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ABSTRACT

Deep Neural Network (DNN) has become a standard method in

many ASR tasks. Recently there is considerable interest in “in-

formed training” of DNNs, where DNN input is augmented with

auxiliary codes, such as i-vectors, speaker codes, speaker separa-

tion bottleneck (SSBN) features, etc. This paper compares different

speaker informed DNN training methods in LVCSR task. We discuss

mathematical equivalence between speaker informed DNN training

and “bias adaptation” which uses speaker dependent biases, and give

detailed analysis on influential factors such as dimension, discrimi-

nation and stability of auxiliary codes. The analysis is supported by

experiments on a meeting recognition task using bottleneck feature

based system. Results show that i-vector based adaptation is also ef-

fective in bottleneck feature based system (not just hybrid systems).

However all tested methods show poor generalisation to unseen

speakers. We introduce a system based on speaker classification

followed by speaker adaptation of biases, which yields equivalent

performance to an i-vector based system with 10.4% relative im-

provement over baseline on seen speakers. The new approach can

serve as a fast alternative especially for short utterances.

Index Terms— speech recognition, deep neural network,

speaker adaptation, speaker informed training, bias adaptation

1. INTRODUCTION

DNN based ASR systems have been shown to consistently give best

results in both DNN-HMM-GMM [1, 2] and DNN-HMM hybrid

structures [3, 4]. Recently there has been considerable interest in

adapting speaker independent DNN based systems to particular

speakers. Related research mainly falls into four categories. The

first category performs speaker normalisation at signal level, such

as Vocal Tract Length Normalisation (VTLN [1]), or speaker trans-

formation at feature level, such as feature-MLLR (fMLLR [3]). The

second category includes speaker dependent discriminative trans-

formations into DNN structures, for example Linear Input Network

(LIN [5]), Linear Output Network (LON [6]), Linear Hidden Layer

(LHN [7]) and feature-space Discriminative Linear Regression

(fDLR [3]). The third category, “informed DNN training”, informs

DNNs with meta-information during training process by augmenting

the DNN input with auxiliary codes that carry speaker information.

Examples of auxiliary codes are eigenvectors in speaker space [8],

speaker codes [9], i-vectors [10] and Speaker Separation BottleNeck

features (SSBN [11] or speaker d-vectors). The fourth category

splits DNNs into speaker independent part and speaker dependent

part (output layer [12], or bottleneck layer [13]), or boosts some

neurons while penalizes others depending on speaker [14].

Work in this paper contributes in several novel aspects: the

mathematical implications of speaker informed DNN training is

assessed, followed by a quantitative comparison of several speaker

adaptation techniques which also gives first performance evidence

of i-vector based adaptation over bottleneck (BN) features [1]; gen-

eralisation to unknown speakers is discussed; and a new system for

speaker adaptation in short utterances is proposed.

This paper first focuses on mathematical equivalence and dif-

ference among different informed training methods. It is complex to

track the genuine contribution of each DNN parameter, due to a mix-

ture of linear and non-linear functions and the high redundancy and

symmetry in parameter space that allow many equivalent parametric

solutions. We simplify the problem by focusing on the most affected

part, the input layer. Speaker informed DNN training is shown to be

mathematically equivalent to DNN input layer bias adaptation (§3)

which employs speaker dependent biases.

The performance of different informed training methods based

on i-vectors, SSBN features, speaker separation DNN (SSDNN) pos-

teriors and hand-crafted codes is compared for the first time. The

performance difference is shown to relate to the dimension (§3.1),

discrimination (§3.2), and numerical and temporal stability (§3.3)

of auxiliary codes. I-vector based speaker informed training im-

plemented on DNN front-end system shows a 10.4% relative per-

formance improvement over speaker independent systems on seen

speakers, identical to that obtained with bias adaptation (§5).

