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ABSTRACT
This paper considers the problem of recovering a k-sparse, N -dimensional complex signal from Fourier magnitude measure-
ments. It proposes a Fourier optics setup such that signal recovery up to a global phase factor is possible with very high
probability whenever M & 4k log2(N/k) random Fourier intensity measurements are available. The proposed algorithm is
comprised of two stages: An algebraic phase retrieval stage and a compressive sensing step subsequent to it. Simulation results
are provided to demonstrate the applicability of the algorithm for noiseless and noisy scenarios.

Index Terms— Phase retrieval, compressive sampling, Fourier measurements

1. INTRODUCTION

In many applications involving linear signal measurement processes, the measurement results are magnitude-only or solely
unreliable phase information is available. Phase retrieval addresses this problem by striving to recover the signal exclusively
from the absolute values of the linear measurements. Fourier optics is one of the application areas where the phase retrieval
problem is commonly faced. An exemplary setting is shown in Fig. 1 (the mask belongs to the recovery setup, assume it to be
nonexistent for the moment). The object of interest is illuminated by a light or x-ray source. As a result, a diffraction pattern
x[n] is produced, where n denotes the discrete spatial coordinate. Subsequently, this diffraction pattern x[n] is transformed
by the lens into the Fourier domain. Unable to measure the phase, one can only acquire the intensity measurements |x̂[ω]|2 of
the Fourier transform x̂[ω]. The phase retrieval problem is now to reconstruct the diffraction pattern x[n] from the intensity
measurements |x̂[ω]|2. In this paper, we are interested in the case where x ∈ CN is known to be k-sparse.

Non-sparse phase retrieval has been a very active research area since the seminal work of Balan et al. [1]. It is proven in [2]
that 4N − 4 measurements are sufficient, and in [3] that 4N − o(N) measurements are necessary for perfect recovery up to a
global phase factor. Minimal deterministic constructions yielding injectivity with 4N − 4 measurement vectors are provided
in [4, 5]. Also, explicit deterministic measurement ensembles ensuring injectivity for almost every signal in CN are proposed
in [6, 7].
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Fig. 1. A setup for phase retrieval problem which can often be found in optical applications.

Compressive phase retrieval of sparse signals attracted some interest in recent years. It was shown in [8] that 8k− 2 generic
intensity are sufficient for recovery whereas they neededO(k lnN) measurements for stable recovery via convex programming.
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The theoretical lower bound for the number of sufficient measurements required for a k-sparse signal was improved in [9] to
M = 4k − 2. However, to the best of our knowledge there is no algorithm approaching this bound presently. Using PhaseLift
[10], Ohlsson et al. [11] proposed an recovery algorithm from O(k2 logN) measurements. However, this technique is based
on semidefinite programming and suffers from high computational complexity. In [12], a technique relying on generalized
approximate message passing is presented. While the simulation results in this work demonstrate some advantages in terms of
the number of the required measurements and computational complexity, no theoretical recovery guarantee was derived.

The characteristics of the measurement vectors play a key role in the practical applicability of the algorithms. None of
the previously mentioned works focus on measurement sets that could model a Fourier optics system as in Fig. 1 (see, e.g.,
[13, 14, 15, 16, 17, 18, 19]). In fact, the first paper about compressive phase retrieval [20] was addressing the very problem
that we are trying to solve in the present paper, i.e., the recovery problem of a k-sparse complex signal x ∈ CN from Fourier
intensity measurements |x̂[ω]|2. To our knowledge, the only work after [20] that directly addressed this problem is the recent
paper by Pedarsani et al. [7]. Based on a sparse graph codes framework, this paper provides a low complexity algorithm that
achieves perfect reconstruction with very high probability using 14k measurements.

The present paper proposes a two step procedure to recover almost every x ∈ CN by random Fourier intensity measure-
ments using 4 masks (see Fig. 1). First, we recover the phases of our measurements up to a global phase using the algorithm
proposed in [6]. Afterward, the sparse signal is reconstructed using the standard compressed sensing approach, i.e., the `1-
minimization technique. We provide numerical simulations to show the success rates of the algorithm and its behavior under
additive measurement noise.

