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ABSTRACT

We propose a Bayesian method for cooperative localization and
control in mobile agent networks. Distributed, cooperative self-
localization of each agent is supported by an information-seeking
control of the movement of the agents. For cooperative localization,
the SPAWN message passing scheme is used. Cooperative control
is achieved by maximizing the negative joint posterior entropy of
the agent states via a gradient ascent. The localization part of our
method provides the control part with sample-based probabilistic
information. Simulation results demonstrate intelligent behavior of
the agents and excellent localization accuracy.

Index Terms— Agent networks, distributed estimation, coopera-
tive localization, information-seeking control, belief propagation.

1. INTRODUCTION

Location-aware mobile agent networks are important in many ap-
plications including target tracking, pollution source localization,
agricultural and healthcare monitoring, and chemical plume track-
ing [1–9]. In cooperative localization, each mobile agent estimates
its own position based on measurements relative to other agents and
the exchange of information with other agents. This is a nonlin-
ear and, for large networks, high-dimensional distributed estimation
problem. In a Bayesian estimation context, efficient belief propaga-
tion (BP) message passing methods can be used [4, 10, 11]. This is
possible because the factor graph [12] corresponding to the poste-
rior probability density function (pdf) of the total state matches the
network’s communication and measurement topology.

In many location-aware scenarios, it is advantageous to control
certain properties of the agent network, such as the agent positions or
the measurement characteristics (“controlled sensing”) [3, 5, 8, 13].
In particular, here we will address the problem of combining dis-
tributed estimation and distributed control in mobile agent networks.
We will limit our discussion toinformation-seeking control, which
seeks to maximize the joint information carried by the measurements
of all agents about the total state to be estimated (in our case, all
the agent positions). Possible measures of information include neg-
ative posterior entropy [14–17] and scalar-valued functions of the
Fisher information matrix [18]. However, existing methodsfor com-
bined estimation and information-seekingcontrol [14–18] are lim-
ited to simplesequentialBayesian filtering problems and are not
suited to cooperative localization schemes that use message pass-
ing techniques based on a possibly loopy factor graph.In addi-
tion, [18] uses a Kalman filtering framework and therefore is not
suited to highly nonlinear, non-Gaussian problems.

This work was supported by the Austrian Science Fund (FWF) under
Grants S10603 and P27370 and by the European Commission under ERC
Grant No. 258418 (COOPNET) and the Newcom# Network of Excellence in
Wireless Communications.

Here, we propose a Bayesian framework and method for dis-
tributed, cooperative, sequential localization with distributedinfor-
mation-seekingposition control. For distributed localization, fol-
lowing [10] and [4], we use the SPAWN (sum-product algorithm
over a wireless network) message passing scheme and sample rep-
resentations of probability distributions. For distributed control, we
define a global (holistic) objective function as the negative joint pos-
terior entropy of all the agent positions conditioned on all the mea-
surements. This objective function is optimized jointly by all agents
via a gradient ascent. The localization part of our method provides
the control part with sample-based probabilistic information.Our
method advances beyond [14–17] in that (i) it constitutes a more
general information-seeking control framework that uses SPAWN
for distributed sequential estimation of multiple time-varying states,
and (ii) it includes estimation of the own (controlled) positions of the
agents, thus enabling its use for cooperative localization.

The remainder of this paper is organized as follows. In Section
2, we describe the system model and formulate the joint localiza-
tion and control problem. The distributed cooperative localization
technique used in our method is reviewed in Section 3. In Section
4, the proposed information-seeking control technique is described.
Finally, simulation results are presented in Section 5.

2. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a network of mobile agentsl ∈ A ⊂ N. Fig. 1 de-
picts the overall system model and corresponding signal processing
system relative to an arbitrary agentl. The state x

(n)
l of agentl at

discrete timen∈ {0, 1, . . .} consists of the agent’s 2D position, i.e.,
x
(n)
l ,

[

x
(n)
l,1 , x

(n)
l,2

]T
. The agent states evolve independently accord-

ing to [19]

x
(n)
l = x
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l + T0u

(n)
l +

√
T0q

(n)
l , n=1, 2, . . . . (1)

Here,T0 is the sampling interval, u(n)
l ∈ R

2 is a controlled and

hence deterministic velocity, which is constrained as‖u(n)
l ‖≤ umax

l ,
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Fig. 1. Block diagram of the overall system model and signal pro-
cessing system for an arbitrary agentl ∈ A.



andq(n)
l ∈ R

2 is driving noise [20] that is independent acrossl and
n. For correct interpretation ofu(n)

l within (1), it is assumed that
the agents know the orientation of the global reference frame. The
statistical relation betweenx(n−1)

l andx(n)
l as defined by (1) can

also be described by thestate-transition pdf f
(

x
(n)
l

∣

∣x
(n−1)
l ;u

(n)
l

)

.
The communication and measurement topology of the network is

described by neighborhood setsC(n)
l ⊆A\{l} as follows. Agentl

communicates with agentk and acquires a measurementy
(n)
l,k rela-

tive to agentk if k∈ C(n)
l . This relation is symmetric, i.e.,k∈ C(n)

l

impliesl ∈ C(n)
k . We consider noisy distance measurements

y
(n)
l,k = ‖x(n)

l −x
(n)
k ‖+ v

(n)
l,k , k∈ C(n)

l , (2)

wherev(n)
l,k is measurement noisethat is assumed independent across

l, k, andn. The statistical relation betweeny(n)
l,k and the involved

statesx(n)
l andx(n)

k is also described by thelocal likelihood func-
tion f

(

y
(n)
l,k

∣

∣x
(n)
l ,x

(n)
k

)

. In what follows, we denote byx(n) ,
[

x
(n)
l

]

l∈A
, u(n) ,

[

u
(n)
l

]

l∈A
, andy(n) ,

[

y
(n)
l,k

]

l∈A, k∈C
(n)
l

the

vectors of, respectively, all states, control vectors, and measure-
ments at timen. Furthermore, we setx(1:n) ,

[

x(1)T, . . . ,x(n)T
]T

,

u(1:n) ,
[

u(1)T, . . . ,u(n)T
]T

, andy(1:n) , [y(1)T, . . . ,y(n)T
]T

.
We note that our framework and method can be extended to many
other state-evolution and measurement models. For example, also
the state-evolution model (1) may be nonlinear [21].

At each timen, the following two tasks are to be performed: (i)
Each agentl ∈A estimates its own state (position)x(n)

l from prior
information andy(1:n), i.e., all past and present measurements in the
entire network. (ii) The position of each agent is controlled such
that the negative joint posterior entropy of all states in the network
at the next time, conditioned on all measurements in the network at
the next time, is maximized.

In the next two sections, we will present a distributed, recursive
method for these tasks. Our method consists of alocalization layer
and acontrol layer, as shown in Fig. 1. In the localization layer,
agentl computes an approximation of the marginal posterior pdf of
x
(n)
l given all the past and present measurements and control vectors

in the entire network, and a corresponding position estimatex̂
(n)
l .

In the control layer, agentl uses the approximate marginal posteri-
ors computed in the localization layer to calculate a quasi-optimal
control vectoru(n+1)

l .

3. LOCALIZATION LAYER

Bayesian estimation of the positionx(n)
l of agentl ∈A from y(1:n)

is based on the posteriorf
(

x
(n)
l

∣

∣y(1:n);u(1:n)
)

, which is a marginal
of the joint posteriorf

(

x(1:n)
∣

∣y(1:n);u(1:n)
)

, i.e.,

f
(

x
(n)
l

∣

∣y
(1:n);u(1:n)) =

∫

f
(

x
(1:n)

∣

∣y
(1:n);u(1:n)) dx

(1:n)
∼l,n . (3)

Here, x(1:n)
∼l,n is x(1:n) with x

(n)
l removed. The minimum mean-

square error (MMSE) estimator [22] ofx(n)
l is then obtained as

x̂
(n)
l,MMSE ,

∫

x
(n)
l f

(

x
(n)
l

∣

∣y
(1:n);u(1:n)) dx

(n)
l , l ∈A . (4)

Unfortunately, straightforward evaluation of (3) and (4) is com-
putationally infeasible. However, using Bayes’ rule and common
assumptions [4], the joint posterior can be factorized as

f
(

x
(1:n)

