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ABSTRACT be overcome by resorting to other hybrid lower bounds, elge t
Hybrid Barankin Bound (HBB) [4], the Hybrid Barankin/Weiss
. Weinstein bound (HBWWB) [5] or the Hybrid Barankin/Ziv-Zaik
tno ”je cgse whgre ﬂl‘e parameterts veclilor to estlmatekc%rMaihsh bound (HBZZB) [6]. Unfortunately, the computational co§tleese
on-random and random parameters. NUmMerous works havens 0"Mybrid "large-error” bounds is prohibitive in most applices when
the versatility of deterministic constrained Cramér-Reund for the number of unknown parameters increases. Thereforeidga
estimation performance analysis and design of a system af me )

surement. However in manv svstems both random and nonmandothat one keeps in mind the HCRB limitations, the HCRB is fill
Y : any sy . S lower bound of great interest for system analysis and designe

parameters may occur simultaneously. In this communicatice asvmbtotic region

propose a constrained hybrid lower bound which take int@aat ymp gion.

of equality constraint on deterministic parameters. Thefulsess ¢ As tmen:_lone?hln tl:e Zen:;r;al papfetrh[7]éc|3\>rBd¢tedrm_|n|s(;lc gga
of the proposed bound is illustrated with an application adar eter estimation, the standard form of the IS derived o

Doppler estimation implicit assumption that the parameter space is an operesafiz”.
o _ i However, in many applications, the vector of unknown patansas
Index Terms— Parameter estimation, hybrid Crameér-Raoconstrained to lie in a proper non-open subset of the ofligiaam-

In statistical signal processing, hybrid parameter egtonarefers

bounds, equality constraints eter space. Since then, numerous works [8] have been detmted
extend the results introduced in [7]: 1) by providing useédhnical
1. INTRODUCTION results such as a general reparameterization inequatittherequiv-

alence between parameterization change and equalityraomist 2)

While Bayesian or non-Bayesian estimation techniques agelyy by studying the CRB modified by constraints either requirgdHe
used in statistical signal processing, the techniquedalyrid esti-  model or required to solve identifiability issues; 3) by istigating
mation has been developed more recently and suffers frotativee ~ the use of parameters constraints from a different perspedhe
lack of results. Hybrid parameters mean the parametersvext Vvalue of side (a priori) information on estimation perforra. All
estimate contains both non-random and random paramettirsawi these works have shown the versatility of deterministicst@ined
priori known probability density functions (p.d.f.). Hower, the hy- ~ Cramér-Rao bound (CCRB) for estimation performance ai@ind
brid estimation framework is not just a simple concatematibthe  design of a system of measurement.
Bayesian and non-Bayesian techniques. Indeed, new estiifme However not all system of measurement can be adequately mod-
to be derived as one can no longer use the Maximum Likelihand E elled by resorting to deterministic parameters only, siooth ran-
timator (MLE) for the non-Bayesian part and the MaximArRoste- dom and non-random parameters may occur simultaneouslg On
riori estimator (MAP) for the Bayesian part since the parameters a can cite, for example, the Gaussian generalized linear higfer-
generally statistically linked. Similarly, performanceadysis meth-  ray shape calibration [1], time-delay estimation in radgnal [4],
ods of such estimators have to be modified accordingly, wikithe  phase estimation in binary phase-shift keying transmisisi@ non-
aim of hybrid lower bounds. data-aided context [10], phase estimation of QAM modulaigdals

