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ABSTRACT

Standard deep neural network-based acoustic models for automatic
speech recognition (ASR) rely on hand-engineered input features,
typically log-mel filterbank magnitudes. In this paper, we describe
a convolutional neural network - deep neural network (CNN-DNN)
acoustic model which takes raw multichannel waveforms as input, i.e.
without any preceding feature extraction, and learns a similar feature
representation through supervised training.

By operating directly in the time domain, the network is able to
take advantage of the signal’s fine time structure that is discarded
when computing filterbank magnitude features. This structure is
especially useful when analyzing multichannel inputs, where timing
differences between input channels can be used to localize a signal in
space. The first convolutional layer of the proposed model naturally
learns a filterbank that is selective in both frequency and direction of
arrival, i.e. a bank of bandpass beamformers with an auditory-like
frequency scale. When trained on data corrupted with noise coming
from different spatial locations, the network learns to filter them
out by steering nulls in the directions corresponding to the noise
sources. Experiments on a simulated multichannel dataset show that
the proposed acoustic model outperforms a DNN that uses log-mel
filterbank magnitude features under noisy and reverberant conditions.

Index Terms— Automatic speech recognition, acoustic model-
ing, convolutional neural networks, beamforming

1. INTRODUCTION

Recently, supervised training of deep classifiers has been shown to
be effective at learning meaningful feature representations jointly
with state-of-the art classifiers from raw, unprocessed data in both
computer vision [1] and speech acoustic modeling [2, 3]. However,
speech neural networks are usually trained on hand-designed features,
e.g. PLP or log-mel filterbank magnitude coefficients, which are
loosely inspired by the human auditory system and have been shown
to work well for a variety of speech and audio processing tasks. [4]
reviews recent work on neural network acoustic models.

In this work we present a CNN-DNN architecture able to learn
acoustic models directly from waveforms. We follow a multi-
condition training paradigm and train this network on a variety
of noisy and reverberant conditions in both single- and multiple-
microphone configurations. When trained on single-channel wave-
forms we show that this network is able to learn an auditory-like time
domain filterbank. We compare the performance of this network to
a DNN trained on log mel-frequency magnitude filterbank (mel-fb)
features and find that performance is only slightly worse than this
baseline. This is in line with previously reported results [2, 3, 5].

The first author performed this work as an intern at Google.

When trained on multichannel inputs, the network learns a fil-
terbank with a similar frequency scale that also exhibits directional
selectivity to filter out energy coming from different spatial directions,
essentially a bank of bandpass beamformers. By learning to exploit
the directional cues present in the multichannel waveform inputs,
this network improves recognition performance when compared to a
baseline trained on mel-fb features from each input channel.

2. PREVIOUS WORK

A large body of work exists on noise-robust ASR for distant mi-
crophones, often leveraging observations from multiple channels.
Many techniques have been applied to this problem, including time-
frequency masking, noise modeling, and beamforming. Results from
the recent REVERB [6] and CHIME [7] challenges demonstrate how
these techniques can be used in combination, e.g. [8] who combine a
speech enhancement frontend comprised of linear prediction derever-
beration, beamforming, and model-based noise reduction at the input
to an ASR system. In this work we train a system end-to-end, jointly
optimizing a noise-robust frontend along with the context-dependent
phone state DNN classifier, rather than manually designing a noise-
robust feature extraction stage prior to DNN training. Our work
differs from the typical approaches used for time domain speech fea-
tures, e.g. [9], by learning features rather than hand-designing them.
In multi-microphone, i.e. microphone array, scenarios, much work
has been done on tailoring the spatial response, or “beampattern”, to
emphasize the target while attenuating the noise [10].

There has been some previous work on moving more of the
feature extraction into the neural network by using a lower level input
representation, e.g. FFT or time domain waveform. Sainath et al. [11]
improve performance by training a model on linear frequency FFT
magnitude features to learn filterbank weights automatically rather
than relying on the mel scale [12]. Their work demonstrates that deep
neural networks can be used to learn a better representation using a
lower level input representation than is traditionally used in ASR.