Test speakers that have already been observed in training are re-

ferred to as “seen speakers”, otherwise “unseen speakers”. Consid-

erable performance difference on seen speakers is observed among

different informed training methods on meeting recognition task.

While for seen speakers DNNs can “remember” a specific optimal

setting, for unseen speaker DNNs require a sense of proximity to ob-

served speakers (§3.4). In our experiments all tested methods show

poor generalisation to unseen speakers for different reasons.

Based on the findings, an alternative approach to fast speaker

adaptation of DNN front-ends is proposed using Unique Binary In-

dex Codes (UBIC). By first identifying speakers, equivalent per-

formance to i-vector based informed training is obtained over seen

speakers. While i-vector estimation requires sufficient data to be sta-

ble and accurate [15], the proposed system is effective on utterance

of 5s on average (§5), hence a fast alternative.

2. BACKGROUND

2.1. Informed DNN training

A standard N -layered feed-forward DNN has Mn neurons in the

n-th layer (n∈[1, 2, ..., N ]). The input to n-th layer is denoted as

xn(t) = [xn,1(t), xn,2(t), ..., xn,Mn
(t)]T with x1(t) referring to

DNN input features, which are naturally time dependent. With the

activation function on all hidden neurons f(·), the output of first

layer is given by:

x2,k(t) = f
(

M1
∑

m=1

x1,m(t)w1,m,k + b1,k

)

(k∈[1, 2, ...,M2]) (1)



where w1,m,k is weight and b1,k is bias, related to the m-th dimen-

sion in the input and the k-th input to the second layer.

For informed training, DNN input is augmented with an L di-

mensional time dependent vector c(t) = [c1(t), c2(t), ..., cL(t)]
T ,

which can be eigenvectors [8], i-vectors [10], SSBN features [11],

speaker codes [9], etc. Then

x
′

2,k(t) = f
(

M1
∑

m=1

x1,m(t)w′

1,m,k +

L
∑

l=1

cl(t)h
′

l,k + b
′

1,k

)

, (2)

where h′

l,k is weight applied on the l-th dimension of codes for the k-

th input to the second layer. While the codes can be time dependent,

they are assumed to be noisy variants of a single centroid.

2.2. I-vectors

I-vectors are motivated by Joint Factor Analysis (JFA, [16]), and

were originally proposed for speaker recognition [17]. An i-vector

represents the specific characteristics of a speaker as a point in total

variability space. Recently they are also used for speaker adapta-

tion of speech recognition systems, for both the conventional HMM-

GMM systems [18, 19] and the DNN-HMM hybrid systems [10, 20].

A Universal Background Model (UBM) is first built to repre-

sent the feature space. The mean vectors of all GMMs in this UBM

are concatenated into a super-vector µ
0
. Correspondingly, a set of

speaker-dependent GMMs is derived for each speaker, and its mean

vectors are concatenated into a speaker dependent super-vector, i.e.

µs for speaker s. The total variability matrix M spans the bases

with highest variability in the mean super-vector space. Given the

i-vector for speaker s as λs, we obtain [17, 20]

µ
s = µ

0
+Mλ

s
. (3)

3. INFORMED DNN TRAINING AND BIAS ADAPTATION

Based on Eq.(2), the effective overall bias in informed training is

βk(t) =
L
∑

l=1

cl(t)h
′

l,k + b
′

1,k (k∈[1, 2, ...,M2]). (4)

An informed DNN as expressed in Eq.(2), can be equivalent to stan-

dard DNNs represented by Eq.(1) when the overall biases equal. If

auxiliary code is fixed per speaker (as in [10]), informed training is

equivalent to speaker level bias adaptation. In this way auxiliary

codes help to build an implicit pool of speaker dependent biases

based on whole training data. It is similar when auxiliary code is

fixed per utterance or per cluster of utterances, while the size of such

a “bias pool” can differ. The frame-wise auxiliary code as used in

[11] can have strong time variation, however it can be interpreted as

being centred around a mean (to be discussed in §3.3).