2. SIGNAL MODEL AND NOTATIONS

Notations We consider signals in the N -dimensional complex Euclidean vector space CN . These signals are written as
x = (x[1], x[2], . . . , x[N ])T. The inner product in CN is 〈x, y〉CN =

∑N
n=1 x[n] y[n] = y∗xwhere the bar denotes the complex

conjugate, and y∗ is the conjugate transpose of y. The norm, induced by the inner product is denoted by ‖x‖ =
√
〈x, x〉,

whereas ‖x‖`1 :=
∑N
n=1 |x[n]| stands for the `1 norm. The unitary discrete Fourier transform (DFT) of x ∈ CN is given by

x̂ = Fx where F denotes the DFT matrix with entries

[F ]m,n = 1√
N

e−i2π(m−1)(n−1)/N , m, n = 1, . . . , N

in its mth row and nth column.
A vector x ∈ CN is called k-sparse if ‖x‖0 := | supp(x)| ≤ k where supp(x) = {n : x[n] 6= 0}, i.e., if the support length

is at most equal to k. The set of all k-sparse vectors in CN is denoted by

ΣNk = {x ∈ CN : ‖x‖0 ≤ k} .

We write x � y for the point-wise product of two vectors x, y ∈ CN , i.e., (x � y)[n] = x[n]y[n] for all n = 1, . . . , N , and
T = {z ∈ C : |z| = 1} stands for the unit circle in the complex plane C.

Problem Statement Let x ∈ ΣNk and let {ϕm}Mm=1 be a set of measurement vectors in CN . The compressive phase retrieval
(CPR) problem is to reconstruct x from the intensity measurements

bm = |〈x, ϕm〉|2 , m = 1, . . . ,M . (1)

Recovery will only be unique up to a unitary constant because if x satisfies (1) then also and cx with |c| = 1 will satisfy (1).
Consequently, we always consider (1) as a mapping AΦ : CN\T→ RM from the quotient space of CN modulo T into RM .

3. GENERAL APPROACH

This section proposes a general approach for compressive phase retrieval problem. Thereafter, we will give some concrete
realizations applicable to Fourier optics systems such as Fig. 1. We propose to split the whole recovery problem into a two step
procedure: a phase retrieval step and a sparse recovery step. More precisely, our methodology is based on the following two
ingredients.

(i) Let A ∈ CL×N such that every x ∈ ΣNk can be recovered from the measurements y = Ax ∈ CL as a solution of
minz∈CN ‖z‖0 subject to Az = y.
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(ii) Let Ψ = {ψm}Mm=1 be a set of M vectors in CL such that the mapping AΨ : CL\T→ RM is injective.

Therewith, we define the measurement vectors

ϕm := A∗ψm ∈ CN , m = 1, . . . ,M . (2)

By this construction of measurement vectors, one guarantees that every k-sparse vector in CN can be recovered from the
measurements (1), provided the number M of measurements is large enough.
Theorem 1: If M ≥ 8k − 4 then there exist sets of measurement vectors {ϕm ∈ CN}Mm=1 such that every x ∈ ΣNk can be
recovered from the quadratic measurements (1), up to unitary factor.

Proof: Let x ∈ ΣNk . By the definition of the measurement vectors ϕm in (2), we can write (1) as

bm = |〈x,A∗ψm〉CN |2 = |〈Ax,ψm〉CL |2 = |〈y, ψm〉CL |2 (3)

with y = Ax ∈ CL. It is known [2] that if M ≥ 4L − 4 than there are a sets of measurement vectors {ψm ∈ CL}Mm=1 which
have property (ii). It follows that y ∈ CL can be determined from the magnitude measurements {bm}Mm=1 given in (1), up to a
unitary constant. Moreover, if L ≥ 2k then it is known [21] that there exist matrices A ∈ CL×M which have the property (i).
Consequently the k-sparse vector x can be reconstructed from y.