∣

∣y
(1:n);u(1:n))

∝
∏

l∈A

f
(

x
(0)
l

)

n
∏

n′=1

f
(

x
(n′)
l

∣

∣x
(n′−1)
l ;u

(n′)
l

)

×
∏

k∈C
(n′)
l

f
(

y
(n′)
l,k

∣

∣x
(n′)
l ,x

(n′)
k

)

. (5)

An approximation of the marginal posteriorf
(

x
(n)
l

∣

∣y(1:n);u(1:n)
)

can then be obtained by executing sample-based SPAWN message
passing [4,23] on the factor graph corresponding to (5). As a result,
samples

{

x
(n,j)
l

}J

j=1
approximatingf

(

x
(n)
l

∣

∣y(1:n);u(1:n)
)

and a
corresponding approximation of (4),

x̂
(n)
l =

1

J

J
∑

j=1

x
(n,j)
l ,

are available at agentl. A more detailed description of the method
used in the localization layer is presented in [4,21,23].

4. CONTROL LAYER

4.1. Objective Function and Controller

According to our definition in Section 2, the vector comprising all
measurements at the next time isy(n+1) =

[

y
(n+1)
l,k

]

l∈A,k∈C
(n+1)
l

.

However, to develop the controller, we formally replace in this def-
inition C(n+1)

l by C(n)
l since at the current timen, the setsC(n+1)

l

are not yet known. Then, each agentl ∈A calculates its next control
variableu(n+1)

l such that the global information about the next total
statex(n+1) giveny(1:n+1) is maximized. This information can be
quantified by the negative conditional differential entropy [24, Chap.
8] of x(n+1) giveny(n+1), withy(1:n) included as an additional con-
dition that has already been observed and is thus fixed:

− h
(

x
(n+1)

∣

∣y
(n+1);y(1:n)

,u
(1:n+1))

=

∫ ∫

f
(

x
(n+1)

,y
(n+1)

∣

∣y
(1:n);u(1:n+1))

× log f
(

x
(n+1)

∣

∣y
(n+1)

,y
(1:n);u(1:n+1)) dx(n+1)dy(n+1)

,

(6)

where log denotes the natural logarithm. Note that we use a
sans serif font forx(n+1) and y

(n+1) in h
(

x
(n+1)

∣

∣y
(n+1);y(1:n),

u(1:n+1)
)

in order to indicate thath
(

x
(n+1)

∣

∣y
(n+1);y(1:n),

u(1:n+1)
)

depends on therandom vectors x(n+1) andy(n+1), i.e.,
on their joint distribution but not on their values. Furthermore note
that, within the total control vectoru(1:n+1) parametrizing the pdfs
in (6),u(1:n) has already been determined and is thus fixed.

According to (6),−h
(

x
(n+1)

∣

∣y
(n+1);y(1:n),u(1:n+1)

)

is a func-
tion of the next control vectoru(n+1), to be denoted as

Dh

(

u
(n+1))

, −h
(

x
(n+1)

∣

∣y
(n+1);y(1:n)

,u
(1:n+1))

. (7)

This function will be used by each agent as the objective function
for control. At each timen, toward a maximization ofDh

(

u(n+1)
)

,
we perform one step of a gradient ascent [25] with reference vector
0. Thus,u(n+1) is determined as

û
(n+1) = c

(n+1) ∇Dh

(

u
(n+1))

∣

∣

u(n+1)=0
, (8)

wherec(n+1) > 0 is a step size. We have



∇Dh(u
(n+1)) =

[

∂Dh(u
(n+1))

∂u
(n+1)
l

]

l∈A

sinceu(n+1) =
[

u
(n+1)
l

]

l∈A
. It then follows that the gradient as-

cent (8) is equivalent to separate local gradient ascents at the indi-
vidual agentsl, each performed only with respect to the respective
local control vectoru(n+1)

l , i.e.,

û
(n+1)
l = c

(n+1)
l

∂Dh

(

u(n+1)
)

∂u
(n+1)
l

∣

∣

∣

∣

u(n+1)=0

, l ∈A . (9)

