
LARGE-SCALE SENSOR NETWORK LOCALIZATION VIA RIGID SUBNETWORK
REGISTRATION

Kunal N. Chaudhury?? Yuehaw Khoo† Amit Singer?

??Department of Electrical Engineering, Indian Institute of Science, India
†Department of Physics, Princeton University, USA

?Department of Mathematics and PACM, Princeton University, USA.

ABSTRACT

In this paper, we describe an algorithm for sensor network localization
(SNL) that proceeds by dividing the whole network into smaller
subnetworks, then localizes them in parallel using some fast and
accurate algorithm, and finally registers the localized subnetworks
in a global coordinate system. We demonstrate that this divide-and-
conquer algorithm can be used to leverage existing high-precision
SNL algorithms to large-scale networks, which could otherwise only
be applied to small-to-medium sized networks. The main contribution
of this paper concerns the final registration phase. In particular,
we consider a least-squares formulation of the registration problem
(both with and without anchor constraints) and demonstrate how this
otherwise non-convex problem can be relaxed into a tractable convex
program. We provide some preliminary simulation results for large-
scale SNL demonstrating that the proposed registration algorithm
(together with an accurate localization scheme) offers a good tradeoff
between run time and accuracy.

Index Terms— sensor network localization, anchors, scalability,
divide-and-conquer, rigid registration, semidefinite programming.

1. INTRODUCTION

The computational problem in sensor network localization (SNL) is
one of determining the position of sensors in two or three dimensions
from incomplete and inaccurate inter-sensor distances. In some cases,
the distances between certain fixed anchors (whose positions are
known fairly accurately) and some sensors are also provided [1, 2].
While the SNL problem in its full generality is known to be compu-
tationally intractable [3], nevertheless, there has been considerable
progress on developing algorithms that can efficiently solve the SNL
problem (exactly or approximately) under appropriate assumptions
on the network connectivity, and which are resilient to noises in the
distances and the anchor positions. Popular methods include classi-
cal multidimensional scaling [4], belief propagation [5], non-linear
filtering [6], and geometric methods [7, 8]. We refer the readers to
[1, 2, 9] for a broad survey of SNL algorithms.

The distance constraints in SNL make the problem intrinsically
non-convex. In the last few years, some very effective convex relax-
ations of the SNL problem have been proposed [10, 11, 12]. Apart
from offering remarkable localization accuracy in practice, these al-
gorithms also come with guarantees on exact recovery and stability
under appropriate assumptions on the network connectivity [12, 13].
A drawback of these algorithms is that their computational complex-
ity often scales poorly with the network size. For example, the convex
relaxations in [10, 12] result in semidefinite programs (SDP) with
O(N2) variables, where N is the number of sensors. Due to the high

memory requirement and computational cost of standard interior-
point SDP solvers [14, 15], this limits the scope of these SDP-based
methods to at most a few hundred sensors. To improve the scalability
of the SDP method in [10], an alternative (and weaker) second-order
cone programming relaxation was proposed in [11] that can handle
a few thousand sensors. A more efficient enhancement of the SDP
method that could solve for a few thousand sensors on a standard PC
was later proposed in [16].

Our approach in this paper is along the lines of the divide-and-
conquer algorithms for anchor-free localization that was proposed in
[17, 18, 19]. In particular, we solve the SNL problem in three steps:
(1) we divide the network into overlapping patches (subnetworks), (2)
we localize these small patches in parallel using some accurate SDP
algorithm, and (3) we register the localized patches to determine the
sensor positions in a globally-consistent fashion. The contribution of
this paper concerns step (3). In Section 2, we demonstrate how the
non-convex problem of rigid registration (particularly with anchor
information) can be relaxed into a tractable convex program. This can
be seen as a multi-patch extension of the registration algorithm in [23].
Using the proposed SDP relaxation and performing the subnetwork
localizations in parallel, we can solve for networks with up to 5000
sensors within 10 minutes on a standard PC and a large 8000-sensor
network within 30 minutes. Some preliminary simulation results in
this direction are provided in Section 3.