Remark: The previous result and the proof are similar to [8]. However, our approach gives immediately explicit constructions
of measurement systems as well as corresponding recovery algorithms. In particular, there exist explicit constructions for
matrices A which have property (i) [22], and there exist several known systems of vectors which have property (ii) [4, 5].

The number of necessary measurements, given in Theorem 1 is based on the known results on the minimal number of
measurements necessary for the phase retrieval step and compressive sensing step. To get stable recovery algorithms, one
may need more measurements than required in Theorem 1. Following the described methodology, one has to choose concrete
realizations for A and Ψ and different algorithms for both recovery steps. For example,

• Choose Ψ as random vectors as in [10] and use PhaseLift for the recovery in the phase retrieval step.

• Pick A as a random matrix and then solve the basis pursuit problem in step 2.

4. CPR – GAUSSIAN MEASUREMENTS

In the following, we will give a concrete realization of the previously introduced methodology to sparse phase retrieval which
yields a low complexity recovery algorithm. To this end, we have to choose a matrix A with property (i) and vectors {ψm} with
property (ii). For the set {ψm}, we use the vectors proposed in [6]:

A set of measurement vectors Consider the set of M = 4L− 4 measurement vectors Ψ = {ψs,l}s=1,...,4
l=1,...,L−1 in CL given by:

ψ1,l = α e1 + β el+1, ψ3,l = α e1 − β el+1,

ψ2,l = β e1 + α el+1, ψ4,l = −β e1 + α el+1,
(4)

where {el}Ll=1 is the canonical orthonormal basis in CL, and with

α =

√
1
2

(
1− 1√

3

)
and β = e−i5π/4

√
1
2

(
1 + 1√

3

)
. (5)

It was shown in [6] that the mapping AΨ : CL\T → R4L−4 associated with the set Ψ is injective on the subspace SΨ = {y ∈
CL/T : y[1] 6= 0}.
Theorem 2: Let A ∈ CL×N be a Gaussian or Bernoulli random matrix, and set

ϕs,l := A∗ψs,l ∈ CN , s = 1, . . . , 4, l = 1, . . . , L− 1 ,

with the vectors ψs,l defined in (4). If M = 4L − 4 & 8k ln(N/k), then every x ∈ V := {x ∈ ΣNk : (Ax)[1] 6= 0} can be
recovered (up to a global phase) from the intensity measurements

bs,l = |〈x, ϕs,l〉|2 , s = 1, . . . , 4 , l = 1, . . . , L− 1.

with high probability.
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Proof: As in Theorem 1, by the definition of the measurement vectors, we have bs,l = | 〈y, ψs,l〉CL |2 with y := Ax ∈ CL.
Since AΨ : CL\T → R4L−4 is injective on SΨ and y[1] 6= 0, y can be reconstructed from {bs,l}, up to a global phase. By the
assumption of the theorem L > 2k ln(N/k). Therefore, standard CS theory guarantees [22] that A has the null space property
(with high probability) and so x ∈ ΣNk can be recovered from the linear measurements y = Ax ∈ CL.

Remark: The estimate for the necessary number of measurements M and the notion ”with high probability” can be made
precise using well known results from CS, see, e.g., [22].

Remark: Note also, that our construction provides a natural recovery algorithm. In the first step, y = Ax is determined from
the measurements {bs,l} using the algorithm proposed in [6]. Afterwards the k-sparse vector x can be determined from y by
any algorithm known for sparse signal recovery. For concreteness, we assume that basis pursuit is used, i.e., x ∈ ΣNk is the
unique solution of the following convex minimization problem:

min
z∈CN

‖z‖`1 subject to Az = y . (6)

5. CPR – FOURIER MEASUREMENTS

In many applications, the matrix A in (2) cannot be determined arbitrarily. Here, we adapt our idea from last section to the
setup in Fig. 1. In this setting, the object of interest is illuminated and the resulting diffraction pattern x[n] is modulated by
suitable masks with transmittance functions ps[n], such that x � ps is the resulting signal after each mask. Subsequently, the
lens transforms the modulated signal into the frequency domain. As we are interested in recovering spatially sparse signals
x ∈ ΣNk , we exploit this sparsity and take only random frequency measurements M < N , where M is determined by the
compressive sensing theory.

