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Abstract: This work considers the problem of super—resolution. Thael goto resolve a Dirac distribution from
knowledge of its discrete, low—pass, Fourier measuremeétssically, such problems have been dealt with parameter
estimation methods. Recently, it has been shown that ceoyptixnization based formulations facilitate a continuous
time solution to the super—resolution problem. Here wet saper—resolution from low—pass measurements in Phase
Space. The Phase Space transformation parametricallyajiees a number of well known unitary mappings such
as the Fractional Fourier, Fresnel, Laplace and Fouriestoams. Consequently, our work provides a general super—
resolution strategy which is backward compatible with theial Fourier domain result. We consider low—pass
measurements of Dirac distributions in Phase Space and stadvhe super—resolution problem can be cast as Total
Variation minimization. Remarkably, even though are sgtis quite general, the bounds on the minimum separation
distance of Dirac distributions is comparable to existingtimods.
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I. INTRODUCTION

Ernst Abbe’s foundational work [1] in 1873 reported an olsaéion regarding lack of resolvability of optical
features beyond the diffraction limit. This problem is cahto several areas of science and engineering such
as optics([2], [[3], imaging [4], geophysids| [5], depth segs[6] and astronomy [7].

In its abstract form, the problem can be stated as followsw ldan we recover d(—sparse signal (spike
train/Dirac impulses) with unknown locations and amplésdrom the knowledge of its low—pass measurements
in the Fourier domain? The problem is challenging becausgkis for recovery of a non—bandlimited signal from
its projection onto the subspace of bandlimited functidneo predominant approaches exist in the literature to

super—resolution: optimization and parameter estimat@sed solutions.
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A: Minimum separationf,: Cut—off frequency
Donoho [14] Kahane [15] Candés—G. [11] Moitfal[16]

1 5 1 2 1

TABLE I: Exact Recovery Condition for Super—Resolution.

B Optimization Based Super—Resolution:Early roots of¢; norm based optimization can be traced back to
[8]. This approach has been revitalized due to the advenbofpressed sensiff@]. A very recent idea in this
context is that otontinuous sparse modelinghere the signal attributes are estimated on a continuaiesiged
grid [10], [11] (instead of its discrete counterpart, ashis tase for the usual compressive sensing setup).
Bredies and Pikkarainem [12] present an optimization nektimothe space of signed measures. In their
setting, they consider discrete measurements while théigolspace is infinite dimensional. In parallel, de
Castro and Gamboa [13] and Candeés and Fernandez-Grarjdeofisider a Total Variation (TV) formulation

for super—resolution.

B Parameter Estimation Based Super—ResolutionThe super—resolution problem has been studied in the
signal processing context with the goal of resolving oyislag echoes/time—delay estimationi[17], multi-path
characterization [6] and deconvolution. Li and Speed [1&}sidered super—resolution in form of parametric
deconvolution of spike trains. Vetterli, Blu and co—work¢t9], [20] developed the idea of super-resolution
as a sparse sampling problem. Eldar and co—workers devklgpger—resolution methods in the context of
sub—Nyquist sampling and the Xampling framework][21]. Hinaince the super—resolution problem is closely
linked with the spectral estimation problem [18], MUSIC,HERIT and matrix pencil[22],[[23] based methods
have also been used.

In contrast to parameter estimation techniques where tiaveey condition is based on the number of spikes,
non—parametric methods provide a bound in the form of a mininseparation condition. More precisely, gt
be the number of spikes to be super-resolyedhe the cut—off frequency in Fourier domain and4etienote the
minimum spacing between any two spikes. While parameté@natbn methods requirg. > 2K + 1 assuming
that K is known a priori, non—parametric methods super—resoleesflikes provided thaf. > fsg (A) where
fsr is some function. The works of Donoho [14], Kahahel [15], Gandnd Fernandez-Grandal[11] and Moitra
[16] provide a theoretical guarantee for the super—remolygroblem in terms ofsg. We summarize the recovery
guarantees in terms gkg in Table[l.