2. METHOD

We now formally define the SNL problem with anchors, which in-
cludes anchor-free SNL as a special case. Suppose we haveN sensors
and K anchors. Denote the positions of the sensors and anchors by

x1, . . . ,xN ∈ Rd and a1, . . . ,aK ∈ Rd,

where, usually, d = 2 or 3. We will generally refer to the sensors
and anchors as nodes of the network. We are provided the distances
between pairs of nodes that are within a certain radio range of each
other [10]. To represent this distance information, we introduce the
distance graph G = (V , E) where the vertices V = {1, . . . , N+K}
represent the nodes. The first N vertices represent the sensors, while
the last K vertices the anchors. The edge set E ⊂ V × V is given
by the requirement that (k, l) ∈ E if and only if the distance d(k, l)
between nodes k, l ∈ V is known. Further, we write E as the union
of Ess and Esa, where Ess are the sensor-sensor edges and Esa are
the sensor-anchor edges. The known distances are represented by
D = {d(k, l) : (k, l) ∈ E }. Given G ,D , and A = {a1, . . . ,aK},
the SNL problem is to determine x1, . . . ,xN such that

‖xk − xl‖ = d(k, l), (k, l) ∈ Ess

‖xk − al‖ = d(k, l), (k, l) ∈ Esa

}
(1)

ar
X

iv
:1

31
0.

81
35

v3
 [

cs
.N

I]
 1

6
Ja

n
20

15

Motivated by previous work [17, 18, 19], we propose the following
divide-and-conquer algorithm.

2.1. Clustering

First, we divide V intoM disjoint clusters by recursively partitioning
G using the Shi-Malik spectral clustering [20]. Of course, other alter-
native ways of partitioning could be considered. For each cluster, we
collect the neighbors of every vertex in that cluster (k and l neighbors
in G if (k, l) ∈ E), and merge a subset of these neighbors with the
cluster ensuring the size of the augmented cluster to be within a fixed
bound (details provided in Section 3). More specifically, we pick
those neighbors that have the maximum number of edges incident
on the cluster, that is, the neighbors that are “most rigidly” tied to
the cluster. The general idea is to expand each cluster so that suffi-
cient pairs of clusters have nodes in common. In particular, we now
have overlapping patches P1, . . . ,PM , where Pi ⊂ V . By con-
struction, each node belongs to at least one patch, while some nodes
belong to two or more patches. The latter nodes help in “propagating”
information between patches during the final registration.

2.2. Localization

We have reduced the large SNL problem into M smaller localization
subproblems, one for each patch. This is where we speedup the
computation by solving these subproblems in parallel. More precisely,
for 1 ≤ i ≤M , let Gi be the subgraph of G induced by the vertices
in Pi, Di the distances in D induced by the edges in Gi, and Ai the
positions of the anchors in patch Pi. We use either SNLSDP [10]
or ESDP [16] (which is a further relaxation of SNLSDP) to compute
the positions of the sensor vertices in Pi from the knowledge of
Gi,Di, and Ai. For large noise and small sensing radius, SNLSDP
occasionally fails to localize certain patches (the corresponding SDP
is infeasible). We localize these exceptional patches using ESDP,
which is somewhat less accurate than SNLSDP but has a larger scope.
While one can also use other efficient SNL algorithms, these SDP-
based solvers suit our purpose as they offer a good tradeoff between
accuracy and run-time for small problems. Finally, we refine the
sensor positions using the local optimization in [10].

At the end of this phase, all the patches have been positioned
in independent coordinate systems. If the k-th sensor belongs to
patch Pi, then we use xk,i to denote the position of that sensor
in Pi. In the ideal setting where each patch graph Gi is uniquely
localizable [13] and the distances are noise-free, the local sensor
positions {xk,i : k ∈ Pi} are identical to the global positions
{xk : k ∈Pi} up to a rigid transform that fixes the anchors [10, 13].
That is, for some orthogonal transform Oi and translation ti,

xk = Oixk,i + ti (k ∈Pi), (2)

and
al = Oial + ti (l ∈Pi). (3)

It is understood here and henceforth that k ∈ {1, . . . , N} and l ∈
{N + 1, . . . , N +K}.