Other work has attempted to do feature learning directly from
time domain waveforms. Jaitly and Hinton [5] separated feature learn-
ing from acoustic modeling, using a generative restricted Boltzmann
machine model to learn features from single-channel waveforms, then
used these features for DNN acoustic model training, demonstrating
good results on the TIMIT dataset. More recently, Palaz el al. [2]
trained a CNN directly on raw TIMIT waveforms, and show that
the network tends to learn bandpass filters when trained to do phone
classification. Tüske et al [3] similarly train a DNN acoustic model on
waveforms and show that auditory-like features can be learned from
random initialization. They pass the waveform into a fully connected
layer, which likely requires additional hidden units in order for the
network to learn multiple phase shifts of the same filter. This con-
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Fig. 1. Schematic of the proposed neural network architecture.

trasts with [2] and the current work which use a convolutional time
domain filtering layer which can share weights across all time shifts.
[2] and [3] both found that their waveform-based models performed
slightly worse than baselines trained on mel-fb or MFCC features.

To our knowledge, no previous work has been done on end-to-
end feature learning and acoustic model training from multichannel
waveforms. Swietojanski, et al. [13, 14] trained deep learning-based
acoustic models on multichannel inputs, however they used mel fil-
terbank magnitude features for each input channel. The network
architecture in [14] is composed of a single convolutional layer fol-
lowed by several fully-connected DNN layers. Their best results are
obtained by processing each channel independently in the initial layer
and then max pooling across channels i.e. choosing the channel with
the largest response in each node. Since their approach only utilizes
magnitude-based features, it is unable to make use of the spatial in-
formation found in the fine time structure (which lies primarily in the
previously discarded FFT phase values) of the multichannel signals.

3. ARCHITECTURE

By constructing a neural network architecture to mimic the steps
involved in computing mel-fb features, we can train an acoustic
model that performs well without requiring manual design of features.
Given a single-channel input, our architecture learns a representation
qualitatively quite similar to mel-fb features. The choice of operating
in the time domain is further justified when using multichannel inputs
which allows the network to learn spatial filters that filter out noise.

A baseline deep neural network acoustic model can be described
in three stages: (i) the signal is windowed into 25ms frames hopped
by 10ms and passed through a mel-scale filterbank, (ii) filterbank out-
puts from several adjacent frames are stacked to create a feature vector
containing additional temporal context, spanning a few tens of frames
(hundreds of ms), (iii) each stacked feature vector is then classified
into tied context-dependent (CD) units using a deep classifier.

Our CNN-DNN architecture is general enough to be able to
describe filterbank extraction and classification jointly. We have cho-
sen the network meta-parameters to closely resemble the pipeline
described in steps (i) and (ii) above, but all weights and filter coeffi-
cients are learned. A sketch of the architecture can be seen in Fig. 1,
consisting of the following layers:

1. Input: This layer extracts 275 ms waveform segments from
each of M input microphones. Successive inputs are hopped
by 10 ms. At the 16kHz sampling rate used in our experiments
each segment contains M × 4401 dimensions.
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Fig. 2. Magnitude responses of the CNN filterbank when initial-
ized from a gammatone filterbank whose center frequencies match
the mel scale (left), gammatone-initialized filters at the end of train-
ing (middle), and random-initialized filters at the end of training
(right). The filters are sorted by the frequency bin containing the
peak response. At convergence, both the gammatone and randomly
initialized weights end up with qualitatively similar responses.

2. Convolution: F space-time filters of support (M × 25 ms) are
learned. The coefficients are trained jointly with the classifica-
tion task without any constraints or regularization.

3. Rectification and pooling: The output of each filter is passed
through a ReLU unit (a half-wave rectifier, [15]) and max-
pooled (across time, separately for each filter) over a window
of 25 ms hopped by 10 ms. The window duration and hop size
match those of mel-fb features.

4. Compressive non-linearity: Each pooled feature is passed
through a pointwise log function log(· + 0.01), where the
offset of 0.01 truncates the output range and avoids giving too
much weight to small values, and potential numerical issues
that would occur if the input were zero. This compresses the
dynamic range of the features, which has consistently been
found to improve speech recognition performance.