Although all mathematically equivalent to bias adaptation, dif-

ferent practical implementations of informed training yield different

performance [10, 11, 20], even when their bias pools have the same

size. This is mainly due to the difference in dimension, discrimina-

tion and variability of auxiliary codes, as will be discussed below.

3.1. Code dimension and number of speakers

For auxiliary codes fixed at speaker level cs = [cs1, c
s
2, ..., c

s
L]

T , as-

sume the optimal bias on k-th neuron for speaker s is b̂sk (S speakers

in total). Thus when the effective overall biases equal the optimal

biases,


















∑L

l=1
c1l h

′

l,k + b′1,k = b̂1k
∑L

l=1
c2l h

′

l,k + b′1,k = b̂2k

· · ·
∑L

l=1
cSl h

′

l,k + b′1,k = b̂Sk

, (5)

which can be written as Ch
′

k = b̂k − b
′

1,k, or











c11 c12 · · · c1L
c21 c22 · · · c2L
...

...
. . .

...

cS1 cS2 · · · cSL





















h′

1,k

h′

2,k

...

h′

L,k











=











b̂1k − b′1,k
b̂2k − b′1,k

...

b̂Sk − b′1,k











. (6)

If b̂sk is distinct for each speaker: when L > S, there exists an in-

finite number of solutions for h′

k; when L=S, if code matrix C is

invertible there exits one set of solution, if C is not invertible there

exists no accurate solutions unless (b̂sk − b′1,k) and c
s have the same

linear dependence among different speakers; when L < S, there

exist no accurate solutions. In the cases without accurate solutions,

there can be solutions yielding minimal errors. With more solutions

for h
′

k, informed DNN training is more likely to converge to one

solution yielding optimal or approximately optimal biases in prac-

tice. In contrast if different speakers have the same or very similar

optimal biases, i.e. b̂ik=b̂
j

k or b̂ik ≈ b̂
j

k (∃i 6=j), the necessary code

dimension can be reduced as speaker i and j can be clustered.

To avoid confusion, a test speaker that has been observed in

training data is referred to as a “seen speaker”, otherwise an “unseen

speaker”. For generality, we call it an “informed condition” for any

test speaker if its effective overall biases approximately equal the op-

timal biases, with possible deviation that does not cause significant

performance degradation to speech recognition systems. Otherwise

it is an “un-informed condition”. Ideally the auxiliary code for an

seen speaker during test can be the same one used in training, i.e.

the code for an seen speaker is one part of code matrix C. Since

DNNs are optimized based on Eq.(6), all training speakers are in-

formed. Thus for seen speakers, informed training can theoretically

perform as well as optimal bias adaptation, if auxiliary codes are

chosen rationally and if training is optimized properly.

For an unseen speaker su, according to Eq.(4) the effective over-

all bias β
su
k = (csu)Th′

k + b′1,k is determined by auxiliary codes

c
su trained parameters h

′

k and b′1,k. Even though parameters h
′

k

are learned from auxiliary codes which can rationally represent a

space of training speakers via C (like i-vectors), the implicit bias

pool built during training is not always diverse enough to predict the

optimal biases for all unseen speakers. Thus more training speakers

are usually preferred to fewer, with a necessary increase in optimal

auxiliary code dimension. If the amount of training speaker is not

large enough, or if the auxiliary code is not designed rationally and

estimated accurately, it is uncertain how much the effective overall

biases of an unseen speaker would deviate from their optimum in

practice. This can lead to performance degradation.