The Fourier transform is well suited for examining signalkieh are linear combinations of sinusoids.
In many practical applications such as radar, sonar, hafggr, wave—physics and quantum optics, the basic
building blocks of the signals are not sinusoidal. Ofterypolmial phase, Fourier—like transformations of form
e7*® are well suited for analysis of such signals. For this puepdsols such the Fresnel transform[24],
Fractional Fourier transformi_[25] and the Chirp transfo28][ [27] have been developed in the literature.

Our goal here is to extend existing super—resolution resaltntegral transformations other than the Fourier

transform. To this end, we cast the super—resolution prolitephase domain which parametrically generalizes



some of the well-known unitary transformations. Some exampre listed in Tablglll. We show that exact
recovery of spike trains from low—pass measurements ingkpace is possible by minimizing the signal’s
TV—norm. This is accomplished using a convex program. Rkaidy, even with the general construct of the
problem, our theoretical guarantee for exact recoveryésstme as in_[11].

Throughout the papeR, C andZ denote sets of real, complex and integers. Weztide denote the complex
conjugate ofz € C, Rz = % (2 + z*) is the real part ot andy = \/—1. Discrete sequences are represented by
s[m],m € Z while their continuous counterparts are representesl(By, t € R. The L, inner product between
functionsf andg is denoted by(f, g) = | fg*dt. Function composition is denoted iy o g) (z) = f (g ().
Convolution between functiong and g is defined agf x g) (t) = [ f (z) g (t — z) d=. We uses to represent
the row—vector of a discrete sequenclen],m € [0,..., M — 1]. We use bold capitals to represent matrices,
for exampleD andDT is the pseudo—inverse @. Calligraphic letters such a8 are used to denote operators.

Sets are denoted by capitalized roman féhtThe estimate of function/sequengds represented by.

Il. PHASE SPACE REPRESENTATION OFSIGNALS

The termPhase Spaceaturally arises in areas of opti¢s [28] and mathematicgbials [29]. The Fractional
Fourier transform (FrFT)L[25],[[30]=[32] and the Linear @aical Transform (LCT) [[28], [[33],[[34] are
instantiations of phase space transformations. Thessftramations have found a number of applications in
signal processingd [25] and communication problems suchi@is-isvariant sampling/approximation theoty [30],
[34], operator theory, multi—carrier communicatiohs![3@fray processing [31] and optical signal processing
[28]. In this paper, we will work with thé.inear Canonical TransfornfLCT) [29].

Definition 1 (LCT): Let A = [¢ 4], with ad — bc = 1. The LCT of a functionf (t) ,¢ € R is a parametric,

unitary, integral mappingfa : f — fwith respect to the time—frequency kerrig|,

-~ <f7 kA (7w)> b#ov
Fw) =Lalfl(w) (1)
LLC’T—’ Vde 73¢%" £ (dw) b=0,

where the transformation kernel is defined by

ka (t,w) = ! (at® + dw® — 2wt)) . (2)

1
v —72mb P <_3%
Now sinceb = 0 amounts to dilating the function/Ee‘-7%de2f (dw) (seel)), we will develop our results for
the case whei # 0.

The LCT satisfies a useful operator composition propefty; o Lo, = La, With A5 = A3A;. This can

be used to show that,

f(t):ACA,l[J/C\](t) def <f7kA*1 (t;)> b0
Sveror . | Vae izt f(at) b=0.

®3)

The LCT parametrizes a number of well-known, unitary tramsfitions, some of which are listed in Table I1.
For A = [ % §] = Agr, the LCT amounts to the Fourier transform (upto a const4RT)). Similarly, with the

2 x 2 rotation matrixAy (see Tablé&]l), we obtain the Fractional Fourier transfoRr{). Matrix factorization



TABLE II: Parametric Representation of Unitary Transfotioas

Parameter Matrix (A) Corresponding Transform

[ %fpomb] = Ay Fractional Fourier Transform

[ % 6] = Arr Fourier Transform (FT)

(93] = Awr Laplace Transform (LT)