2.3. Rigid Registration

It remains to determine x1, . . . ,xN from the system of equations in
(2) and (3). In practice, one would expect these equations to hold
only approximately due to various imperfections. Thus, one would
like to have a reconstruction in which the discrepancy from (2) and

(3) is as small as possible. In particular, we consider the following
quadratic loss φ given by

φ =

M∑
i=1

{ ∑
k∈Pi

‖xk−Oix
(i)
k − ti‖

2

+ λ
∑
l∈Pi

‖OM+1al −Oial − ti‖2
}
,

where the optimization variables are: x1, . . . ,xN ; t1, . . . , tM ∈ Rd

and O1, . . . ,OM+1 ∈ O(d). Here and henceforth O(d) denotes
the group of d× d orthogonal matrices, ‖·‖ is the Euclidean norm,
and λ > 0 is used to balance the loss. The slack variable OM+1 is
introduced to make φ homogeneous with respect to the variables.

The above optimization can be seen as a generalization of the
two-patch registration optimization addressed in [23]. In fact, the
present idea of first optimizing over the translations and then over the
orthogonal transforms is similar to the strategy used in this paper. We
first massage φ into something more compact using matrix notations.
We begin by collecting the free variables (sensor positions and trans-
lations) and the constrained variables (orthogonal transforms) into
two separate matrix variables:

Z =
[
x1 · · ·xN t1 · · · tM

]
∈ Rd×(N+M), (4)

O =
[
O1 · · ·OM+1] ∈ Rd×(M+1)d.

Next, we introduce an undirected bipartite graph G = (Vx ∪ VP , E),
where the vertices Vx = [1, N +K] correspond to the sensor and
anchor, and the vertices VP = [1,M] correspond to the patches. The
edge set E ⊂ Vx ∪ VP is given by the requirement that (k, i) ∈ E
if and only if the k-th node is in patch Pi. To distinguish between
the sensors and anchors, we further divide Vx into the sensor vertices
Vs = [1, N] and the anchor vertices Va = [N + 1, N + K]. We
denote the number of anchors in patch Pi by Ki.

Let δLi denote the all-zero vector of length L with 1 at the i-th
coordinate, and define

eki = δ
N+M
k − δN+M

N+i and f j = δM+1
M+1 − δ

M+1
j .

In terms of the above notations, we can then write

φ(Z,O) =
∑

k∈Vs

∑
(k,i)∈E ‖Zeki −O(δM+1

i ⊗ Id)xk,i‖2

+
∑

l∈Va

∑
(l,j)∈E ‖Zδ

N+M
N+j −O(f j ⊗ Id)al‖2,

where Id is the d× d identity matrix and ⊗ is the Kronecker product.
By expanding out the squares and rearranging the terms, we get after
some computation

φ(Z,O) = Trace

([
Z O

] [J −BT

−B D

] [
ZT

OT

])
(5)

where

J =
∑
k∈Vs

∑
(k,i)∈E

ek,ie
T
k,i +

∑
l∈Va

∑
(l,j)∈E

δN+M
N+j δ

N+M
N+j

T
,

B =
∑
k∈Vs

∑
(k,i)∈E

(δM+1
i ⊗ Id)xk,ie

T
k,i

+
∑
l∈Va

∑
(l,j)∈E

(f j ⊗ Id)alδ
N+M
N+j

T
,

D =
∑
k∈Vs

∑
(k,i)∈E

(δM+1
i ⊗ Id)xk,ix

T
k,i(δ

M+1
i ⊗ Id)

T

+
∑
l∈Va

∑
(l,j)∈E

(f j ⊗ Id)ala
T
l (f j ⊗ Id)

T .

Note that the block matrix J is of size (N +M)× (N +M), B is
of size (M + 1)d× (N +M), and D is of size (M + 1)d× (M +
1)d. In fact, J = L + diag(0, . . . , 0,K1, . . . ,KM), where L is the
Laplacian of the bipartite graph G ′ that is obtained by removing the
anchor vertices Va and the corresponding edges from G . In particular,
J is positive semidefinite. Moreover, if G ′ is connected and some
Ki > 0, then J is non-singular.

