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Abstract: This work considers the problem of super–resolution. The goal is to resolve a Dirac distribution from
knowledge of its discrete, low–pass, Fourier measurements. Classically, such problems have been dealt with parameter
estimation methods. Recently, it has been shown that convex–optimization based formulations facilitate a continuous
time solution to the super–resolution problem. Here we treat super–resolution from low–pass measurements in Phase
Space. The Phase Space transformation parametrically generalizes a number of well known unitary mappings such
as the Fractional Fourier, Fresnel, Laplace and Fourier transforms. Consequently, our work provides a general super–
resolution strategy which is backward compatible with the usual Fourier domain result. We consider low–pass
measurements of Dirac distributions in Phase Space and showthat the super–resolution problem can be cast as Total
Variation minimization. Remarkably, even though are setting is quite general, the bounds on the minimum separation
distance of Dirac distributions is comparable to existing methods.
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I. I NTRODUCTION

Ernst Abbe’s foundational work [1] in 1873 reported an observation regarding lack of resolvability of optical

features beyond the diffraction limit. This problem is central to several areas of science and engineering such

as optics [2], [3], imaging [4], geophysics [5], depth sensing [6] and astronomy [7].

In its abstract form, the problem can be stated as follows: How can we recover aK–sparse signal (spike

train/Dirac impulses) with unknown locations and amplitudes from the knowledge of its low–pass measurements

in the Fourier domain? The problem is challenging because itasks for recovery of a non–bandlimited signal from

its projection onto the subspace of bandlimited functions.Two predominant approaches exist in the literature to

super–resolution: optimization and parameter estimationbased solutions.

http://arxiv.org/abs/1501.07662v1
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∆∆∆: Minimum separationfc: Cut–off frequency

Donoho [14] Kahane [15] Candès–G. [11] Moitra [16]

∆∆∆ > 1
fc

∆∆∆ > 5
fc

√
log
(

1
2fc

)
∆∆∆ > 2

fc
∆∆∆ > 1

fc−1

TABLE I: Exact Recovery Condition for Super–Resolution.

� Optimization Based Super–Resolution:Early roots ofℓ1 norm based optimization can be traced back to

[8]. This approach has been revitalized due to the advent ofcompressed sensing[9]. A very recent idea in this

context is that ofcontinuous sparse modelingwhere the signal attributes are estimated on a continuouslydefined

grid [10], [11] (instead of its discrete counterpart, as is the case for the usual compressive sensing setup).

Bredies and Pikkarainen [12] present an optimization method in the space of signed measures. In their

setting, they consider discrete measurements while the solution space is infinite dimensional. In parallel, de

Castro and Gamboa [13] and Candès and Fernandez-Granda [11] consider a Total Variation (TV) formulation

for super–resolution.

� Parameter Estimation Based Super–Resolution:The super–resolution problem has been studied in the

signal processing context with the goal of resolving overlapping echoes/time–delay estimation [17], multi–path

characterization [6] and deconvolution. Li and Speed [18] considered super–resolution in form of parametric

deconvolution of spike trains. Vetterli, Blu and co–workers [19], [20] developed the idea of super–resolution

as a sparse sampling problem. Eldar and co–workers developed super–resolution methods in the context of

sub–Nyquist sampling and the Xampling framework [21]. Finally, since the super–resolution problem is closely

linked with the spectral estimation problem [18], MUSIC, ESPIRIT and matrix pencil [22], [23] based methods

have also been used.

In contrast to parameter estimation techniques where the recovery condition is based on the number of spikes,

non–parametric methods provide a bound in the form of a minimum separation condition. More precisely, letK

be the number of spikes to be super–resolved,fc be the cut–off frequency in Fourier domain and let∆∆∆ denote the

minimum spacing between any two spikes. While parameter estimation methods requirefc ≥ 2K+1 assuming

thatK is known a priori, non–parametric methods super–resolve the spikes provided thatfc > fSR (∆∆∆) where

fSR is some function. The works of Donoho [14], Kahane [15], Candès and Fernandez-Granda [11] and Moitra

[16] provide a theoretical guarantee for the super–resolution problem in terms offSR. We summarize the recovery

guarantees in terms offSR in Table I.

The Fourier transform is well suited for examining signals which are linear combinations of sinusoids.