(2o g _le‘;f 0] Fractional Laplace Transform
[(IJ ﬂ Fresnel Transform

H Jﬂ Bilateral Laplace Transform
[0 7"].b=0 Gauss—Weierstrass Transform
F5 e eﬂlﬂ/z} Bargmann Transform

shows that the LCT is related to the FT and the FrFT. The Founggrix factorization is simple:

a b b 0 1 0
= Aft < A =M ArMo,
c d d bv! a/b 1

and leads to the implementatidin = L, o La,; © Ln,. The Fractional Fourier matrix factorization is more

involved. Relying on thdwasawa Decompositiof85],

a b r 0 1 u
= AG =S A= I\QDU7
c d 0 1t 0 1

whereD is a diagonal matrix witl® = v/a2 + ¢2 and U is an upper—triangular matrix with = (ab + cd) /T2

A useful operation that is linked with phase space is the clutin/filtering operator. For the Fourier
domain, we have the convolution—multiplication property:« g) = Lx-1 [La [f] LA [g]], wWith A = Apr.
Unfortunately, this property is not preserved in phase sp@o circumvent this problem, we use a version of
the FrFT convolution operator [30].

Definition 2 (LCT Convolution/Filtering)Let x5 denote the convolution/filtering operation in LCT domain
andx be the usual Fourier domain convolution operator. Conimudf functionsf andg in the LCT domain
is defined by ,

eI

(F2a0) ()= s (F (75 g ) e ). (4)

Convolution of Modulated Functions

By following the steps in[[30], it is easy to verify that theasption in [4) admits a convolution—multiplication
property:
LA [frag)(w) =75 [ (w)§ (). ®)

I1l. SPARSESIGNALS IN PHASE SPACE
Consider aK—sparse object/spike train modeled by,

K-1

s(t) = Zkzo ad(t—ty), teR (6)

where § denotes the Dirac mass with weighfs; },, € C that is activated on location§t,} € [0,7),k =

0,...,K — 1. Since we are dealing with a finite length sigsathat lives on the intervdl, 7), we investigate



its representation in phase space using the Fractionaldf@eries[[36] analog of the LCT.
Definition 3 (Linear Canonical Series)-et f be a compactly supported function such tfigt 0, Vvt € [0, 7)
and zero elsewhere and ket . = \/27b/7, b # 0. The Linear Canonical Series (LCS) expansion of the functio

f is given by
n=+oo
f(t) =ror Z f[n] ka (t,nwob), wo = 277T @)

The LCS coefﬁcientg? are evaluated at = nwgb,n € Z,

Flnl = koL [£) (nwob) = k. (f, ka (, nwob)). (8)
Note that by appropriately parameterizilg, one can easily design the basis functions for any of the
transformations listed in Table] Il. For example, with= Art in (8), we obtain the Fourier Series expansion
of f.
We now compute the series coefficients for the sparse sigftalin (). We use[(B), to compute the LCS
coefficients

$[n] = ke LA [f] (nwob) @ Kb,r / s (t) kp (t, nwob) dt

K—1
= Kpr Zk:o crkp (g, nwob). (9)

Plugging the coefficients into the LCS representatidn (®,obtain the phase space representation (of

@ mte 27
s(t) = ks Z S[m] ka (t,mwed), wo=—
m=—00 T
eij% m=+ococ /K-—1
== 2 <§£Ic%efﬁﬁieﬂ”WMk> et (10)
m=—o0 \ k=0
ylm]
6_'7% m=-+o0
=— > glm]ermeot, (11)
m=—00

at2
From [11], we see thaj [m] are precisely the Fourier series coefficientse{t) ¢’ 20 . Thus, even though we
are dealing with the phase space, the linear frequency ratetljlsparse signalis completely characterized

by its Fourier series coefficienis

IV. SUPER-RESOLUTION IN PHASE SPACE

A. Problem Formulation

Let sinc (t) = S“‘Tf—ft) Consider the frequency modulated function,
dup (t) = (Q/b) e 7% sinc ((2/b)t). (12)

Note that this function i§Q2)—bandlimited because in phase space the funaijgr(t) is compactly supported,

or,

Bip () = Lalone] () = 11 (222)



wherell (w) = 1, |w| < 1/2 and zero, elsewhere.

With s defined in [I1), its low—pass version is,

2
eI 1 N
h(t) = (o) () 2L S e, 13)
~—_———— \/]271'[)7'
Low—Pass Filtering Im|<[$2r/20b]

where|-] is the floor operation.