The optimization problem can now be compactly expressed as

min
{
φ(Z,O) : Z ∈ Rd×(N+M), O ∈ Rd×(M+1)d, Oi ∈ O(d)

}
.

where Oi denotes the i-th d × d block of O. The present strategy
is to first solve for the unconstrained variable Z in terms of the
unknown orthogonal transformations O, representing the former as
linear combinations of the latter. In particular, fix some arbitrary O,
and letψ(Z) = φ(Z,O). It is clear from (5) thatψ(Z) is quadratic in
Z. In particular, the stationary points Z? = Z?(O) of ψ(Z) obtained
by setting its gradient to zero are given by Z?J = OB. Note that the
Hessian of ψ(Z) equals 2J, and we known that J is non-singular if
G ′ is connected (this is always true in practice) and if there is at least
one anchor. Therefore, in this case the unique minimizer of ψ(Z) is
given by

Z? = OBJ−1. (6)

Substituting Z? in (5) and simplifying, we haveψ(Z?) = φ(Z?,O) =
Trace(COTO), where C = D−BJ−1BT . In other words, denot-
ing the (i, j)-th block of C by Cij , we have thus reduced the original
problem to that of minimizing

Trace(COTO) =

M+1∑
i=1

M+1∑
j=1

Trace(CijO
T
i Oj) (7)

where the variables are the orthogonal matrices O1, . . . ,OM+1. This
is clearly a difficult non-convex problem. We now present a convex
relaxation of this problem following the ideas in [21]. In particular,
we consider the (block) Gram matrix of the transforms, namely G =
OTO, which is of size (M + 1)d× (M + 1)d and whose (i, j)-th
block is given by Gi,j = OT

i Oj . In terms of this Gram matrix, we
can equivalently formulate the optimization in (7) as

min Trace(CG)

subject to G � 0, rank(G) = d,Gii = Id (i = 1, . . . ,M + 1).

By dropping the non-convex rank constraint, we get the the following
convex program:

min Trace(CG)

subject to G � 0, Gii = Id (i = 1, . . . ,M + 1).
(8)

Here G � 0 means that G is symmetric and positive semidefinite,
and Gii = Id forces the diagonal d×d blocks of G to be identity ma-
trices (thus requiring each transform to be orthogonal). Now (8) is a
standard convex program called a semidefinite program that has been
well-studied [22]. Suppose that G? is the global minimizer of (8). By
the diagonal block constraints in (8), it follows that rank(G?) ≥ d.
If rank(G?) is exactly d, we have in fact solved the original non-
convex problem (relaxation is tight). In particular, the factorization
G? = O?TO?, where O? has rank d, gives us the desired orthogo-
nal transforms. Following (4) and (6), we set Z? = O?BJ−1 and
take the first N columns of Z? are taken to be the reconstructed
global coordinates.

On the other hand, if rank(G?) > d, we need to project G? onto
the space of Gram matrices of orthogonal transforms. In particular,

−0.4 −0.2 0 0.2 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a) 50 anchors, before refinement.
−0.4 −0.2 0 0.2 0.4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b) 50 anchors, after refinement.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c) 3 anchors, before refinement.

−0.4 −0.2 0 0.2 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(d) 3 anchors, after refinement.

Fig. 1. Localization results for SNLSR using full and minimal anchor
information during registration. We used a minimum of 3 anchors
(randomly picked from the full set of anchors) to fix the global rigid
transform. The problem parameters are: N = 500, r = 0.2, and
η = 0.5. The RMSD’s are: (a) 3.5e-2, (b) 2.3e-2, (c) 7.2e-2, and (d)
2.5e-2. The true sensor positions are marked with blue circles, the
anchors with solid black circles, and the estimated sensors with red
stars. The true and estimated sensors are joined by solid blue lines.

let λ1 ≥ λ2 ≥ · · · ≥ λ(M+1)d ≥ 0 be the eigenvalues of G?, and
q1, . . . , q(M+1)d be the corresponding eigenvectors. Let

W =
[√
λ1 q1 · · ·

√
λd qd

]T ∈ Rd×(M+1)d.

