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ABSTRACT

This paper presents Subspace Gaussian Mixture Model (SGMM)
approach employed as a probabilistic generative model to estimate
speaker vector representations to be subsequently used in the speaker
verification task. SGMMs have already been shown to significantly
outperform traditional HMM/GMMs in Automatic Speech Recogni-
tion (ASR) applications. An extension to the basic SGMM frame-
work allows to robustly estimate low-dimensional speaker vectors
and exploit them for speaker adaptation. We propose a speaker ver-
ification framework based on low-dimensional speaker vectors esti-
mated using SGMMs, trained in ASR manner using manual tran-
scriptions. To test the robustness of the system, we evaluate the
proposed approach with respect to the state-of-the-art i-vector ex-
tractor on the NIST SRE 2010 evaluation set and on four different
length-utterance conditions: 3sec-10sec, 10 sec-30 sec, 30 sec-60 sec
and full (untruncated) utterances. Experimental results reveal that
while i-vector system performs better on truncated 3sec to 10sec and
10 sec to 30 sec utterances, noticeable improvements are observed
with SGMMs especially on full length-utterance durations. Eventu-
ally, the proposed SGMM approach exhibits complementary prop-
erties and can thus be efficiently fused with i-vector based speaker
verification system.

Index Terms— speaker recognition, i-vectors, subspace Gaus-
sian mixture models, automatic speech recognition

1. INTRODUCTION

Current state-of-the-art speaker recognition is widely dominated by
the use of i-vectors [1], modeled by a generative Probabilistic Linear
Discriminant Analysis (PLDA). I-vector extractor represents a data-
driven front-end which can map a sequence of acoustic feature vec-
tors into a single point in a low-dimensional vector space. I-vector
extractor training requires (though not manually transcribed) a large
dataset with thousands of speakers.

Recently, novel frameworks for speaker recognition perform ex-
traction of sufficient statistics for the i-vector extractor driven by an
Automatic Speech Recognition (ASR) engine, such as a Deep Neu-
ral Network (DNN) [2]. In the field of speech recognition, DNNs
achieve large improvements compared to standard Gaussian Mixture
Models (GMMs) [3, 4]. In case of speaker recognition, DNN is able
to substitute the role of the Universal Background Model (UBM),
applied in the standard framework [2, 5, 6].

Another recent and successful ASR framework, especially in
case of multilingual acoustic modeling and model adaptation is the
Subspace Gaussian Mixture Model (SGMM) [7, 8]. SGMM has

been proposed as an ASR acoustic modeling approach based on the
GMM, where the parameters are represented by a more compact
set and can be split into state-specific and globally-shared model
parameters. Unlike DNN approach interlinked directly with the i-
vector extractor, SGMMs allow for an efficient speaker-adaptation of
the models using low-dimensional vectors in a “speaker subspace”.
These speaker vectors can therefore be exploited directly as an in-
put for subsequent PLDA modeling in the NIST SRE 2010 speaker
verification task, which is the goal of this paper. Unlike our SGMM
approach for speaker verification, speaker vectors from SGMM have
already been used as complementary features for language identifi-
cation task [9].

The outline of the paper is as follows: Section 2 presents the
SGMM modeling and speaker adaptation framework, while Section
3 summarizes the i-vector approach. The experimental protocol and
corresponding results are given is Sections 4 and 5, respectively. Fi-
nally, Section 6 provides the conclusions.

2. SGMM

SGMM is able to compactly represent a large collection of mixture-
of-Gaussian models and has been successfully applied in ASR tasks,
especially for multilingual, or out-of-domain acoustic model adapta-
tion [8]. Unlike conventional HMM/GMMs in which state model pa-
rameters are directly estimated from the data, subspace GMM model
parameters are derived from a set of state-specific parameters, and
from a set of globally-shared parameters which can capture phonetic
and speaker variations.