3.2. Code separation

As shown in Eq.(6), reduced separation among codes (i.e. higher

linear dependence, lower discrimination) will lead to a higher con-

dition number for C. This will increase numerical instability and

cause deviation from the optimal solutions in real numerical opti-

mization. Speaker discrimination in code space is also related to

speaker classification performance based on those codes. Thus one

would expect a positive correlation between discrimination and in-

formativeness in codes, if other conditions are kept unchanged. In a

special case where the codes are designed to provide ideal speaker

discrimination under informed conditions, the codes matrix can be

an identity matrix, and h′

l,k = βl
k − b′1,k. That special case assumes

orthogonal basis vectors for the auxiliary codes, and is further re-

ferred to as Unique Binary Index Codes (UBIC).
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Fig. 1. 2D visualization of 13 dimensional SSBN features from 27

speakers in meeting test data using BH-tSNE.

3.3. Numerical and temporal stability

For Speaker Aware DNNs (SADNNs) [11], the auxiliary codes c(t)
are estimated per frame. As a result the overall bias in the input layer

βk(t) is time-variant. Changing codes inevitably introduce tempo-

ral noise to Eq.(6) in speaker informed training. Figure 1 shows a

2D representation of 13 dimensional SSBN features from 10 seen

and 17 unseen speakers using Barnes-Hut t-distributed Stochastic

Neighbor Embedding (BH-tSNE [21, 22]). One can clearly observe

noise around speaker centroids. The numerical condition of the code

matrix C largely depends on the noise level. During test, auxiliary

codes estimated on frame level also vary more or less around the

centroids. Thus informed training is more robust when using auxil-

iary codes estimated globally rather than locally. The advantage of

reliable global codes will be more pronounced if code estimation is

sensitive to noise, utterance duration, speech and silence ratio, etc.

3.4. Uncertainty under un-informed conditions

Since DNNs are highly symmetric in structure, optimal biases b̂k

might have infinite parametric solutions all providing the same over-

all performance. The value b̂k takes will depend on the value of

other DNN parameters. Thus the optimal biases trained in one sys-

tem cannot be easily transplanted to another DNN even for the same

speaker. As a result, it is uncertain whether a code would work or

not on a system not trained with the code. Informed training using

i-vectors was shown to be effective for unseen speakers in [10, 20].

That is because unseen speakers are informed in the way that their

i-vectors fall into the speaker space built with training speaker i-

vectors of sufficient speaker diversity (as discussed in §3.1). How-

ever considerable computation and data resources are necessary to

build up such an i-vector space, while the reliability and effective-

ness during test would reduce with shorter utterances [15].

4. EXPERIMENTS

4.1. Data

The individual headset recordings from the AMI corpus [23] are

used for experiments. The training set is composed of 77.5h speech

from 170 speakers in 148 meetings. The test set includes 6.9h from

27 speakers in 20 meetings, in which 4.4 hours are from 17 unseen

speakers and the rest 2.5 hour data are from 10 seen speakers. No

meetings are shared between training and test sets. Average utter-

ance duration is 4.2s in training set, and 5s in test set. Figure 2

shows the amount of data per speaker, on training and test sets.

4.2. Baseline

In all experiments DNNs are implemented using TNet1, and Viterbi

decoding is performed with the AMI RT09 trigram language model

1http://speech.fit.vutbr.cz/software/neural-network-trainer-tnet
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Fig. 2. Duration of the data per speaker. Average data duration per

speaker: 27.3mins in training set, 15.4mins in test set.

and dictionary [24]. In the baseline system, 23 dimensional log

Mel-filterbank features with a context of 31 frames (+/-15) are com-

pressed to 368 dimensions using DCT. The mean and variance are

normalised globally over training data in each dimension. The nor-

malised features are used to train a six layered DNN in a topology

of 368:1745:1745:1745:26:1257. The 1257 output targets are tied

triphone states and the training is done layer by layer. Linear bottle-

neck (BN) features are extracted from the 26-dimensional bottleneck

layer. HMM-GMMs are trained over BN features with Single Pass

Retraining (SPR) from canonical PLP based HMM-GMMs in the

same manner with [11]. The BN features based HMM-GMMs are

re-clustered to around 4000 states (16 Gaussian mixtures each) and

optimised with maximal likelihood criterion.