Notice that due to the relaxation, the d× d blocks of W are not guar-
anteed to be orthogonal. We round each d×d block of W to its “clos-
est” orthogonal matrix. More precisely, let W = [W1 · · ·WM+1].
For every i = 1, . . . ,M + 1, we find O?

i ∈ O(d) that minimizes
‖Oi −Wi‖F where ‖·‖F denotes the Frobenius norm. This has a
closed-form solution, namely O?

i = UVT , where UΣVT is the
SVD of Wi [23]. Following (4) and (6), we form the matrix O? =[
O?

1 . . .O
?
M+1

]
and take the first N columns of Z? = O?BJ−1 to

be the sensor coordinates.
In the final step, we refine the sensor positions obtained at the end

of registration using the gradient-based local search in [10]. As we
will see, this step is in fact quite effective in improving the localization
accuracy. We denote the final sensor positions by x̂1, . . . , x̂N .

Henceforth, we will refer to the proposed algorithm as SNLSR,
short for “SNL via Subnetwork Registration”.

3. NUMERICAL SIMULATIONS

We now present some simulation results for SNL in R2 using SNLSR.
All the simulations were carried out in Matlab 8.1 on a four-core 2.83
GHz Linux workstation with a 3.6 GB memory. It is clear that the
computation-intensive steps of our approach are the determination
of the patch localizations and the solution of (8). The former was
accomplished in a parallel fashion using the Matlab implementations
of SNLSDP [10] and ESDP [16].

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(a) η = 0, 1.1e-4 (SNLSR).
−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b) η = 0, 5.4e-7 (ESDP).

−0.5 −0.3 −0.1 0.1 0.3 0.5
−0.5

−0.3

−0.1

0.1

0.3

0.5

(c) η = 0.3, 1.3e-2 (SNLSR).
−0.5 −0.3 −0.1 0 0.1 0.3 0.5

−0.5

−0.3

−0.1

0

0.1

0.3

0.5

(d) η = 0.3, 5.5e-2 (ESDP).

Fig. 2. Localization using SNLSR and ESDP [16]. The RMSD’s are
shown in bold. The problem parameters in either case are: N =
500,K = 50, and r = 0.2 (around 10% edges). The overall run
time of SNLSR was about 10 and 18 seconds for the clean and noisy
problems; the corresponding times for ESDP were about 2 minutes
and 38 seconds.

For solving the SDP relaxation of (8), we used the interior-point
solver SeDuMi [15] for medium-sized problems, and SDPLR [24]
for large problems. For the hierarchical clustering, we partitioned
G in a recursive fashion until the size of each cluster is below 30.
We next grow each cluster into a patch by adding its neighbors as
explained in Section 2, where we limit the patch size to 45. This is
roughly the largest patch size for which the run time of SNLSDP is
reasonable.

Following [10, 16], we generate the true positions of the sensors
and anchors by drawing |V | = N +K points {xi : i ∈ V } from
the uniform distribution on the unit square [−0.5, 0.5]2. We take the
first N points to be the sensors and the remaining K points to be the
anchors. Following [11], we set K = [N/10]. The distance graph
G = (V , E) is given by the condition that (k, l) ∈ E if and only if
‖xk − xl‖ ≤ r, where r ∈ (0, 1) is the radio range. We also use the
noise model from [10, 16] in which the measured distances are given
by d(k, l) = |1 + η · N(0, 1)| · ‖xk − xl‖ for (k, l) ∈ E , where
N(0, 1) is the standard normal distribution and η ∈ (0, 1) is the
noise level. While other noise models could also be considered, we
settled for this noise model to facilitate comparison with the results
in [10, 16]. For the same reason, we use the Root-Mean-Squared-
Deviation (RMSD) to quantify the localization accuracy which is
given by the square root of (1/N)

∑N
k=1‖x̂k − xk‖2.

