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Introduction
Harmonic Signal Model

Harmonic Signal Model:

s(n) =

L(n)∑
l=1

αl e j (ωl (n) n+ϕl ), (1)

where ωl (n) = lω0(n) for l = 1, . . . ,L(n),

L(n) : number of sinusoids
αl : real magnitudes
ω0 : fundamental frequency
ϕl : phases of harmonics
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Signal Model
Additive noise

The observed signal can be written as a sum of a desired
signal s(n) and a noise signal v(n), i.e.,

x(n) =s(n) + v(n) (2)

=
L∑

l=1

αl e j (ωl n+ϕl ) + v(n).
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Signal Model
Phase noise

At a high narrowband SNR, the harmonic frequency ωl is
perturbed with a real-valued phase-noise [S.Tretter 1985],
which has a normal distribution with zero mean and the
variance

E{∆ω2
l (n)} =

σ2

2α2
l

(3)

We can approximate x(n) =
∑L

l=1 αl e j (ωl n+ϕl ) + v(n) like

x(n) ≈
L∑

l=1

αl e j (ωl n+∆ωl (n)+ϕl ) (4)
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Signal Model
Unconstrained frequency estimates (UFE)

Unconstrained frequency estimates (UFE) of the constrained
frequencies:

Ω̂(n) =
[
ω̂1(n), ω̂2(n), . . . , ω̂L(n)

]T (5)
= dL(n)ω0(n) + ∆Ω(n), (6)

where

dL(n) =
[

1,2, . . . , L(n)
]T (7)

∆Ω(n), =
[

∆ω1(n), ∆ω2(n), . . . , ∆ωL(n)
]T
, (8)

and

R∆Ω(n) = E{∆Ω(n)∆ΩT(n)} (9)

=
σ2

2
diag

{ 1
α2

1
,

1
α2

2
, . . . ,

1
α2

L

}
.
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Max. Likelihood (ML) Pitch Estimator

For the time-frame x(n) =
[

x(n), x(n−1), . . . , x(n−M−1)
]T ,

the PDF of the UFE is

P(Ω̂(n)|ω0(n)) ∼ N (dL(n)ω0(n),R∆Ω(n)). (10)

The ML pitch estimator:

ω̂0(n) = arg max
ω0(n)

log P(Ω̂(n)|ω0(n)) (11)

=
[

dT
L (n)R−1

∆Ω(n)dL(n)
]−1

dT
L (n)R−1

∆Ω(n)Ω̂(n) (12)
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Bayesian Pitch Estimator
Motivation

I The ML Estimators are statistically efficient, e.g., the
non-linear least-squares (NLS), and the weighted least
squares (WLS) [H.Li, et al. 2000], but the minimum
variance is limited by the number of samples.

I Consecutive pitch values are estimated independently
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Bayesian Pitch Estimator
Motivation

I Pitch values are usually correlated in a sequence, i.e.,

P(ω0(n)|ω0(n−1), ω0(n−2), · · · ), (13)

that motivate Bayesian methods to minimize an error
incorporating prior distributions.

I State-of-the-art methods mostly track pitch estimates in a
sequential process without concerning noise statistics.
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Bayesian Pitch Estimator
Hypothesis

1- Jointly estimate and track pitch incorporating both the
harmonic constraints and noise characteristics.
2- Estimate the state ω0(n) through a series of noisy
observations:

P(ω0(n)|Ω̂(n), Ω̂(n−1), · · · ) (14)

3- Recursively update the prior distribution of the pitch value.
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Bayesian Pitch Estimator
Discrete state-space (HMM)

ω0(n) : Discrete random variable (Hidden states)

P(ω0(n)|ω0(n−1)) : Transition probability in a 1st-order Markov model,

i.e.,
∑
ω0(n)

P(ω0(n)|ω0(n−1)) = 1

ω̂0(n) = arg max
ω0(n)

log P(ω0(n)|Ω̂(n), Ω̂(n−1), · · · ) (15)

= arg max
ω0(n)

log P(Ω̂(n)|ω0(n)) + log P(ω0(n)|Ω̂(n−1), · · · ).

The priori distribution is defined recursively like

P(ω0(n)|Ω̂(n−1), Ω̂(n−2), · · · ) = (16)∑
ω0(n−1)

P(ω0(n)|ω0(n−1))P(ω0(n−1)|Ω̂(n−1), · · · ),

where P(ω0(n−1)|Ω̂(n−1), · · · ) is the past estimate.
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Bayesian Pitch Estimator
state-space representation of the pitch continuity

Continuous state-space:

ω0(n) = ω0(n−1) + δ(n)

Ω̂(n) = dL(n)ω0(n) + ∆Ω(n),

where δ(n) ∼ N (0, σ2
t ) and ∆Ω(n) ∼ N (0,R∆Ω(n)) are the

state evolution and observation noise, respectively.
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Bayesian Pitch Estimator
Continuous state-space (Kalman filter)

First, a pitch estimate is predicted using the past estimates as

ω̂0(n|n−1) = ω̂0(n−1|n−1) (17)

with the variance

σ2
K (n|n−1) = σ2

K (n−1|n−1) + σ2
t . (18)

Second, the pitch estimate is updated with the error of

e(n) = Ω̂(n)− dL(n) ω̂0(n|n−1). (19)

Then, the predicted estimate is updated:

ω̂0(n|n) = ω̂0(n|n−1) + hK(n)e(n) (20)

hK(n) = σ2
K (n|n−1)dT

L (n)
[

ΠL(n)σ2
K (n|n−1) + R∆Ω(n)

]−1
, (21)

where ΠL(n) = dL(n)dT
L (n), and update

σ2
K (n|n) =

[
1− hK(n)dL(n)

]
σ2

K (n|n−1). (22)
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Covariance Matrix
Estimation

The ML estimator of the covariance matrix among N estimates:

R∆Ω(n) = E{∆Ω(n)∆ΩT(n)}

=
1
N

n∑
i=n−N+1

∆Ω(i)∆ΩT(i), (23)

where ∆Ω(n) = Ω̂(n)− µ̂(n), and µ(n) = E{Ω̂(n)}.

Exponential moving average:

µ̂(n) = λ Ω̂(n) + (1−λ) µ̂(n−1) (24)

The forgetting factor 0 < λ < 1 recursively updates the
time-varying mean value.
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Numerical Results
Synthetic signal

A linear chirp signal (r = 100 Hz/s) with L = 5 harmonics,
random phases, and identical amplitudes during 0.1 s.
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M = 80, ω0(1) = 400π/fs , fs = 8.0 kHz, σt =
√

2πr/f2s , and for the HMM-based pitch estimator, the frequency range
ω ∈ [150, 280] × (2π/fs ) was discretized into Nd = 1000 samples.
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Numerical Results
Real signal

Speech signal + Car noise at SNR= 5 dB.
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The MAP order estimation [Djuric 1998], M = 240, λ = 0.9, and N = 150.
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Conclusion

I For pitch estimation, we have formulated the ML estimate
from the UFE.

I For pitch estimation and tracking, we have proposed
HMM- and KF-based methods.

I Experimental results showed that both HMM- and
KF-based methods outperform the corresponding ML pitch
estimators.

I The KF-based method statistically performs better than
the HMM-based method, while the it tracks pitch changes
more accurate than the KF-based method.
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