4.3. SADNN based features

SADNN [11] augments DNN input with SSBN features extracted

from a 5 layered Speaker Separation DNN (SSDNN). The SSDNN is

a DNN in a topology of 368:1745:1745:LBN:171 trained to classify

speakers. It uses 170 training speaker IDs plus a silence as targets.

The performance for LBN = 13, 40, 60, 80, 100 is investigated.

Raw posteriors auxiliary codes provide better speaker discrimi-

nation than SSBN features, and hence are also investigated. In ad-

dition, the posteriors approximate UBIC and speaker dependent bias

adaptation when SSDNN gives perfect speaker classification results,

except for the dimension corresponding to silence.

4.4. I-vectors

For training set one i-vector is first estimated per speaker using all

the data of that particular speaker. To train i-vectors, the approach

presented in [20] is followed, where i-vectors are represented as the

weights of a CAT system [25]. Since the underlying models are

GMMs, it allows unsupervised training without the necessity of tran-

scriptions. To estimate i-vectors for test set, i-vector weights are up-

dated over test data per speaker using the model parameters learned

during i-vector training. Experiments compare the performance us-

ing different i-vector dimensions, i.e. Liv = 13, 40, 60, 80, 100.

Before concatenating with log Mel-filterbank features, i-vectors are

normalised globally over training data in order to have zero mean

and unit variance in each dimension.

4.5. Hand-crafted binary codes

To compare the effectiveness of different informed training methods

and the differences in performance due to codes design, three types

of auxiliary codes are hand-crafted. The first type is an 8 dimen-

sional binary code, derived from an 8-bit binary index of 188 speak-

ers (sorted by spelling) from both training and test data. The second

type is a 188 dimensional UBIC. The third type uses a 170 dimen-

sional UBIC for the speakers in the training set and seen speakers in

test set, while uses zero vectors for unseen speakers.



Table 1. Speaker classification performance comparison: SSDNN

using different bottleneck dimensions.

SSBN dim 13 40 60 80 100

Acc (%) 92.96 94.03 95.61 95.10 94.05

4.6. Combining SSDNN with UBIC for informed training

Though hand-crafted codes like UBIC can provide ideal speaker dis-

crimination without the computation cost in codes estimation, they

highly depend on prior knowledge of the speaker identity, which is

not always available. This could be solved by using utterance level

speaker classification results, for example from an independently

trained SSDNN. During test, the auxiliary UBIC corresponding to

the speaker candidate with maximal average log posterior over that

utterance is used. Posteriors corresponding to silence are ignored in

this speaker classification. Table 1 shows segmental speaker classi-

fication accuracies, i.e. the ratio between the number of utterances

with speaker ID correctly recognised and the total number of utter-

ances from seen speakers in test set (1775). The highest accuracy

is observed with a 60 dimensional BN layer. Using a larger BN di-

mension decreases the accuracy because the SSDNN starts to overfit

to the silence target. The results indicate that the SSDNN speaker

classification is a good candidate to estimate seen speaker IDs in a

combined SSDNN-UBIC framework.

5. RESULTS

Table 2 compares the performance of methods described in sec-

tions §4.2–4.6. As shown, all informed training improves the speech

recognition performance over baseline for seen speakers (observed

in both training and test sets) while degrades for unseen speakers

(observed only in test set). I-vectors based method degrades over

unseen speakers due to insufficient speaker diversity in i-vector train-

ing. All hand-crafted codes fail to give any improvement over un-

seen speakers due to a total absence of speaker information as well

as the DNN numerical uncertainty (§3.4). Note that the overall per-

formance does improve in some cases, with the best results achieved

using 40 and 80 dimensional i-vectors.