In particular, we propose to use four masks with the following transmittance functions

ps[n] = as δ[n] + bs , n = 1, . . . , N (7)

where δ[n] stands for the delta function defined by δ[1] = 1 and δ[n] = 0 for n 6= 1, and with the constants

a1 = α , a2 = β , a3 = α , a4 = −β ,
b1 = β , b2 = α , b3 = −β , b4 = α ,

and where α and β are defined as in (5). Based on these masks, we can prove the following recovery result.
Theorem 3: Consider the measurement setup of Fig. 1 with the four masks ps ∈ CN as defined in (7). Let L ⊂ {1, . . . , N} be
a set of randomly chosen sampling points in the Fourier domain. If

L = |L| > C k log(N),

with an appropriated constant C, then every x ∈ ΣNk with x[1] 6= 0 can be recovered (up to an global unitary phase) from the
4L intensity measurements

bs,l = |F(x� ps)[l]|2 , s = 1, . . . , 4 , l ∈ L,

with high probability.

Remark: So any k-sparse vectors in CN can be recovered from M & 4Ck log(N) intensity measurements. The constant C
and the statement “with high probability” can be made more precise using result on CS with partial Fourier measurements [23].
We will show in Sec. 6, by means of numerical simulations, that we need approximately M & 4k log2(N/k) measurements for
recovery with high probability.

Remark: Note also, that we have again a very mild restriction on the signal space, namely that the first signal entry x[1] must
not vanish. The restriction is necessary to allow phase retrieval in the first recovery step [6].

Proof: Direct calculation shows that
ŷs = F(x� ps) = Dsx̃

where ŷs ∈ CL is the vector of the Fourier transform of x� ps sampled at the points L, the vector

x̃ = (
x[1]√
N
, x̂T)T = (

x[1]√
N
, x̂[l1], . . . , x̂[lL])T ∈ CL+1
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contains x[1]√
N

at the first position and the Fourier transform Fx, sampled at the set L = {l1, . . . , lL} at the other positions, and

Ds ∈ CL×(L+1) are matrices of the form

Ds =


as bs 0 · · · · · · 0

as 0 bs 0 · · · 0
...

...
. . . . . . . . .

...
as 0 · · · 0 bs 0

as 0 · · · · · · 0 bs .


From the simple structure of Ds, a direct calculation shows that the measurements can be written as

bs,l = |ŷs[l]|2 = | 〈x̃, ψs,l〉 | , s = 1, . . . , 4, l = 1, . . . , L (8)

where the set Ψ = {ψs,l} of CL+1-vectors is defined as in (4). Again, we use that the corresponding mappingAΨ : CL+1\T→
R4L is injective. Consequently, x̃ ∈ CL+1 can be recovered from the measurements (8), up to a constant phase factor. Discard-
ing the first entry of x̃, we obtain in particular x̂ which can be written as

x̂ = FLx

where FL ∈ CL×N stands for the partial DFT matrix with the L rows, indexed by the random set L, of the N ×N DFT matrix
F . Since |L| > Ck log(N), it is known [23] that the k-sparse vector x can be recovered from x̂ (with high probability) using
(6) with A = FL.

6. NUMERICAL SIMULATIONS

In this section, we present numerical simulations to support and discuss our theoretical results. Thereby, we will concentrate us
on the setup based on Fourier measurements discussed in Sec. 5. As described, the overall recovery algorithm is based on the
algebraic algorithm for PR described in [6], followed by Basis Pursuit (6) which was implemented using SPGL1 [24].
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Fig. 2. Empirical success rate versus k/M for different number of measurements M and signal dimension N = 512.