Note that, following [17], we allow for different local step sizes
c
(n+1)
l at the individual agentsl. This deviation from (8) accounts

for the possibly different boundsumax
l and avoids the necessity of de-

termining a common step size across all the agents. Each local step
sizec(n+1)

l is constrained by the condition‖û(n+1)
l ‖≤ umax

l .
Next, we will derive a convenient expression of the gradient

∂Dh(u(n+1))

∂u
(n+1)
l

∣

∣

∣

u(n+1)=0

in (9). To simplify the notation, we no longer

indicate the conditioning ony(1:n) and u(1:n) because at time
n + 1, y(1:n) has already been observed andu(1:n) has already
been determined, hence both are fixed. Furthermore, we suppress
the time indexn and designate variables at timen+1 by the su-
perscript “+”; for example, we writeh(x+|y+;u+) instead of
h
(

x
(n+1)

∣

∣y
(n+1);y(1:n),u(1:n+1)

)

. Finally, for calculating the gra-
dient, following [16] and [17], we disregard the unknown driving
noiseql in (1) and thus rewrite (1) (withn replaced byn+ 1) as

x
+
l = xl + T0u

+
l , (10)

which implies for the stacked vectors

x
+ = x+ T0u

+
. (11)

Using (11) and the fact thatu+ is deterministic, the objective
functionDh(u

+) = −h(x+|y+;u+) in (7) can be expressed as [24,
Chap. 8]

Dh(u
+) = −h(x |y+;u+) = −h(x) + I(x ; y+;u+) . (12)

Here,I(x ; y+;u+) denotes the mutual information betweenx and
y+ [24, Chap. 8] (withu+ being a deterministic parameter),

I(x ; y+;u+) =

∫∫

f(x,y+;u+) log
f(x,y+;u+)

f(x)f(y+;u+)
dxdy+

.

Then, using (12) and the fact thath(x) in (12) does not depend on
u+, we obtain for the gradient

∂Dh(u
+)

∂u+
l

=
∂I(x ; y+;u+)

∂u+
l

=

∫∫

∂f(y+|x;u+)

∂u+
l

f(x) log
f(y+|x;u+)

f(y+;u+)
dx dy+

,

(13)
where the final expression follows by virtue of [17, Th. 1].

4.2. Sample-based Computation

We now present a cooperative computation ofDh(u+)

∂u
+
l

∣

∣

∣

u+=0

that

uses importance sampling [26]. This computation requires commu-
nication with neighboring agentsk ∈ Cl and uses the marginal pos-
terior samples computed by the localization layer.

Due to the independence of thevl,k in (2), the likelihood function
f(y+|x;u+) occurring in (13) factorizes as

f(y+|x;u+) =
∏

l∈A

∏

k∈Cl

f(y+
l,k|xl,xk;u

+
l ,u

+
k ) . (14)

Here, because of (10), the local likelihood functions involved in (14)
are given by

f(y+
l,k|xl,xk;u

+
l ,u

+
k )

= f(y+
l,k|x+

l ,x
+
k )

∣

∣

x
+
l
=xl+T0u

+
l
,x

+
k
=xk +T0u

+
k

. (15)

Let αl(y
+,x,u+) ,

∏

k∈Cl
f(y+

l,k|xl,xk;u
+
l ,u

+
k ) denote the part

of the product (14) that depends on the local control vectoru+
l . Then,

using (14) and (15), the following sample-based approximation of
(13) evaluated atu+=0 can be derived [21]:

∂Dh(u
+)

∂u+
l

∣

∣

∣

∣

u+=0

≈ 1

JJ ′

J
∑

j=1

J′

∑

j′=1

1

αl(y+(j,j′),x(j),0)

× ∂αl(y
+(j,j′),x(j),u+)

∂u+

∣

∣

∣

∣

u+=0

× log
f(y+(j,j′)|x(j);u+=0)

f(y+(j,j′);u+=0)
,

wheref
(

y+(j,j′);u+=0
)

can in turn be approximated as

f
(

y
+(j,j′);u+=0

)

≈ 1

J

J
∑

j′′=1

f
(

y
+(j,j′)

∣

∣x
(j′′);u+=0

)

.