Note that it is possible to register the patches in a globally consis-
tent manner using the anchor-free registration, simply by dropping
the equations in (3). Do we get better localization accuracy by in-
corporating the anchor information into the registration? Exhaustive
simulations (not reported here) show that by incorporating anchors
into the registration, it is indeed possible to improve the accuracy.
Simulations show that if the noise is small and the patches are suf-
ficiently rigid, then the margin of improvement is small. However,

Table 1. Comparison of the run time and localization accuracy of
SNLSR (t1 and RMSD1) with [10, 16] (t2 and RMSD2) for the unit-
square graph. We used SNLSDP [10] for N < 150, and ESDP [16]
for larger problems (see text for further details).
N r η t1 t2 RMSD1 RMSD2
100 0.4 0 8.1 sec 9.1 sec 8.9e-8 2.7e-9
100 0.4 0.3 4.2 sec 8.6 sec 3.1e-2 3.2e-2
150 0.3 0 5.1 sec 38.9 sec 3.8e-8 1.4e-8
150 0.3 0.2 5.6 sec 91.3 sec 2.1e-2 1.9e-2
150 0.2 0.1 6.8 sec 2.1 min 2.5e-2 2.1e-1
500 0.2 0 10.4 sec 2.74 min 3.8e-6 1.2e-7
500 0.2 0.01 21.5 sec 46.1 sec 4.3e-4 8.2e-4
500 0.2 0.1 15.1 sec 37.9 sec 4.3e-3 2.3e-2
1000 0.06 0 32.7 sec 9.35 min 1.9e-2 1.3e-2
1000 0.06 0.01 33.1 sec 5.55 min 3.4e-2 3.2e-2
1000 0.06 0.05 25.7 sec 1.82 min 2.8e-2 1.3e-2
2000 0.04 0 1.84 min 11.35 min 1.3e-2 1.2e-2
2000 0.04 0.005 1.93 min 6.54 min 1.8e-2 1.1e-2
2000 0.04 0.05 1.62 min 7.26 min 1.5e-2 1.1e-2
4000 0.03 0 6.82 min 24.35 min 1.1e-2 1.6e-2
4000 0.03 0.01 6.81 min 22.54 min 1.2e-2 8.2e-3
8000 0.02 0 28.34 min 1 hr 16 min 2.4e-3 4.8e-3

under more adversarial settings, the margin can be quite substantial.
A particular example is presented in Figure 1. Notice the poor local-
ization in (c) around the top left corner. This is because a couple of
patches around this region were poorly localized by SNLSDP, and
moreover, the anchors in this region were not considered during the
registration. As a consequence, the rigid transform associated with
these patches were poorly estimated during the registration. Also,
notice that the gradient-based refinement is quite effective in reducing
the RMSD in either case. In particular, while the RMSD gap is about
50% after the registration, the gap comes down to about 20% after
the refinement.

We next compare SNLSR with the SDP-based methods in [10,
16], both in terms of accuracy and scalability. Using the compu-
tational resources mentioned earlier, we could solve for at most
N = 150 sensors using SNLSDP [10]. We used ESDP to address
larger problems. Simulations suggest that our divide-and-conquer
method is significantly faster (often by an order) than these methods.
The accuracy of SNLSR is comparable, and occasionally better, than
these methods. A visual comparison for a moderate-sized problem is
provided in Figure 2. Further comparisons are provided in Table 1.
We note that we empirically tuned λ in φ to get the minimum RMSD
from SNLSR. For the SNL settings considered here, the optimal λ
was in the interval (1, 4), and the variability of the RMSD within
this interval was small (within 10% of the optimal), and even smaller
after the refinement.

4. CONCLUSION

We presented a divide-and-conquer approach for SNL and demon-
strated its utility for large-scale problems. In particular, we showed
how the non-convex problem of registering the subnetworks can be
relaxed and solved efficiently using modern convex programming
tools. While the simulation results presented here are far from ex-
haustive, they nevertheless demonstrate that the idea of localizing
patches in parallel and then registering them in a globally consistent
fashion can indeed lead to fast and scalable algorithms.

5. REFERENCES

[1] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L.
Moses, and N. S. Correal, “Locating the nodes: cooperative lo-
calization in wireless sensor networks,” IEEE Signal Processing
Magazine, vol. 22(4), pp. 54-69, 2005.

[2] M. Tubaishat and S. Madria, “Sensor networks: An overview,”
IEEE Potentials, vol. 22(2), pp. 20-23, 2003.