Throughout, we used signals x of dimension N = 512. Our test signals are k-sparse with a uniformly randomly chosen
support with independent, but equally distributed complex Gaussian variables with variance 1. Measurements are assumed to
be disturbed by additive white Gaussian noise

bs,l = |F(x� ps)[l] + νs,l|2 ,
s = 1, . . . , 4
l = 1, . . . , |L| ,

where νs,l ∼ N (0, σ2
ν) are independent, normally distributed complex random variables with variance σ2

ν . The signal-to-noise
ratio (SNR) is defined as SNR = ‖F(x� ps)‖2/E[‖ν‖2]. After we recovered x from the noisy measurements, we determined
the relative mean squared error MSE = ‖x− x̃‖22/‖x‖22 where x̃ stands for the estimated signal with the corrected phase.
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First, we examined the noiseless case at SNR = 100dB. We performed 2000 simulations to investigate empirically the
number of measurements M which are necessary to recover a k-sparse signal. The results are shown in Fig. 2. It shows that
we need approximately M ≈ 20k measurements for small sparsity values k ≈ 10, and M ≈ 10k for sparsity values of about
k = 100.

M

k

Fig. 3. Number of measurements M necessary to recover a k-sparse signal x ∈ ΣNk of dimension N=512.

To investigate the relation between the necessary number of measurements M and the sparsity k further, Fig. 3 plots M
versus k for success rates of 99% and 95%, respectively. Thereby, we regarded a reconstruction as successful whenever the
MSE was less than 10−5. For small values of k, the graphs are well approximated by the relation M ≈ 4k log2(N/k), which is
also shown.
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Fig. 4. Normalized MSE versus SNR for the recovery algorithm proposed in Sec. 5 for sparse signals x ∈ ΣNk with N = 512,
k = 12 and with M = 256 intensity measurements.

Finally, we studied the stability behavior of the recovery algorithm under additive noise. Simulation results for signal
dimension N = 512, sparsity k = 12 and M = 256 measurements are shown in Fig. 4. The simulation results were averaged
over 103 trials. In the simulations, we distinguished also between the situation, where the amplitude of the first signal entry
was fixed |x[1]| = 1, and where it was chosen randomly, respectively. We see that the overall algorithm is stable under additive
noise. The simulations show that the reconstruction error ‖x − x̃‖2 is approximately proportional to the norm ‖ν‖2 of the
additive noise. One obtains a slightly better performance, if the amplitude of the first signal component x[1] is fixed.

7. DISCUSSION – OUTLOOK

The approach of sparse phase retrieval, presented in this paper, is based on a two step recovery procedure: 1) a phase retrieval
step, 2) a sparse signal recovery step. For the first step, we proposed to apply the algebraic algorithm proposed in [6], for the
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sparse recovery, we proposed to use basis pursuit (BP). The advantage of this composition, is that the algebraic phase retrieval
algorithm has a very low complexity, which only scales linearly with the numberM of measurements. So the overall complexity
is mainly determined by the `1 minimization (6) of basis pursuit which only operates in the dimension L = M/4. Moreover,
since both separate algorithms are stable, also the overall sparse phase retrieval is stable. The derivations of concrete error
bounds is left as a future work. It will be based on the known stability analysis for BP and the [6].

In particular, it was shown that the proposed methodology can also be used to design deterministic masks for practical setups
as in Fig.1, which are based on Fourier measurements. Our analysis and simulations showed no degradation of the performance
for such Fourier measurements, compared to Gaussian measurements, as observed in [12].

By the two-staged nature of our recovery methodology, other methods for phase retrieval may be applied as well. For
example, [7] recently proposed masks similar to (7) for phase retrieval, but where only 3 instead of 4 masks are needed.
Applying these masks instead of (7) would reduce the overall number of measurements, and it would be interesting to compare
the stability behavior with those masks.
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