More particularly, in the case of a conventional GMM, the like-
lihood is given as:

p(x | j) =

Mj∑
i=1

wjiN (x;µji,Σji), (1)

where j is the state and parameters of the model are the weights wji,
means µji and covariance matrices Σji. The SGMM in the basic
case is given as:

p(x | j, s) =

Mj∑
m=1

cjm

I∑
i=1

wjmiN (x;µ
(s)
jmi,Σi) (2)

µ
(s)
jmi = Mivjm + Niv

(s) (3)

wjmi =
expwT

i vjm∑I
l=1 expwT

l vjm

, (4)



where vjm are state specific vectors (with dimension similar to that
of the speech features), v(s) are speaker-specific vectors, and wi,
Mi, Ni and Σi are globally shared parameters. I is the number
of Gaussians in the shared GMM structure, and Mj defines number
of sub-states for each HMM state. This paper suggests to employ
vectors v(s) estimated for each individual speaker from enrollment
and test sets as internal speaker representations to be subsequently
modeled by a data-driven back-end such as PLDA. Since vjm should
correspond to a particular point in phonetic subspace, we presume
that SGMM approach can factor out the phonetic variability from
v(s).

This paper exploits the symmetric version of SGMM (an exten-
sion of the original SGMM as described in [10]), which was shown
to outperform the original model in ASR task. In this version, Equa-
tion 4 is modified to the following:

w
(s)
jmi =

expwT
i vjm + uT

i v
(s)∑I

l=1 expwT
l vjm + uT

i v
(s)

. (5)

Vectors ui ∈ RS(S)

now capture the effect of the speaker vectors on
the weights (S(S) is the speaker subspace dimension). Our work is
mainly interested in “speaker vectors” v(s) ∈ RS(S)

, which live in
a “speaker-subspace” defined by matrices Ni. Equation 3 is remi-
niscent of the Joint Factor Analysis approach in speaker identifica-
tion [12]. The update for speaker vector estimation v(s) is given by
Equation 15 in [10]. SGMM speaker-vectors largely improve speech
recognition accuracies, and it can to some extent be compared with
Speaker Adaptive Training (SAT) approach [11].

3. I-VECTOR EXTRACTOR (BASELINE SYSTEM)

To compare performance of the SGMM speaker vectors, we em-
ploy the state-of-the-art i-vector extractor, implemented for speaker
recognition in [1]. I-vectors represent a GMM supervector using
a single total-variability subspace [13]. An i-vector v(s) estimated
from speaker and session dependent GMM supervector µ(s) can be
represented by:

µ(s) = m + Tv(s), (6)

where m is the speaker and session independent Universal Back-
ground Model (UBM) supervector, and T is a low rank matrix repre-
senting the variations across a large collection of development data.
v(s) is the “i-vector” representation, normally distributed with pa-
rametersN (0, I), used for speaker verification.

4. EXPERIMENTAL SETUP

In this section, we present an experimental setup and an evaluation
methodology of SGMM approach in speaker verification.

4.1. Feature extraction

Throughout all the experiments, we used Mel-Frequency Cepstral
Coefficients (MFCCs) as an input for acoustic modeling. More
specifically, 19 cepstral coefficients were extracted using 25ms Ham-
ming window, together with C0, calculated every 10 ms. The final
20-dimensional feature vector was subjected to the short-time mean
and variance normalization using a 3 sec sliding window. MFCCs
were then augmented by their delta and double-delta coefficients to
provide the final 60-dimensional feature vectors.

4.2. Speech/Non-speech segmentation

First, the speech/silence segmentation is performed by a Hungar-
ian phoneme recognizer1. In this approach, all phoneme classes are
linked to the speech class. Heuristics based on short-term energy are
applied to discard segments with cross-talk for 2-channel files. The
interview data are processed as single channel files. More details are
provided in [14].

Then, this paper introduces four different length-utterance con-
ditions (per individual speaker) for the purpose of evaluating the
speaker verification performance under various utterance lengths:

• duration: full,

• truncated duration: 30 sec to 60 sec,

• truncated duration: 10 sec to 30 sec,

• truncated duration: 3 sec to 10 sec.

Throughout the following experiments, we evaluate only matched
length-utterance conditions, i.e., the enrollment data is truncated into
length similar to the evaluation data.