[3] Y. Yemini, “Some theoretical aspects of location-location prob-
lems,” Proc. IEEE Symposium on Foundations of Computer Sci-
ence, pp. 1-8, 1979.

[4] T. F. Cox and M. A. A. Cox, Multidimensional Scaling. Mono-
graphs on Statistics and Applied Probability 88, Chapman and
Hall/CRC, 2001.

[5] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization
in wireless networks,” Proc. IEEE, vol. 97(2), pp. 427-450, 2009.

[6] R. Olfati-Saber, “Distributed Kalman filtering for sensor net-
works,” Proc. IEEE Conference on Decision and Control, pp.
5492-5498, 2007.

[7] F. Chan and H.-C. So, “Accurate distributed range-based position-
ing algorithm for wireless sensor networks,” IEEE Transactions
on Signal Processing, vol. 57(10), pp. 4100-4105, 2009.

[8] U. A. Khan, S. Kar, and J. F. Moura, “DILAND: An algorithm for
distributed sensor localization with noisy distance measurements,”
IEEE Transactions on Signal Processing, vol. 58(3), pp. 1940-
1947, 2010.

[9] G. Mao, B. Fidan, and B. Anderson, “Wireless sensor network
localization techniques,” Computer Networks, vol. 51(10), pp.
2529-2553, 2007.

[10] P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang,
“Semidefinite programming approaches for sensor network local-
ization with noisy distance measurements,” IEEE Transactions
on Automation Science and Engineering, vol. 3(4), no. 4, pp.
360-371, 2006.

[11] P. Tseng, “Second-order cone programming relaxation of sensor
network localization,” SIAM Journal on Optimization, vol. 18(1),
pp. 156-185, 2007.

[12] A. Javanmard and A. Montanari, “Localization from incom-
plete noisy distance measurements,” Proc. IEEE International
Symposium on Information Theory, pp. 1584-1588, 2011.

[13] A. M.-C. So and Y. Ye, “Theory of semidefinite programming
for sensor network localization,” Mathematical Programming,
vol. 109(2-3), pp. 367-384, 2007.

[14] K.-C. Toh, M. J. Todd, and R. H. Tutuncu, “SDPT3 – A Matlab
software package for semidefinite programming,” version 1.3,
Optimization Methods and Software, vol. 11(1-4), pp. 545-581,
1999.

[15] J. F. Strum, “Using SeDuMi 1.02, A Matlab toolbox for op-
timization over symmetric cones,” Optimization Methods and
Software, vol. 11(1-4), pp. 625-653, 1999.

[16] Z. Wang, S. Zheng, Y. Ye, and S. Boyd, “Further relaxations
of the semidefinite programming approach to sensor network
localization,” SIAM Journal on Optimization, vol. 19(2), pp. 655-
673, 2008.

[17] Y. Koren, C. Gotsman, and M. B.-Chen, “PATCHWORK: Ef-
ficient localization for sensor networks by distributed global
optimization,” Technical Report, 2005.

[18] L. Zhang, L. Liu, C. Gotsman, and S. Gortler, “An As-Rigid-As-
Possible approach to sensor network localization,” ACM Trans-
actions on Sensor Networks, vol. 6(4), pp. 35:1 - 35:21, 2010.

[19] M. Cucuringu, Y. Lipman, and A. Singer, “Sensor network
localization by eigenvector synchronization over the Euclidean
group,” ACM Transactions on Sensor Networks, vol. 8(3), pp.
19:1-19:42, 2012.

[20] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22(8), pp. 888-905, 2000.

[21] K. N. Chaudhury, Y. Khoo, and A. Singer, “Global regis-
tration of multiple point clouds using semidefinite program-
ming,” SIAM Journal on Optimization, in press, also available at
arXiv:1306.5226.

[22] L. Vandenberghe and S. Boyd, “Semidefinite programming,”
SIAM Review, vol. 38(1), pp. 49-95, 1996.

[23] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fit-
ting of two 3d point sets,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, pp. 698–700, 1987.

[24] S. Burer and R. D. C. Monteiro, “A nonlinear programming
algorithm for solving semidefinite programs via low-rank fac-
torization,” Mathematical Programming, vol. 95(2), 329-357,
2003.