Here, y+(j,j′) and x(j) are samples ofy+ and x, respectively
that are drawn from the importance density [26]q(y+,x) ,

f(x)f(y+|x;u+= 0) (note thatf(x) is short forf(x(n)|y(1:n)))
via the following two-stage procedure:

1. Samples
{

x(j)
}J

j=1
are drawn fromf(x). This is done in

a distributed way as follows. As a result of the localization
layer, samples

{

x
(j)
l

}J

j=1
∼ f(xl) are available at agentl.

A flooding algorithm [27] is now used to make available to
each agentl also the samples

{

x
(j)
k

}J

j=1
∼ f(xk) of all the

other agentsk ∈ A\{l}. (The flooding algorithm requires
each agentl to communicate with neighboring agentsk ∈ Cl.)
Thus, at this point, all the sample sets

{

x
(j)
k

}J

j=1
, k ∈ A

are available at each agentl. Then, samples
{

x(j)
}J

j=1
∼

f(x) can be obtained at each agentl via a simple stacking
operation,1 i.e.,x(j) =

[

x
(j)
k

]

k∈A
for j = 1, . . . , J .

2. For each samplex(j), samples
{

y+(j,j′)
}J′

j′=1
are drawn from

the conditional pdff
(

y+
∣

∣x(j);u+ = 0
)

. The method for
doing this is based on the fact that, due to (2),

y
+ =

[

‖x+
l′ −x

+
k ‖+ v

+
l′,k

]

l′∈A,k∈C
l′
. (16)

First, agentl obtains samples
{

x
+(j)

l′

}J

j=1
for all l′ ∈ A by

evaluating (10) forxl′ = x
(j)

l′
andu+

l′
= 0. Next, for eachj ∈

{1, . . . , J}, agentl draws samples
{

v
+(j,j′)

l′,k

}J′

j′=1
∼ f(v+

l′,k
)

for all l′ ∈ A andk ∈ Cl. Finally, agentl obtains the desired

samples
{

y+(j,j′)
}J′

j′=1
∼ f

(

y+
∣

∣x(j);u+= 0
)

by evaluat-
ing (16) using the appropriate samples, i.e.,

y
+(j,j′) =

[

‖x+(j)

l′
−x

+(j)
k

∥

∥+ v
+(j,j′)

l′,k

]

l′∈A,k∈C
l′
.

1This is based on the assumption that thexl are conditionally independent
giveny

(1:n), i.e., f(x) =
∏

l∈A f(xl). This assumption is also used in
SPAWN [4], and thus also in the localization layer.



An alternative distributed implementation that uses consensus or
gossip instead of flooding and an analysis of computation and com-
munication costs can be found in [21].

5. SIMULATION RESULTS

We consider a scenario with one anchor agentl = 1 and three mo-
bile agentsl = 2, 3, 4. The anchor agent is static; it broadcasts its
own (true) position to the mobile agents but does not perform any
measurements. The driving noiseq(n)

l in (1) is zero-mean Gaus-
sian with independent and identically distributed entries, i.e.,q

(n)
l ∼

N (0, σ2
qI). The agent network is fully connected. The sampling

interval isT0 = 1. Each mobile agent measures its distances to the
other mobile agents and to the anchor agent according to (2). The
measurement noisev(n)

l,k is zero-mean Gaussian with variance

σ
(n)2
l,k =







σ2
0 ,

∥

∥x
(n)
l −x

(n)
k

∥

∥ ≤ d0

σ2
0

[(

‖x
(n)
l

−x
(n)
k

‖

d0
− 1

)κ

+ 1
]

,
∥

∥x
(n)
l −x

(n)
k

∥

∥ > d0 .