Signal processing community generally use the Hybrid @am” [11], cisoid frequency estimation [12], joint estimatiohtbe pair
Rao Bound (HCRB) [1] for which some asymptotic achievapilit dynamic carrier phase/Doppler shift and the time-delay digétal
results [2] are known. The HCRB, as well as the classical CRBreceiver [13], parameters estimation in long-code DS/CDMA-
is known to be simple to obtain for various problems (see Partems [14], bearing estimation for deformed towed arraysénfluid
Il of [3]) but suffers from some drawbacks. The main one & it mechanics context [15]. It is therefore the aim of this papesro-
only asymptotic tightness in terms of number of samples gn&@i  vide an extension of the deterministic CCRB [16] to the hylwa-
to-Noise Ratio (SNR) leading to the incapability of premigtthe ~ rameter context yielding the Constrained HCRB (CHCRB).His t
so-called threshold effect (i.e. large errors) on estim@iean square paper, we propose the CHCRB in the multivariate case for stie e
error (MSE) in non-linear estimation problems. This lintita can ~ mation of random and non-random parameters with a set ofigqua



constraints. The usefulness of the CHCRB is illustratedh ait ap-
plication to radar Doppler estimation.

2. RELATION TO PRIOR WORK

In deterministic parameter estimation, the CCRB has prit¢amse-
fulness for estimation performance analysis and design sfsa
tem of measurement by exploiting constraints between peters
to estimate. However, some systems of measurement canadebe
quately modelled by resorting to deterministic paramedalg since
both random and non-random parameters may occur simuliatyeo
Therefore the purpose of the present paper is to extendkimgtato
account of equality constraint on deterministic paranset@the hy-
brid parameters context via the HCRB.

3. THE CONSTRAINED HYBRID CRAM ER-RAO BOUND

3.1. Problem statement and notations

Let us first remind the estimation context in which the praabs
bound can be useful.
x and letd = [67 OZ}T denotes 4D + R) —dimensional hybrid
real parameters vector to estimate, whgas a vector of unknown
deterministic parameters belongingTiy, C R” and @, is a vec-
tor of unknown random parameters belongingto C R with a
known prior p.d.f.f (6,;804). Let f (x,0) = f (x,0,;04) denotes
the joint p.d.f. ofx and@,. parameterized bg,. Additionally, the

deterministic parametef; are assumed to be constrained in a non

empty subse€ of I1; defined byK < D non redundant equality
constraints:

C={6a €1la|c(0a) =0}, e«

wherec (8,) is a K —dimensional vector of derivable functions de-

fined onll,. Let C (64) denote theK x (D + R) matrix defined
by
dc (Od)

Cl0a) == =

dc (84) d¥c(04)
dey do

=[Ca(64) O], (2)

whereC, (04) is aK x D matrix. Since the constraints are assumed

to be non redundant, the rank @f; (8,) is K for any 8, satisfying
(1). Then there exists B x (D — K) matrix U, (64) such that:

(3)
wherel p_ i denotes the identity matrix of size — K. Moreover,
if (3) holds, then the matriJ (8.) — { Ua(64) 0

Cy (Gd) Uy (Od) =0 andUg (Gd) Uy (Od) = ]:DfK7

0 In } satisfies

C(64)U (8,) =0andU” (8,) U (4)
Note that the column vectors & 4 (6,) is a basis of the kernel of
C, (64) and the column vector dJ (6,) is a basis of the kernel of
C (0
0,., then the matriXJ will depend oné,., leading to a lower bound
depending on the estimate &f (see section (3.3)).

(04) =Ip+r-K-

3.2. Estimator class requirement and preliminary results

Consider an observation space of points

4). If the constraints are also applied over random paramete

Any unbiased estimators satisfies the following relatigmstor any
integer: € [|1; D + R]], one has:

/]RR /(CN (b\ x 9) %deder

= Expe,;04 [5 (x) — 9] + Ex,0,.:0,4 [a‘zi (5 (x) — 0)]
=0+e,;,

wheree; is a vector such thafe;}, = 1 and{e;},,, = 0 where
{e;}, denotes thé"" element of the vectas;. Thus, one has:

8f (X7 ’l" ) _
/RR /CN (6 ) 00 97 dxdfr = 1o+ r. (6)
Additionally, let us sev = W then:
]Ex,GT;Gd [ ]
/ / — ) 2020:99) ix o, "
RER CcN
Finally, by mixing (6) and (7), one obtains:
Exo,00 (000 = 0) V'] =Tnin (®)
3.3. The proposed bound
In the following, for sake of legibility, let us sé = 0 (x) — 6 and

U = U (0,). For any square matrik1 :
~ ~ T
Ex.6,:6, {(e - MUUTV) (e - MUUTV) } -

Evo. .0, [ééT] + MUU7Ey 0, 0, [vv!] UUTMT
~MUU”E, 0, .0, [véT] —Exo, .0, [b’vT] UuUTM?.