Results over seen speakers are further analysed here. Increas-

ing SSBN dimension from 13 to 100 does not improve recognition

performance, because SSDNN overfits to silence target (Table 1)

and because increased codes dimension introduces more numerical

noise. Using SSDNN raw posteriors generally outperforms bottle-

neck features (SSBN) due to higher discrimination. Since raw pos-

teriors are temporally noisy, its best performance (19.80%) is worse

than 8 dimensional hand-crafted binary index codes (19.61%). The

effectiveness of posteriors and hand-crafted codes suggests that the

absolute value of auxiliary codes is less important than the discrimi-

nation, unless numerical stability becomes a main issue. Expanding

the 8 dimensional binary index codes into UBIC further improves

performance due to increased discrimination. Given the same dis-

crimination, 170 dimensional UBIC (19.30%) outperforms 188 di-

mensional UBIC (19.41%) due to less numerical noise. The best per-

formance on seen speakers (19.30%) is observed with i-vectors and

170 dimensional UBIC, achieving 10.4% relative improvement over

baseline. The latter is ideal speaker bias adaptation over seen speak-

ers implemented in informed training framework, while i-vectors

manage to well discriminate all seen speakers.

In the proposed SSDNN-UBIC framework (§4.6), the speaker

classification results per utterance using SSDNN are used to select

UBIC for that utterance. The effectiveness of informed training on

speech recognition is show to positively correlate with speaker clas-

sification accuracy (Table 1 and 2). With all SSDNNs illustrating

Table 2. %WERs of DNN baseline and informed training.

Auxiliary codes SSBN dim Seen Unseen Overall

- (baseline §4.2) - 21.54 25.01 23.8

13 20.31 25.48 23.6

40 20.42 25.29 23.5

SSBN (§4.3) 60 20.39 26.87 24.5

80 20.49 25.88 23.9

100 21.03 25.86 24.1

13 19.97 25.81 23.7

SSDNN raw 40 20.45 25.48 23.7

posteriors (§4.3) 60 19.80 26.03 23.8

80 20.10 25.89 23.8

100 19.86 25.56 23.5

8dim codes (§4.5) - 19.61 25.59 23.4

170dim UBIC (§4.5) - 19.30 28.77 25.4

188dim UBIC (§4.5) - 19.41 28.25 25.1

13 19.35 26.36 23.8

170 dim UBIC 40 19.31 26.78 24.1

selected by 60 19.32 26.79 24.1

SSDNN (§4.6) 80 19.34 26.82 24.1

100 19.36 26.74 24.1

Auxiliary codes ivector dim Seen Unseen Overall

13 19.30 26.26 23.8

40 19.56 25.37 23.3

i-vector (§4.4) 60 20.62 26.59 24.4

80 19.60 25.43 23.3

100 19.52 26.48 24.0

segmental speaker classification accuracy above 92% (Table 1), the

worst performance of the new system (19.36%) is still better than

the best performance using SSDNN posteriors (19.80%) or SSBN

(20.31%), while the best performance (19.31%) is approximately the

same with i-vector informed training and DNN bias adaptation. Thus

the proposed system could serve as an alternative to i-vectors based

informed training. It is well suitable for fast adaptation over short

utterances (5s on average in our experiments) when test speakers are

mostly seen or all seen.

6. CONCLUSION

This paper presented a unified investigation on speaker informed

DNN training and compared the performance of different methods

that include speaker information in the DNN front-end of a DNN-

HMM-GMM system. We showed the underlying mathematical

equivalence between informed training and DNN bias adaptation,

and illustrated the key factors impacting the effectiveness of in-

formed training as the dimension, discrimination and stability of

auxiliary codes. I-vector based informed training was shown to be

effective in a DNN front-end configuration using bottleneck fea-

tures, achieving the same performance as speaker level DNN bias

adaptation, with 10.4% relative improvement over baseline on seen

speakers. A new informed training structure was presented as an

alternative to i-vectors based adaptation, which especially targets

on short utterances and speed issues. With more than 92% speaker

classification accuracy from SSDNN, in our experiments the new

system shows approximately the same performance as the i-vector

based method and ideal speaker dependent bias adaptation.
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