In many practical applications such as radar, sonar, holography, wave–physics and quantum optics, the basic

building blocks of the signals are not sinusoidal. Often polynomial phase, Fourier–like transformations of form

eφ(t) are well suited for analysis of such signals. For this purpose, tools such the Fresnel transform [24],

Fractional Fourier transform [25] and the Chirp transform [26], [27] have been developed in the literature.

Our goal here is to extend existing super–resolution results to integral transformations other than the Fourier

transform. To this end, we cast the super–resolution problem in phase domain which parametrically generalizes



3

some of the well–known unitary transformations. Some examples are listed in Table II. We show that exact

recovery of spike trains from low–pass measurements in phase space is possible by minimizing the signal’s

TV–norm. This is accomplished using a convex program. Remarkably, even with the general construct of the

problem, our theoretical guarantee for exact recovery is the same as in [11].

Throughout the paper,R,C andZ denote sets of real, complex and integers. We usez∗ to denote the complex

conjugate ofz ∈ C, ℜz = 1
2 (z + z∗) is the real part ofz and =

√
−1. Discrete sequences are represented by

s [m] ,m ∈ Z while their continuous counterparts are represented bys (t) , t ∈ R. TheL2 inner product between

functionsf andg is denoted by〈f, g〉 =
∫
fg∗dt. Function composition is denoted by(f ◦ g) (x) = f (g (x)).

Convolution between functionsf and g is defined as(f ∗ g) (t) =
∫
f (z) g (t− z) dz. We uses to represent

the row–vector of a discrete sequences [m] ,m ∈ [0, . . . ,M − 1]. We use bold capitals to represent matrices,

for exampleD andD† is the pseudo–inverse ofD. Calligraphic letters such asL are used to denote operators.

Sets are denoted by capitalized roman font,S. The estimate of function/sequenceµ is represented bỹµ.

II. PHASE SPACE REPRESENTATION OFSIGNALS

The termPhase Spacenaturally arises in areas of optics [28] and mathematical physics [29]. The Fractional

Fourier transform (FrFT) [25], [30]–[32] and the Linear Canonical Transform (LCT) [28], [33], [34] are

instantiations of phase space transformations. These transformations have found a number of applications in

signal processing [25] and communication problems such as shift–invariant sampling/approximation theory [30],

[34], operator theory, multi–carrier communications [32], array processing [31] and optical signal processing

[28]. In this paper, we will work with theLinear Canonical Transform(LCT) [29].

Definition 1 (LCT): Let Λ =
[
a b
c d

]
, with ad− bc = 1. The LCT of a functionf (t) , t ∈ R is a parametric,

unitary, integral mapping,LΛ : f → f̂ with respect to the time–frequency kernelkΛ,

f̂ (ω) = LΛ [f ] (ω)︸ ︷︷ ︸
LCT

def
=




〈f, kΛ (·, ω)〉 b 6= 0,

√
de− 1

2 cdω
2

f (dω) b = 0,

(1)

where the transformation kernel is defined by

kΛ (t, ω) =
1√−2πb

exp

(
−

1

2b

(
at2 + dω2 − 2ωt

))
. (2)

Now sinceb = 0 amounts to dilating the function
√
de− 1

2 cdω
2

f (dω) (see (1)), we will develop our results for

the case whenb 6= 0.

The LCT satisfies a useful operator composition property:LΛ1 ◦ LΛ2 = LΛ3 with Λ3 = Λ2Λ1. This can

be used to show that,

f (t) = LΛ−1 [ f̂ ] (t)︸ ︷︷ ︸
Inverse–LCT

def
=





〈
f̂ , kΛ−1 (t, ·)

〉
b 6= 0

√
ae− 1

2 cat
2

f (at) b = 0.

(3)

The LCT parametrizes a number of well–known, unitary transformations, some of which are listed in Table II.

For Λ =
[

0 1
−1 0

]
= ΛFT, the LCT amounts to the Fourier transform (upto a constant).(FT). Similarly, with the

2× 2 rotation matrixΛθ (see Table II), we obtain the Fractional Fourier transform (FrFT). Matrix factorization
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TABLE II: Parametric Representation of Unitary Transformations

Parameter Matrix (Λ) Corresponding Transform
[

cos θ sin θ
− sin θ cos θ

]
= Λθ Fractional Fourier Transform[

0 1
−1 0

]
= ΛFT Fourier Transform (FT)

[ 0 
 0

]
= ΛLT Laplace Transform (LT)