Suppose we obserw¥ discrete, low—pass measurements sampled with sampliedrat b/12,
hin]=ht),_,r» T=0/Q n=0,...,N—1. (14)
By modulatingh, we obtain measurements of the form,

n| = 27Tb7’€+]%h n| = 7[m eJwom(nT) 15
Modulated Measurements Im|< e

wheref. = |Q7/2b]. In vector-matrix notation, we have low—pass measuremgntsV pery, whereVper €
CN*(2fe=1) s the usual inverse-DFT matrix with elemeri pgr] = e/mwo(nT) gnd we assume that

n,m

N > 2f. — 1 so thatVpgr is a full-rank marix.

Having obtainedy, the question then is: how many samplesyadre sufficient for complete characterization

@0 k-1

of g[m] = s (ckeﬂz%ti) e~Imwotk? Indeed, from spectral estimation theolyl[22], we know tivat

need at leas2K + 1 values ofy to solve for{cy, tx }x. Consequently, whenever
fe=|3] > K& |F] > K (16)

the system of equations is completezirmeaning that we have at leask + 1 values ofy and we can solve

for {ck,tr}. Thus [16) provides a bound on the minimum sampling densifyhiase space.

B. Super—Resolution Via Convex Programming

Given N measurementg, we obtainy usingy = V,TDFTy (@I5). From the phase space development of the

problem, we know that

a 42 o
(cke“%tk) g~ Imwotk a7

L/‘,La)e-ﬂnWMdu m| < f. = [Qr/2b]
0

where
K-—1

n=> .

ceet IS S (t— 1) (18)
——

Pk
and py, def cpetIssti are the new weights fos (¢).

We are now left to solve the standard super—resolution pmhlL1] where one has access to the low—pass

measurement§[m| and the signal to be super—resolved is prescribedih (18)célehe problem of recovering



1 from y can now be solved by using,

I Super—Resolution in Phase Space (Primal Problem) I

min ||zz||lr, Subject to {y[m] @/ ﬁ(t)e—meotdt}
’ 0 m|<fe

(19)

where, for the model assumed [n{18), the—norm amounts to}} x|, = >, k] @ >k lex|- We note that
in principle || ||+ = |||y, however, due to the nature of phase space measurementsatitemplex weights
{cx}x need to be demodulated using the linear frequency modul&tion e+135t which depends or\.

The problem in[(19) seeks to recover the infinite—dimendioadable ;i from finitely many constraints
set up in [(I¥). This continuous optimization problem hasagtable dual problem. As was shown in][11], a
semidefinite program (SDP) can be used to rec@vby computing{t } first and then recoverinfcy }x using

a least squares fit. The SDP equivalént [11] of the convex dU@9) is,

Semidefinite Program (Dual Problem) I

|

|
max R (¥, u) subject to,
u,M

M u
-0, Zjesz_’mesl (M, s = 0

*

u 1

whereS; = [1,2f.+ 1 —j], So = [0,2f.], M € C2fe+1)x(2fe+1) js some Hermitian matrix and € C2/e+!
is a complex vector.
The SDP inpufy results in a vecton. In order to recover the locatioq$; };, we construct the polynomial
of degreeNy = 4f,,
_1_ k
PN, (2) =1 Z|k|§2fc upz”, z€C. (20)

The roots ofpy;, (2), 2 = e’*°! lead to the locationgt,. } .. Knowingy together with the estimate$t; }., we
use the constraints il (IL7) to set up a system of equationshwbads to amplitude estimatés = ﬁkeﬂz%z?c.
(see [(IB)). Finally, we recover our super—resolved sigh@l) = ZkK:’Ol (5% (t - fk). Stepwise procedure for
super—resolution in phase space is outlined in Algorithm 1.