~ ~ T
SinceEy 0,0, {(0 — MPuv) (6 — MPuv) ] is positive semidef-
inite and, from (8)Ex.e, 6, [§VT] =1Ip. g, One has:

e 9] g 00U
%x,6,.;04 - MUUTEX,GT;Gd [VVT] UUTMT
©)

Since this inequality holds for any matrixI, the tightest lower

bound denoted CHCRB is obtained by maximizing the right hand

side of (9) overiM:

T T T
CHCRB = max( MUU™ +UU M — )

MUU"Ey 6,0, [vv'] UUTM"

(10)
As U"Exg,.6, [vv"] U is symmetric positive definite, there ex-
ists an invertible diagonal matri® and an unitary matrixQ such
that U Ex,6,:0, [vv'] U = QDQ". Consequently, (10) can be

fewritten as:
CHCRB =
< uQD 'Q'uU- )
"M\ (ugD' - MUQ) D (UQD ! - MUQ)”"
(11)

~ SinceUQD'Q7” U is independent aM and since the CHCRB is
Let6 (x) be an estimator &. The proposed bound is applicable for ¢rmyjated as the difference of two positive semldeflnltermathe

a class of estimatd@ which are unbiased, as for the classical HCRB maximum is achieved if and only KIUQ = UQD ™!
[1][27], i.e:

Ex0,:0, [@ (x) — 9} —o0. () MU = UQD Q¥ = U (UTEX,QT;gd [va] U)_ (12)



Finally by substituting (12) in (10), one obtains:

CHCRB = U (U"Ex,0, [v'| U) Ut @)

Remarks:
eAnother possible derivation of the CHCRB can be obtainedsy u
ing the covariance inequality [18, p.124][4]:

E [b’b’T] ~E [§¢T] E~! [¢¢T] E [¢5T] (14)

with ¢ = UTv.

eln general, the proposed bound does not need the investibilthe
Fisher matrixExe, .0, [vv"| but of U"Ex e, .6, [vv"] U only.
This condition is also required for the CCRB in the deterstini
estimation context [16].

oIf the matrix U depends o, thenEy ¢, .0, [5vTU] # U and
the lower bound will depend off, what is pointless.

3.4. Comparison with existing Craner-Rao Bounds
3.4.1. The CHCRB versus the HCRB

The unconstrained HCRB is given by [1][17]:
HCRB =E,} , [va] : (15)

whereF=Ey g .0, [vv"] is the so-called hybrid Fisher informa-

tion matrix. The HCRB can be obtained from the CHCRB when
K = 0 leading toU = Iptr. In other cases, the HCRB and the
CHCRSB are different. However, a comparison between the CBICR

and the HCRB is possible whdh is non singular (otherwise the
HCRB does not exist). Sind8 is symmetric positive definite, there

exists a symmetric invertible matrR2 such thaF = F2Fz. Thus
the CHCRB can be rewritten as:

-1
CHCRB:F*%F%U(UTF%F%U) UTFEF %
—FiP , F %
F2U

T -1 T
s F:U ((F%U) F%U) (F%U) is the
projection matrix onto the column spaceEéU. LetPL, de-

F2U
notes the projection matrix onto the vector space orthdgtontne
previous one, thenone h&s 1+ P, =1Iand:

F2U F2U

whereP 1
F

that is:

CHCRB < HCRB. (16)