[  cos θ  sin θ
 sin θ − cos θ

]
Fractional Laplace Transform[

1 b
0 1

]
Fresnel Transform

[
1 b
 1

]
Bilateral Laplace Transform[

1 −b
0 1

]
, b ≥ 0 Gauss–Weierstrass Transform

1√
2

[
0 e−π/2

−e−π/2 1

]
Bargmann Transform

shows that the LCT is related to the FT and the FrFT. The Fourier matrix factorization is simple:

 a b

c d


 =


 b 0

d b−1


ΛFT


 1 0

a/b 1


 ⇔ Λ = M1ΛFTM2,

and leads to the implementationLΛ = LM1 ◦ LΛFT
◦ LM2 . The Fractional Fourier matrix factorization is more

involved. Relying on theIwasawa Decomposition[35],


 a b

c d



 = Λθ



 Γ 0

0 Γ−1







 1 u

0 1



 ⇔ Λ = ΛθDU,

whereD is a diagonal matrix withΓ =
√
a2 + c2 andU is an upper–triangular matrix withu = (ab+ cd) /Γ2.

A useful operation that is linked with phase space is the convolution/filtering operator. For the Fourier

domain, we have the convolution–multiplication property:(f ∗ g) = LΛ−1 [LΛ [f ]LΛ [g]] , with Λ = ΛFT.

Unfortunately, this property is not preserved in phase space. To circumvent this problem, we use a version of

the FrFT convolution operator [30].

Definition 2 (LCT Convolution/Filtering):Let ∗Λ denote the convolution/filtering operation in LCT domain

and∗ be the usual Fourier domain convolution operator. Convolution of functionsf andg in the LCT domain

is defined by

(f∗Λg) (t) =
e−at2

2b

√
2πb

(
f (t) e+at2

2b ∗ g (t) e+at2

2b

)

︸ ︷︷ ︸
Convolution of Modulated Functions

. (4)

By following the steps in [30], it is easy to verify that the operation in (4) admits a convolution–multiplication

property:

LΛ [f∗Λg] (ω) = e− dω2

2b f̂ (ω) ĝ (ω) . (5)

III. SPARSESIGNALS IN PHASE SPACE

Consider aK–sparse object/spike train modeled by,

s (t) =
∑K−1

k=0
ckδ (t− tk) , t ∈ R (6)

where δ denotes the Dirac mass with weights{ck}k ∈ C that is activated on locations{tk} ∈ [0, τ) , k =

0, . . . ,K − 1. Since we are dealing with a finite length signals that lives on the interval[0, τ), we investigate
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its representation in phase space using the Fractional Fourier series [36] analog of the LCT.

Definition 3 (Linear Canonical Series):Let f be a compactly supported function such thatf 6= 0, ∀t ∈ [0, τ)

and zero elsewhere and letκb,τ =
√
2πb/τ , b 6= 0. The Linear Canonical Series (LCS) expansion of the function

f is given by

f (t) = κb,τ

n=+∞∑

n=−∞
f̂ [n] kΛ (t, nω0b), ω0 =

2π

τ
. (7)

The LCS coefficientŝf are evaluated atω = nω0b, n ∈ Z,

f̂ [n] = κb,τLΛ [f ] (nω0b) ≡ κb,τ 〈f, kΛ (, nω0b)〉. (8)

Note that by appropriately parameterizingΛ, one can easily design the basis functions for any of the

transformations listed in Table II. For example, withΛ = ΛFT in (8), we obtain the Fourier Series expansion

of f .

We now compute the series coefficients for the sparse signals (t) in (6). We use (8), to compute the LCS

coefficients

ŝ [n] = κb,τLΛ [f ] (nω0b)
(8)
= κb,τ

∫

τ

s (t) k∗Λ (t, nω0b) dt

= κb,τ

∑K−1

k=0
ckk

∗
Λ
(tk, nω0b). (9)

Plugging the coefficients into the LCS representation (7), we obtain the phase space representation ofs (t)

s (t)
(7)
= κb,τ

m=+∞∑

m=−∞
ŝ [m] kΛ (t,mω0b), ω0 =

2π

τ

=
e− at2

2b

τ

m=+∞∑

m=−∞

(
K−1∑

k=0

cke
 a
2b t

2
ke−mω0tk

)

︸ ︷︷ ︸
ŷ[m]

emω0t (10)

=
e− at2

2b

τ

m=+∞∑

m=−∞
ŷ [m] emω0t. (11)

From [11], we see that̂y [m] are precisely the Fourier series coefficients ofτs (t) e
at2

2b . Thus, even though we

are dealing with the phase space, the linear frequency modulated, sparse signals is completely characterized

by its Fourier series coefficientŝy.

