
X,σ2

X

)
where σ2

X = 2 ν1
N

X (X−1)2 andX = H(M) ∼ β(1,m−1), one
can obtain the asymptotic distribution fa

H(M̂)
of H(M̂) as follows

fa
H(M̂)

(u) =

∫ 1

0

√
N exp

(
−

N (u− x)2

4 ν1 x (x− 1)2

)
√

4π ν1 x (x− 1)2
pβ(x) dx . (22)

where pβ(.) denotes the density of the beta distribution.
Now, if we denote Φ(.) the cumulative distribution of the Nor-

mal distribution, one obtains the corresponding asymptotical Pfa-λ
relationship:

Pfa = 1− (m− 1)

∫ 1

0

(1− x)m−2 Φ

( √
N (λ− x)√

2 ν1 x (x− 1)2

)
dx

(23)

4. SIMULATIONS
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Fig. 1. Histogram distribution of H(M̂) versus fa
H(M̂)

(Eq. 22)

in red and versus fH(M̂) (Eq. 12) in blue where M̂ is the Tyler’s
estimator, m = 10, N = 200, p = [1, . . . , 1]T , y ∼ Kν where Kν

is a K-distribution with shape ν = 0.1.

In this section, the ANMF is built with the Tyler’s estimator.
Since this estimator is distribution-free [22], the data data are simu-
lated according to a zero-mean complex Gaussian distribution with
a covariance matrix M whose entries are defined as Mij = ρ|i−j|.
M is Toeplitz and is only defined through a correlation coefficient ρ.
In this section, ρ is set to 0.5.

0 1 2 3 4

−3

−2

−1

0

−m log10(1− λ)
lo
g
1
0
(P
F
A
)

NMF - M known
Equation (23)
Equation (13)
Empirical Tyler-ANMF

Fig. 2. Comparison between PFA-threshold relationships for the
ANMF built with the Tyler’s estimator, m = 10, N = 200,
p = [1, . . . , 1]T , y ∼ Kν where Kν is a K-distribution with shape
ν = 0.1.

Figure 1 presents the empirical distribution of the ANMF built
with the Tyler’s estimator and the two corresponding distributions
proposed in equations (12) and (22) for K-distributed secondary data
(N = 200, m = 10) with shape parameter ν = 0.1. The results
concordance corroborates the use of these approximate distributions.
Figure 2 shows the PFA-threshold relationships for the NMF (M is
known), the first approximate distribution of the ANMF built with
Tyler’s estimator (equation (13)), the asymptotic expression derived
in equation (23) for the Tyler’s estimator and the empirical PFA for
the Tyler-ANMF, for N = 200 and m = 10, for K-distributed sec-
ondary data with shape parameter ν = 0.1. First, the asymptotic
regime is achieved and we can observe a good match between the
two asymptotic distributions derived in this paper. Moreover, this
shows that these two approximations provide a very good character-
ization of the Tyler-ANMF behaviour (plain blue curve).

5. CONCLUSION

In the context of robust detection in Gaussian or non-Gaussian
noise, two asymptotic distributions of the ANMF have been pro-
posed. More precisely, using robust CM estimators such as the
M -estimators or the Tyler’s estimator, two asymptotic approxima-
tions of the corresponding ANMF distribution have been derived
following different approaches. First, we have combined the ex-
act distribution of the ANMF built with the SCM under Gaussian
noise and the asymptotic properties of the robust estimators. Finally,
we have directly derived the asymptotic distribution of the robust
ANMF under CES environment. These results provide a very good
approximation of the ANMF distribution even for a small number
of observations and have been applied to theoretically regulate the
false alarm probability.
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