This result is expected since the constraints can be irtgras
additional informations in order to estimate more acclyatee pa-
rameters of interest. It has been shown in [19] that estonatigo-
rithms which include parameters constraints could be Idien the

3.4.2. The CHCRB versus the marginal CCRB

Another question that we can ask is what is the differencevédsen

the CHCRB and the marginal CCRB for the deterministic param-
eters with constraints where in the first case, we estimateilsi
taneously non random parametés and random parameteés.,
whereas in second case, we estimate non-random paranfgters
only, 8, being regarded as a nuisance parameters? To answer this
guestion, note that, first, the CHCRB can be split into foacks:

[ CHCRB; CHCRBY,
CHCRB_{CHCRBM CHCRB, (17

where the diagonal blockHCRB,; and CHCRB, are respec-
tively the lower bounds on the MSE of non-random paramefigrs
and random parametefs i.e.:

Ex.o,.0, {(éd (x) — 64) (Ba (x) ~ 04) T}

Euoin[(0:00-0:) (0-0-0.)

1Y

CHCRBy

1Y

CHCRB..

_ Oln f(x,6,;04)
= 90,

Second, lety andv, = 22000::04) Then the
Fisher information matrix can be decomposed as:

T T
VdVg V4V,
F:Ex H
,e,,,ed{vrvg va]
Similarly:
1 UlvyviU; Ulvgv? T
HCRB = UE, . ¢ ot o
CHCRB =U x,e,,.,ed[ vovitu, vl |V
(18)

LetS = Ex,0,;0, [Ujvavi Ud] — R, where
R = Ug]Ex’gT;gd [vdvrT] E;,é,,;e [VTV?:] Ex.0,;6, [vrvcﬂ Uy,
then an inversion by block of (1851 leads to the following egzion

of the CHCRB:

CHCRB =
U, 0
—E 0,0, [VrVr | Exo,0, [Vivi] Ua T

St 0 (19)
% 0 <6 .6, [Vrvr ]
T x,0.,.;04 - . .
" { Ui —UiExe,0, [Vavr | EL g o, [Vivr] ]
0 I

Then, by identification between (17) and (19), one has:
CHCRB, = U,S™'U?Y.

SinceR is a positive semidefinite matri$, = Ex,0,.0, [UZvavi Ua,
which implies:

CHCRB, < Uy (UdTIEx,e,,;ed [Vdvg] Ud)71 Ui. (20

The right hand side of (20) is the so-called marginal CCRBmwe
is considered as a nuisance parameters. ConsequentlyHGRE

unconstrained lower bounds. This is why the CHCRB, even loweis lower than the marginal CCRB. This is an extension of tlteor

than HCRB, is helpful in the hybrid estimation context witdram-
eter constraints.

relation existing between the unconstrained hybrid loveema and
the unconstrained marginal lower bound [4].



4. APPLICATION TO DOPPLER ESTIMATION

We consider a radar system consisting of-alement antenna ar-
ray receiving scaled, time-delayed, and Doppler-shiftelibes of
a known complex bandpass signat (t) e2"7<*, where f. is the
carrier frequency andr (t) is the envelope of the emitted signal.
The antenna receives a pulse train (burst} gfulses of duratiofy
and bandwidthB, with a pulse repetition interval (PRI}, backscat-
tered by a "slow” moving target in comparison with (t), i.e. [20]:
|20(L —1)T| << £ (no range migration) and27Tpf. << 1
(Doppler effect orer (t) is negligible), where: is the speed of light
andv is the radial velocity of the target. Under the standard liypo
sis of temporally white nuisance signal (thermal noise)afer o2
and a non fluctuating target during the burst duration, a I&iegh
observation model for thE", 1 < 1 < L, pulse is given by [20]:
ejwa(l—l)7 (21)

zt)=er(t—7T)au+n(t), =«

wheref = —2f.2T, 5t < f < 3, is the normalized Doppler
frequency andv represents the complex amplitude of the target (in-
cluding power budget equation). For the sake of simplicity,as-
sume that the target range is known. Therefore at the oufgheo
delay/range matched filter at tinme= 7, the observation model is:

Yy = SejQ'/rf(l—l) + ny, S =+v BT()Oé =7r+ jQ7 (22)

and the vector of unknown parameters to estimateis (r, g, f)T
where(r, ¢) are assumed to be complex determinisfiés assumed
to be random with a known Gaussian prior distributiei( f,, o7)
and independent from the noisgassumed to be complex Gaussian
distributedn; ~ CA (0, o). This scenario corresponds to a multi-
function radar entering a tracking mode after a target detein a
surveillance mode. The radar budget, i.¢7, and f, associated to
the target have been previously assessed by the deteaofdhe
surveillance mode. However, during the inherent delay ciatex
to the mode switch, the radial velocity of the target may yaryat
we model by a prior distribution. An interesting questiomvisether

it is worth taking into account this radar budget knowledgethe
estimation of thef. Indeed, this amounts to introduce the following
equality constraintr? + ¢ = |s|* = c.

Therefore, the answer can be provided by a comparison betiliee
CHCRB and the HCRB. Using (15), the classical HCRB is:

2L 0 2mqL(1-L)
0 i_é 27\'7‘1;-(2?—1)
omqL(1—L) 2nrL(L—1) 47 (r’+¢®)L(L-1)(2L—1) 1
o7 o2 507 t e
(23)
The CHCRB is obtained using the following matiik (13):
a =r g7
= [s] s . 24
U ( 0 0 1 ) (24)

In order to validate the proposed approach, we compute tHe MS
the classical Maximun#x Posteriori MLE (MAPMLE) defined as:

(Faf)=

g, f
and the MSE of the Constrained MAPMLE (CMAPMLE) which re-
stricts the(r, ¢) domain fromR? to S = {(r,q) |r* + ¢* = |s|*}.
The simulation settings arer %, |s|2 0.8, f = 0.25,
of = 0.05 andL = 32. The empirical MSE are assessed with

arg max (25)

fY7FD§T»q (y7fa T, Q) ’
(r,q)€R?, f€]—-0.5;0.5]

5000 Monte-Carlo trials and a frequency st&p = 273, In figure

(1), the total empirical MSE of the MAPMLE and the CMAPMLE
are compared with the trace of HCRB and CHCRB. One can note
that the CMAPMLE total MSE is lower than the classical HCRB
whereas the CHCRB adequately predicts the asymptotic metafv

the CMAPMLE total MSE. In figure (2), the empirical MSE g?f

is compared with the HCRB and the CHCRB. Since the HCRB and
the CHCRB are identical, therefore the estimatiorfcis indepen-
dent of the knowledge of the radar budget at least in the amtiop
region. This theoretical result is confirmed by the same asytic
performance of the MAPMLE and CMAPMLE. It is an extension
of a well known property of the deterministic single tonerastion
problem [21] to the random parameter case.

0

10 ‘ :
%, —Tr(CHCRB)
3385, o Tr(CMAPMLE MSE)
gy ---Tr(HCRB)
. 35 = Tr(MAPMLE MSE)
10t .
11}
0
=
1077
107

-10 5 10 15
SNR (dB)

Fig. 1. Comparison of MAPMLE total MSE and HCRB versus SNR

—CHCRB
o CMAPMLE MSE||
---HCRB
° MAPMLE MSE

15 20

10

-10 5
SNR (dB)

Fig. 2. Comparison of MAPMLE MSE of and HCRB versus SNR

5. CONCLUSION

In this paper, a constrained hybrid lower bound, called tHERB,
has been developed in order to take into account equalitytiints
between deterministic parameters. The CHCRB is not onlyetee
vant bound to predict the asymptotic behavior of constchestima-
tors but also a versatile tool for estimation performancayesis and
design of a system of measurement involving hybrid pararsete
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