4.3. I-vector – implementation

For the i-vector extractor, we used an implementation provided by
Kaldi open source software [15]. Although this may not lead to
the best baseline, it allows a quick comparison with the proposed
SGMM algorithm while exploiting exactly same front-end. As a de-
velopment data, LDC releases of Fisher English Parts 1 and 2 were
used. This gives roughly 1076 hours of speech.

First, a gender-dependent UBM with 1024 mixture components
was trained on the development data. More particularly, a single di-
agonal GMM was first initialized and then iteratively trained using
the Expectation-Maximization (E-M) algorithm. This served as an
initialization to estimate a full covariance UBM. Further, a gender-
dependent i-vector extractor was trained on the same data as the
UBM. 400 dimensional i-vectors were extracted to represent each
of the utterances. The dimensionality of the vectors was further re-
duced to 150 using Linear Discriminant Analysis (LDA) projection.
The dimensionality-reduced vectors were length-normalized so that
they conform to the Gaussian modeling assumption of the last block.

For comparison of these length-normalized i-vectors in a verifi-
cation trial, we model the distribution of i-vectors using probabilistic
LDA (PLDA) model. We consider implementation based on [16].
LDA and PLDA were trained on female telephone data from NIST
SRE 2004, 2005, 2006, 2008, Switchboard II Phase 2 and 3 and
Switchboard Cellular Parts 1 and 2. This gives in total about 850
hours of segmented speech. LDA and PLDA models trained on full
length-utterance condition data were exploited throughout all the ex-
periments.

4.4. SGMM – implementation

Similar to the i-vector extractor, SGMM acoustic model, developed
in Kaldi, employs the same front-end – 60-dimensional MFCCs and
speech/non-speech detection. Unlike the UBM applied in i-vector
extractor, the UBM used in SGMM is trained by clustering the Gaus-
sians from all speech classes pooled together from an HMM/GMM
ASR system trained on female utterances of Fisher English Parts 1
and 2 (i.e., exploiting manual transcriptions of the dataset). Sim-
ilar to i-vector system, a gender-dependent UBM with 1024 mix-
ture components is estimated on Fisher data. The same data is used

1http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-
temporal-context



Table 1. ASR results on Fisher development set in Word Error Rates
(WER) [%].

system WER [%]
HMM/GMM 43.2

+SAT (fMLLR) 33.3
SGMM (+ speaker vectors) 31.1

HMM/DNN (+fMLLR) 23.3

to train the SGMM parameters, exploiting manual transcriptions.
SGMM is initialized from the UBM with a low-dimensional pho-
netic subspace dimension S = 40, while speaker dimension S(S)

is varied. The model has 4.3k HMM states provided by a standard
decision tree approach.

4.5. Evaluation methodology

The proposed method employing SGMM was evaluated using the
NIST SRE 2010 data, on the conditions 1 to 5 (cond1 – Interview
- Same Microphone; cond2 – Interview - Different Microphone;
cond3 – Interview - Telephone; cond4 – Interview - Microphone;
cond5 – Telephone - telephone), as given by the evaluation plan [18].
Throughout the experiments we refer to these sets as the evalua-
tion data. Speaker verification performance is reported in terms of
Equal Error Rate (EER), and later on also in terms of Detection Error
Tradeoff (DET) curves [19].

Since the proposed SGMM framework has been first developed
for speech recognition task, we also perform intermediate ASR eval-
uations of the proposed technique. A Fisher development set repre-
sented by 2 hours of speech data is used. The ASR system employs a
CMU dictionary [20] with 42k words and a 3gram Language Model
(LM) for the decoding.

5. EXPERIMENTAL RESULTS

5.1. ASR results

Through all the experiments in this section, acoustic models were
always trained on Fisher English Parts 1 and 2 (similar to SGMMs),
as reported in Section 4.4. Similar to SAT approach in ASR [11],
the SGMM with speaker vectors is built as a several-pass approach.
At the beginning, a speaker-independent acoustic model is applied to
automatically estimate speaker vectors from initial alignments. Then
the speaker-adapted acoustic model is used for subsequent decoding
(or lattice-rescoring).