IV. SUPER–RESOLUTION IN PHASE SPACE

A. Problem Formulation

Let sinc (t) = sin(πt)
πt . Consider the frequency modulated function,

φLP (t) = (Ω/b) e−at2

2b sinc ((Ω/b) t) . (12)

Note that this function is(Ωπ)–bandlimited because in phase space the functionφLP (t) is compactly supported,

or,

φ̂LP (ω) = LΛ[φLP] (ω) =
e+ dω2

2b

√
2πb

Π
( ω

2πΩ

)
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whereΠ(ω) = 1, |ω| 6 1/2 and zero, elsewhere.

With s defined in (11), its low–pass version is,

h (t) = (s∗ΛφLP) (t)︸ ︷︷ ︸
Low–Pass Filtering

(4)
=

e− at2

2b

√
2πb

1

τ

∑

|m|6⌊Ωτ/2b⌋
ŷ [m] eω0mt, (13)

where⌊·⌋ is the floor operation.

Suppose we observeN discrete, low–pass measurements sampled with sampling rate T = b/Ω,

h [n] = h (t)|t=nT , T = b/Ω, n = 0, . . . , N − 1. (14)

By modulatingh, we obtain measurements of the form,

y [n] =
√
2πbτe+a(nT)2

2b h [n]︸ ︷︷ ︸
Modulated Measurements

=
∑

|m|6fc

ŷ [m] eω0m(nT ) (15)

wherefc = ⌊Ωτ/2b⌋. In vector–matrix notation, we have low–pass measurements, y = VIDFTŷ, whereVIDFT ∈
C

N×(2fc−1) is the usual inverse–DFT matrix with elements[VIDFT]n,m = emω0(nT ) and we assume that

N > 2fc − 1 so thatVIDFT is a full–rank marix.

Having obtained̂y, the question then is: how many samples ofŷ are sufficient for complete characterization

of ŷ [m]
(10)
=

∑K−1
k=0

(
cke

+ a
2b t

2
k

)
e−mω0tk? Indeed, from spectral estimation theory [22], we know thatwe

need at least2K + 1 values ofŷ to solve for{ck, tk}k. Consequently, whenever

fc =
⌊
Ωτ
2b

⌋
> K ⇔

⌊
τ
2T

⌋
> K, (16)

the system of equations is complete inŷ meaning that we have at least2K + 1 values ofŷ and we can solve

for {ck, tk}. Thus (16) provides a bound on the minimum sampling density in phase space.

B. Super–Resolution Via Convex Programming

GivenN measurementsy, we obtainŷ using ŷ = V
†
IDFTy (15). From the phase space development of the

problem, we know that

ŷ [m]
(10)
=
∑K−1

k=0

(
cke

+ a
2b t

2
k

)
e−mω0tk (17)

=

∫ τ

0

µ (t) e−mω0tdt, |m| 6 fc = ⌊Ωτ/2b⌋

where

µ (t) =
∑K−1

k=0
cke

+ a
2b t

2
k

︸ ︷︷ ︸
ρk

δ (t− tk) (18)

andρk
def
= cke

+ a
2b t

2
k are the new weights fors (t).

We are now left to solve the standard super–resolution problem [11] where one has access to the low–pass

measurementŝy [m] and the signal to be super–resolved is prescribed in (18). Hence, the problem of recovering
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µ from ŷ can now be solved by using,

min
µ̃

‖µ̃‖TV subject to

{
ŷ [m]

(17)
=

∫ τ

0

µ̃ (t) e−mω0tdt

}

|m|6fc

Super–Resolution in Phase Space (Primal Problem)

(19)

where, for the model assumed in (18), theTV–norm amounts to,‖µ‖TV =
∑

k |ρk|
(18)
=
∑

k |ck|. We note that

in principle‖µ̃‖TV = ‖s‖TV, however, due to the nature of phase space measurements, thereal/complex weights

{ck}k need to be demodulated using the linear frequency modulation terme+ a
2b t

2
k which depends onΛ.