In view of [11], let us invoke the definition of minimum dis@@A = inf, ) .1 24, [t — 1] With fo =
|Q7/2b] , the exact recovery requirement for phase space is as fallow

Theorem 1 (Exact Recovery in Phase SpateXx the support set ot (¢) in (@) beS = {?k}k If the
minimum distance obeys the bould(S) f. > 2, thens (¢) is a unique solution td{19).
The proof of this theorem is a straight—forward consequef{#l]. Moreover, due to inherent Fourier structure

of the phase space problem, our work may benefit from the idsasissed in [13],114], [16]/[23].

C. Remarks and Discussion

W Backward Compatibility With the choice of parameter matrix = Arr (cf. Table[dl), our result coincides
with the usual, Fourier domain case of super—resolutiof [ILB]. Furthermore A = Ay relates to the case of

Fractional Fourier domain for which our result generaliagsrevious known result [37].



Algorithm 1: Super—Resolution in Phase Space.

Input: Low-pass samplea [n] @ (s %A ¢Lp) (nT)

. a(nT)2

Modulate Samplesh [n] — /727b [7]e™ 26 h[n] = y [n]
Data: y = V;’DFTy,§ € C2fetl

. ~ . M u
Solve SDP : rﬁl?\i( R (y,u) subject to { a1 } =0
Construct Polynomial: pn, (2) =1- 2o ki<t ug 2k
Support: py, (€740) =0 — {tx},
Weights: min|§(m] — S ke 0% | = {7}

Pr

Output: 5(¢) = Zi{;ol o (t— ;k)’ (@ = 5)@87]2%72%},%

B Exact Recovery ConditionEven though our super—resolution naturally extends to abeuraf well known
unitary transformations, the exact recovery condition ag® unchanged. Hence re-formulating the super—

resolution problem in context of phase space comes at na extst in the sense of recovery requirement.

D. An Application of Super—Resolution in Phase Space

Bandlimted signals are compactly supported in the Fourdenan. When a bandlimited signal is corrupted
by additive impulsive noise or AIN, the holes/zeros in thecpum are filled by the spectral components that
characterize the impulsive noise which is essentially hamdlimited. Wolf [38] used the idea of curve—fitting
the out—of-band components for identification of impulsieése components. Here, we formulate the problem
of denoising linear frequency modulated (LFM) signals thag corrupted by AIN. Since LFM signals are the

basis functions of phase space transformations, it is thedrsuch signals are bandlimited in the LCT domain.

Consider a bandlimited LFM signal

reu (t) = Kpr Z|m\<M 7aL [m] ka (t, mwob),

with 7g. [m] = 0,|m| > M and letr (t) = rg_ () + s (¢) be the signal corrupted by AIN. Clearly,(¢) is

non-bandlimited in phase space duest@). Suppose we observe low—pass filtered samples(of, that is,

a(nT)2

(readie) (nT) = e~ > (e1fi [m] + caffa [m]) o™ T
————
hin) misfe Grlm]
mw 2 .
wherecy, co are known constantgj; [m] = 7g [m] e—1""5” and U2 |m] = y[m] (as in [AT)) wheref, =
a(nT)2

|Q7/2b] = |7/2T]. Again, let us defing/[n] = hn]e?” 2 ,n=0,...,N—1,N > 2f. + 1. Provided that
fe> M+ 2K + 1, we have,

ay [m] + c2¥a[m]  [m| < M

Yr [m = )

cal2 [m] Im| > M

which leads to complete characterizationsdf) since the2K + 1 values ofys [m] can be used with(19) to

solve fors (t). With y =y,, m > M we can use Algorithm 1 for exact denoisingoft).



V. CONCLUSION

We develop a method for super—resolution in phase spacepfiase space transformation generalizes a
number of well known transforms (see Table I). More prelgisse are concerned with recovery of spike trains
from their low—pass samples. For this purpose, we filter piileestrain with a kernel which is bandlimited in phase
space. We show that even though we are dealing with a gerlass of parametric transformations, the low—
pass samples are completely characterized by chirp—meduf@urier series. Having made this link, we show
that the recovery of spikes from their low-rate measuremeah be cast as a total-variation minimization—a
problem that can be tackled by convex programming. In cpsour work extends the recent results lof[11]
without altering the exact recovery condition. That saite tut—off frequency is a function of the transform

being used for investigation. Our work warrants future aesle, specially for the case of additive noise.
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