Table 1 shows ASR results for various acoustic models, as
well as the SGMM system. More particularly, first, a conventional
HMM/GMM system is trained, with 4.3k HMM states (obtained
by a standard decision tree approach) and 100k Gaussians. Then,
SAT is performed through fMLLR (Feature space Maximum Like-
lihood Linear Regression). Second, SGMM is trained with the
same number of HMM states. Number of sub-states is roughly
equal to the number of Gaussians in the HMM/GMM model (i.e.,
I = 1024, J = 4.3k,M =

∑
j Mj = 100k, S = S(S) = 60).

Results demonstrate that the SGMM slightly outperforms the SAT
HMM/GMM system on the Fisher development set. We also devel-
oped state-of-the-art HMM/DNN (hybrid) throughout training Deep
Neural Network (DNN). In this approach, the DNN replaces the
GMM to compute the frame-based phone posteriors. Phone classes
are represented by context-dependent phones obtained by the deci-
sion tree approach from the HMM/GMM system. A six-layer DNN

Fig. 1. DET curve – speaker verification results with scores pooled
from five NIST SRE 2010 conditions (cond1 - cond5). We plot i-
vector (baseline) and SGMM systems with different configurations
as described in Section 5.2.1.

with 540 input nodes, 2500 nodes in each hidden layer and 3.4k
output nodes was trained with cross entropy using the alignment
provided by the HMM/GMM. The input layer of the DNN is com-
posed of the context of 9 frames, where each frame corresponds to
60-dimensional MFCCs transformed using speaker-specific fMLLR
(obtained also from the HMM/GMM(. Achieved results indicate that
HMM/DNN largely outperforms HMM/GMM as well as SGMM
systems.

5.2. Speaker verification results

5.2.1. Full length-utterance condition

Figure 1 summarizes the results for multiple versions of SGMM sys-
tem and compared with the i-vector baseline for the “full” length-
utterance condition. The DET curve is plotted by pooling scores
from all the first five (cond1 - cond5) NIST SRE 2010 conditions.
The generation of speaker vectors in SGMM framework can be split
into two passes. The first pass provides alignments for input speech
utterances and can be easily replaced by another ASR system capa-
ble of automatically generating state-level alignments. The second
pass loads initial alignments and employs the SGMM to estimate
speaker vectors. More precisely, we experimented with these com-
bination of system passes:

• system A - (pass 1) HMM/DNN+fMLLR, (pass 2) SGMM
(100k sub-states, S = S(S) = 60). This system applies LDA
without dimensionality reduction;

• system B - (pass 1) HMM/DNN+fMLLR, (pass 2) SGMM
(5k sub-states∼ 1 sub-state per HMM state, S = 60, S(S) =
400). According to [7], introducing sub-states in SGMM
continuously improves ASR performance. In an usual set-
ting, M is roughly equal to the number of Gaussians of an
HMM/GMM system. Nevertheless, in our paper SGMM is
exploited as a “speaker vector” extractor. We therefore hy-
pothesize that more emphasis should be given to the speaker
subspace by reducing the phonetic subspace. We also in-
crease subspace dimension S(S) to be equal to the dimen-
sion of i-vectors, although we are aware that this leads to an
increase in the number of parameters in Ni (given in Equa-



Table 2. Comparison of the i-vector extractor baseline with the pro-
posed SGMM system in terms of EERs for NIST SRE 2010 evaluation
task.

NIST SRE 2010 (female), EER[%]
system cond1 cond2 cond3 cond4 cond5

length-utterance: 3 sec to 10 sec
i-vector 17.0 21.4 20.1 19.9 21.1
SGMM 17.3 21.7 19.7 19.7 20.8
fusion 14.7 18.6 16.2 17.5 18.8

length-utterance: 10 sec to 30 sec
i-vector 5.7 8.9 9.0 8.9 9.6
SGMM 6.6 9.9 7.9 7.4 7.6
fusion 5.1 8.2 6.6 6.4 6.5

length-utterance: 30 sec to 60 sec
i-vector 2.8 4.6 4.4 3.4 5.9
SGMM 3.1 4.7 3.3 2.7 4.2
fusion 2.8 4.1 2.9 2.6 4.0

length-utterance: full
i-vector 1.6 2.7 2.2 1.8 2.5
SGMM 1.3 2.4 2.1 1.2 2.0
fusion 1.3 2.3 1.5 1.2 1.7

tion 3) which may lead to parameter estimation problems on
modestly-sized systems;