That is,σ(n)2
l,k is a function of the distance

∥

∥x
(n)
l − x

(n)
k

∥

∥ that is
constant up tod0 and then increases polynomially with some expo-
nentκ. This is a simple model for time-of-arrival distance measure-
ments [28]. We setσ2

0 = 50, κ = 2, andd0 = 50.
In the localization layer, we useJ = 3600 samples and the

resampling scheme presented in [21]. We also use a censoring
scheme [29] to reduce the number of samples and avoid numeri-
cal problems during the first time steps where the mobile agents
still have uninformative beliefs. More specifically, only agentsl

with tr
(

C
(n)
l

)

< 10 are used as localization partners by the other
agents. Here,C(n)

l is a sample-based approximation of the covari-
ance matrix off

(

x
(n)
l

∣

∣y(1:n);u(1:n)
)

[21]. In the control layer, this
censoring scheme corresponds to the following strategy: as long as
agentl is not localized (i.e.,tr

(

C
(n)
l

)

≥ 10), its objective func-

tion is D̃h

(

u(n+1)
)

, −h
(

x
(n+1)
l

∣

∣y
(n+1)
l,1 ; y

(1:n)
l,1 ,u

(1:n+1)
l

)

, i.e.,
the negative differential entropy of only the own state conditioned
on only the own measurement relative to the anchor agent,y

(n+1)
l,1 .

The step sizesc(n)
l in (9) are adapted such that‖û(n+1)

l ‖ = umax
l .

Thus, each mobile agentl moves with maximum nominal speed
(determined byumax

l ) in the direction of maximum local increase of
the objective function. The number of samples used in the control
layer isJJ ′ = 60000, with J = 1200 andJ ′ = 50. The three
mobile agents have different start points ([−50 , 0]T, [0 ,−50]T, and
[0 , 70]T for l = 2, 3, and 4, respectively) and different nominal
speeds (umax

l = 1, 0.3, and0.1 for l = 2, 3, and4, respectively).
Example trajectories of the mobile agents are shown in Fig. 2. The
anchor agent is located at[−60 , 0]T.

We compare the proposed method for cooperative self-localization
with information-seeking control (abbreviated as C–C) with a
method for noncooperative self-localization with information-
seeking control (N–C) and a method for cooperative self-localization
without intelligent control (C–N). In the N–C method, the mobile
agents do not measure their distances and thus use only the measured
distance to the anchor for self-localization. In the C–N method, the
mobile agents cooperate in the localization layer but their con-
trol degenerates in that each mobile agent randomly chooses a
direction initially and then moves in that direction with constant
nominal speed determined byumax

l . Fig. 3 shows theaverage root-
mean-square errors (ARMSEs)of the three methods, which were
determined by averaging over the three mobile agents and over 300
simulation runs. It can be seen that theARMSEsof the N–C and
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Fig. 2. Example trajectories of the mobile agents. The initial agent
positions and the anchor position are indicated by bullets and a star,
respectively.

time stepn
A

R
M

S
E

C–N
N–C
C–C (proposed)

25050 100 150 200
0

10

20

30

40

50

60

70

Fig. 3. ARMSEof the proposed localization/control method and two
reference methods.

C–N methods decrease only very slowly whereas, after about 70
time steps, theARMSE of the proposed C–C method decreases
rather quickly to a low value. This can be explained as follows.
Without cooperation (N–C) or without intelligent control (C–N),
agents 3 and 4 need a long time to localize themselves because they
are slow and initially far away from the anchor. On the other hand,
agent 2 localizes itself very quickly because it is fast and initially
close to the anchor. With cooperation and control (C–C), agent 2
moves in such a way that it supports the self-localization of the
two other agents. In fact, as can be seen in Fig. 2, agent 2 first
localizes itself by starting to turn around the anchor and then makes
a sharp turn to approach agents 3 and 4, which helps them localize
themselves. These results demonstrate the function and benefits of
cooperative estimation with information-seeking control.

Simulation source code and animated plots are available at
http://www.nt.tuwien.ac.at/about-us/staff/florian-meyer/.

6. CONCLUSION

We proposed a Bayesian framework and method for distributed, co-
operative, sequential localization with information-seeking control
in mobile agent networks. Localization is achieved by a sample-
based SPAWN message passing scheme. The resulting sample rep-
resentations of the marginal posterior pdfs of the agent positions are
used by the controller to steer the movement of the agents. This is
based on a criterion of maximal information jointly carried by the
measurements of all the agents. Our main contribution is a coopera-
tive sample-based scheme for calculating the control vector at each
agent. Numerical simulations demonstrate intelligent agent behav-
ior and substantial improvements of localization accuracy resulting
from cooperation and information-seeking control.
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