The problem in (19) seeks to recover the infinite–dimensional variable µ̂ from finitely many constraints

set up in (17). This continuous optimization problem has a tractable dual problem. As was shown in [11], a

semidefinite program (SDP) can be used to recoverµ̃ by computing{tk}k first and then recovering{ck}k using

a least squares fit. The SDP equivalent [11] of the convex dualof (19) is,

max
u,M

ℜ 〈ŷ,u〉 subject to,

 M u

u∗ 1


 ≻≻≻ 0,

∑
j∈S2,m∈S1

[M]m,m+j = δj

Semidefinite Program (Dual Problem)

whereS1 = [1, 2fc + 1− j], S2 = [0, 2fc], M ∈ C(2fc+1)×(2fc+1) is some Hermitian matrix andu ∈ C2fc+1

is a complex vector.

The SDP input̂y results in a vectoru. In order to recover the locations{tk}k, we construct the polynomial

of degreeN0 = 4fc,

pN0 (z) = 1−
∑

|k|≤2fc
ukz

k, z ∈ C. (20)

The roots ofp4fc (z) , z = eω0t lead to the locations{tk}k. Knowing ŷ together with the estimates,{t̃k}k, we

use the constraints in (17) to set up a system of equations which leads to amplitude estimates̃ck = ρ̃ke
− a

2b t̃
2
k .

(see (18)). Finally, we recover our super–resolved signal,s̃ (t) =
∑K−1

k=0 c̃kδ
(
t− t̃k

)
. Stepwise procedure for

super–resolution in phase space is outlined in Algorithm 1.

In view of [11], let us invoke the definition of minimum distance∆∆∆ = inf{tk}k
:tk 6=tl |tk − tl|. With fc =

⌊Ωτ/2b⌋ , the exact recovery requirement for phase space is as follows:

Theorem 1 (Exact Recovery in Phase Space):Let the support set ofs (t) in (6) be S =
{
t̃k
}
k
. If the

minimum distance obeys the bound∆∆∆(S) fc > 2, thens (t) is a unique solution to (19).

The proof of this theorem is a straight–forward consequenceof [11]. Moreover, due to inherent Fourier structure

of the phase space problem, our work may benefit from the ideasdiscussed in [13], [14], [16], [23].

C. Remarks and Discussion

� Backward Compatibility With the choice of parameter matrixΛ = ΛFT (cf. Table II), our result coincides

with the usual, Fourier domain case of super–resolution [11], [13]. Furthermore,Λ = Λθ relates to the case of

Fractional Fourier domain for which our result generalizesa previous known result [37].
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Algorithm 1: Super–Resolution in Phase Space.

Input: Low-pass samplesh [n]
(13)
= (s ∗Λ φLP) (nT )

Modulate Samplesh [n] →
√

2πb |τ |e+
a(nT)2

2b h [n] = y [n]

Data: ŷ = V
†
IDFTy, ŷ ∈ C2fc+1

Solve SDP : max
u,M

ℜ〈ŷ,u〉 subject to

[
M u

u∗ 1

]
≻ 0

Construct Polynomial: pN0
(z) = 1−

∑
|k|62fc

ukz
k

Support: pN0

(
eω0t

)
= 0 →

{
t̃k
}
k

Weights: min
ρ̃k

∣∣∣ŷ [m]−
∑K−1

k=0 ρ̃ke
−ω0 t̃k

∣∣∣
2
→ {ρ̃k}k

Output: s̃ (t) =
∑K−1

k=0 c̃kδ
(
t− t̃k

)
, {c̃k = ρ̃ke

− a
2b

t̃2k}k

� Exact Recovery ConditionEven though our super–resolution naturally extends to a number of well known

unitary transformations, the exact recovery condition remains unchanged. Hence re-formulating the super–

resolution problem in context of phase space comes at no extra cost in the sense of recovery requirement.

D. An Application of Super–Resolution in Phase Space

Bandlimted signals are compactly supported in the Fourier domain. When a bandlimited signal is corrupted

by additive impulsive noise or AIN, the holes/zeros in the spectrum are filled by the spectral components that

characterize the impulsive noise which is essentially non–bandlimited. Wolf [38] used the idea of curve–fitting

the out–of–band components for identification of impulsivenoise components. Here, we formulate the problem

of denoising linear frequency modulated (LFM) signals thatare corrupted by AIN. Since LFM signals are the

basis functions of phase space transformations, it is clearthat such signals are bandlimited in the LCT domain.