• system C - (pass 1) HMM/GMM, (pass 2) SGMM (5k sub-
states ∼ 1 sub-state per HMM state, S = 60, S(S) = 400));

Similar to the i-vector extractor, SGMM speaker vectors are pro-
jected by LDA (dimensional reduction from 400 to 150), length-
normalized and finally modeled by PLDA. Achieved results visu-
alized in terms of DET curves indicate that (i) dimension expansion
of speaker subspace (S(S) = 400) together with reducing phonetic
sub-states bring significant improvement (system A → B), (ii) an
alignment obtained by the best ASR system (i.e., the HMM/DNN)
further improves speaker verification results (system C→ B).

5.2.2. Full and truncated length-utterance conditions

Further experiments take into account the best SGMM system (sys-
tem B) described in the previous section. The SGMM system is ap-
plied to other three truncated length-utterance conditions (as defined
in Section 4.2). Similar to Figure 1, Figure 2 plots DET curves by
pooling scores from NIST SRE 2010 conditions 1 to 5. In addition,
Table 2 demonstrates speaker verification results in terms of Equal
Error Rates (EERs) individually for each length-utterance and NIST
SRE 2010 condition.

In addition to SGMM and i-vector systems, Figure 2 and Table 2
show results for system fusion. More particularly, scores are linearly
combined with weights equal to 0.3 and 0.7 for i-vector and SGMM
systems respectively. We did not perform any calibration.

As expected, the speaker verification performance for both sys-
tems significantly degrades for short durations. The largest degra-
dation can be observed for length-utterances 3sec to 10sec. In gen-
eral, i-vector and SGMM systems provide complementary results. I-
vector system performs better for NIST SRE 2010 conditions 1 and
2 (interview speech), while SGMM outperforms the i-vector system
for conditions 3 to 5 (conversational speech). Furthermore, as clearly
seen from DET curve in Figure 2 for the case of pooling scores from
conditions 1 to 5, i-vector system achieves better performance for
3 sec to 10 sec and 10 sec to 30 sec long utterances. In case of 30 sec

Fig. 2. DET curve – speaker verification results with scores pooled
from five NIST SRE 2010 conditions (cond1 - cond5) for four differ-
ent length-utterance conditions (3 sec-10 sec, 10 sec-30 sec, 30 sec-
60 sec, untruncated (full)).

to 60 sec, performances are similar. If the utterances were not trun-
cated (duration full), SGMM performs noticeably better.

As mentioned before, LDA and PLDA models were always
trained on full length-utterance condition using development data.
We also experimented with LDA+PLDA models trained on truncated
utterances, as partially motivated by [21], but without observing any
improvement.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an alternative approach for speaker recog-
nition based on employment of speaker vectors estimated using the
SGMM framework. The proposed approach integrates speech recog-
nition in the speaker modeling process by using SGMM trained in
the ASR manner. The proposed system operates in two passes. We
showed that the first pass, which provides an alignment for a speech
utterance, can be efficiently replaced by state-of-the-art HMM/DNN
ASR system. The second (SGMM) pass exploits initial alignments
and estimates speaker vectors. Eventually, SGMM-based speaker
vectors are modeled by a Bayesian back-end represented by PLDA.

Experimental results suggest that SGMM system outperforms i-
vector for NIST SRE 2010 conditions 3 to 5 (conversational speech),
while the baseline system is generally better for conditions 1 and
2 (interview speech). In terms of different length-utterance exper-
iments (matched conditions), the proposed SGMM system outper-
forms the baseline for untruncated (full) length-utterance condition.
In case of very short (3 sec-10 sec and 10 sec-30 sec) utterances,
the i-vector system gave overall better performance. The proposed
SGMM approach exhibits complementary properties and can thus
be efficiently fused with i-vector based speaker verification system.
A natural next step for this work includes testing on mismatched
length-utterance conditions.
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