Consider a bandlimited LFM signal

rBL (t) = κb,τ

∑
|m|≤M

r̂BL [m] kΛ (t,mω0b),

with r̂BL [m] = 0, |m| > M and let r (t) = rBL (t) + s (t) be the signal corrupted by AIN. Clearly,r (t) is

non–bandlimited in phase space due tos (t). Suppose we observe low–pass filtered samples ofr (t), that is,

(r∗ΛφLP) (nT )︸ ︷︷ ︸
h[n]

= e−a(nT )2

2b

∑

|m|6fc

(c1ŷ1 [m] + c2ŷ2 [m])︸ ︷︷ ︸
ŷr[m]

eω0mnT

wherec1, c2 are known constants,̂y1 [m] = r̂BL [m] e−
d(mω0b)2

2b and ŷ2 [m] = ŷ [m] (as in (17)) wherefc =

⌊Ωτ/2b⌋ ≡ ⌊τ/2T ⌋. Again, let us definey [n] = h [n] e
a(nT )2

2b , n = 0, . . . , N − 1, N ≥ 2fc + 1. Provided that

fc ≥ M + 2K + 1, we have,

ŷr [m] =




c1ŷ1 [m] + c2ŷ2 [m] |m| ≤ M

c2ŷ2 [m] |m| > M

,

which leads to complete characterization ofs (t) since the2K + 1 values ofŷ2 [m] can be used with (19) to

solve fors (t). With ŷ = ŷr, m > M we can use Algorithm 1 for exact denoising ofr (t).
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V. CONCLUSION

We develop a method for super–resolution in phase space. Thephase space transformation generalizes a

number of well known transforms (see Table II). More precisely, we are concerned with recovery of spike trains

from their low–pass samples. For this purpose, we filter the spike train with a kernel which is bandlimited in phase

space. We show that even though we are dealing with a general class of parametric transformations, the low–

pass samples are completely characterized by chirp–modulated Fourier series. Having made this link, we show

that the recovery of spikes from their low–rate measurements can be cast as a total–variation minimization—a

problem that can be tackled by convex programming. In closing, our work extends the recent results of [11]

without altering the exact recovery condition. That said, the cut–off frequency is a function of the transform

being used for investigation. Our work warrants future research, specially for the case of additive noise.
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[15] J.-P. Kahane, “Analyse et synthèse harmoniques,”arXiv preprint arXiv:1110.5174, 2011.

[16] A. Moitra, “The threshold for super-resolution via extremal functions,”arXiv preprint arXiv:1408.1681, 2014.

[17] K. Gedalyahu and Y. C. Eldar, “Time-delay estimation from low-rate samples: A union of subspaces approach,”IEEE Trans. Signal

Process., vol. 58, no. 6, pp. 30173031, Jun 2010.

[18] L. Li and T. P. Speed, “Parametric deconvolution of positive spike trains,”Annals of Statistics, pp. 1279–1301, 2000.

[19] T. Blu, P.-L. Dragotti, M. Vetterli, P. Marziliano, andL. Coulot, “Sparse sampling of signal innovations,”IEEE Signal Process. Mag.,

vol. 25, no. 2, pp. 31–40, 2008.



10

[20] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of innovation,”IEEE Trans. Signal Process., vol. 50, no. 6,

pp. 1417–1428, 2002.

[21] T. Michaeli and Y. C. Eldar, “Xampling at the rate of innovation,” IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1121–1133, Mar

2012.

[22] P. Stoica and R. L. Moses,Spectral Analysis of Signals, Upper Saddle River, NJ: Pearson/Prentice Hall, 2005.

[23] L. Demanet, D. Needell, and N. Nguyen, “Super-resolution via superset selection and pruning,”arXiv preprint arXiv:1302.6288,

2013.

[24] M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,”IEEE Trans. Image

Process., vol. 12, no. 1, pp. 29–43, 2003.

[25] L. B. Almeida, “The fractional fourier transform and time-frequency representations,”IEEE Trans. Signal Process., vol. 42, no. 11,

pp. 3084–3091, 1994.

[26] E. Chassande-Mottin and P. Flandrin, “On the time–frequency detection of chirps,”Applied and Computational Harmonic Analysis,

vol. 6, no. 2, pp. 252–281, 1999.

[27] R. G. Baraniuk and D. L. Jones, “Shear madness: New orthonormal bases and frames using chirp functions,”IEEE Trans. Signal

Process., vol. 41, no. 12, pp. 3543–3549, 1993.
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