5. Fully connected layers: 4 fully connected layers of 640 units
with ReLU activations.

6. Softmax multiclass classifier: 13568 tied CD state units.

The output of the compressive non-linearity layer is analogous to
several stacked frames of mel-fb features, and the following layers
are identical to our baseline fully connected DNN acoustic model.

3.1. Relationship to a mel-scale filterbank

Mel-fb features are normally computed in the frequency domain by
warping the frequency axis of the short-time Fourier transform (STFT)
magnitude to match the mel frequency scale. While the network
described in this section computes features in the time domain, it
can be configured to compute nearly the same representation. The
convolution layer learns a bank of finite impulse response (FIR) filters,
and the pooling layer decimates each filter output in time, analogous
to the windowing operation in the STFT. By setting the weights of
each filter to the impulse response of an appropriate bandpass filter,
e.g. a gammatone, a bank of filters can be constructed so that the filter
center frequencies and bandwidths match an auditory scale, e.g. the
mel scale, in which case the combined operation of layers 1-4 will
compute a representation qualitatively very similar to mel-fb. Such an
auditory-scale gammatone filterbank has been shown to yield speech
recognition performance comparable to mel-fb [16]. As shown in
Figures 2 and 3, the network indeed learns an auditory-like time
domain filterbank, even when the weights are initialized randomly.



Fig. 3. Examples of the trained filters and their spatial responses.
These come from a network trained on audio in which the target
speaker was fixed near 90 degrees, and interfering noise sources came
from a wide range of directions.

3.2. Spatial filtering

Sampling the same signal at different points in space using a micro-
phone array makes it possible to extract information about the spatial
location of components of the signal. For example, a delay-and-sum
beamformer uses the expected time delay of the signal arriving at each
microphone to emphasize sound coming from a particular direction.

Inter-microphone delays for an array spanning 14 cm (as in our
experiments) are less than 1ms, much smaller than the window used
in short-time representations like mel-fb. Such fine time structure
is preserved in the phase of the STFT, but this is discarded when
computing magnitude-based features.

By learning filters spanning all microphones in the time domain,
the network is able to use the fine inter-microphone time structure
and steer filters in different directions. In practice, the network learns
a bank of filters with a primarily bandpass response in frequency, but
at different time delays in each microphone to steer nulls in different
directions. Examples of this behavior can be seen in Fig. 3.

4. EXPERIMENTS

We train and evaluate the proposed network on several large-
vocabulary Voice Search [17] datasets. The Clean training set
contains about 400 hours of audio from thousands of different speak-
ers, containing roughly 330000 utterances. There is a matched test
set of 36 hours of audio containing 30000 utterances.
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Fig. 4. A two-channel stacked mel-fb spectrogram (top) and brain-
ogram (bottom). Note how the additive noise around 2.0s has been
attenuated by the spatial selectivity of the filters formed by the con-
volutional layer. The brainogram appears stretched with respect to
the spectrogram because the spectrogram image consists of two mi-
crophones (two channels) stacked on top of one another, while the
brainogram is the outputs of the trained convolutional units (sorted
by peak response frequency).

The Fixed set was generated by passing each utterance of Clean
through a room simulator (based on the image method of simulating
reverberation [18]) that simulates reverberation and additive noise.
For training, the simulated room dimensions were 4.8m×4.3m×2.9m,
and for testing, they were 5m×4m×3m. For both testing and training,
the absorption coefficients of the simulated walls were set to vary the
RT60 from 0 to 0.4 seconds, and the noise signal gain was varied
to achieve signal-to-noise ratios between 5dB and 25dB. The target
speaker was simulated as coming from broadside of a two-element
(stereo) array with inter-microphone spacing of 14cm. The noise
signals were obtained from YouTube videos and from recordings in a
cafe, and were modeled to come from 30 degrees off of broadside.

In realistic settings the location of the different sources are un-
likely to be fixed. We therefore created a Varied dataset, similar to
Fixed in most ways, except that for each utterance the target speaker
is situated randomly in the range of ±5 degrees of broadside (to
model target direction estimation error), while noise may come from
a range of ±90 degrees of broadside.

For training, each utterance was first forced-aligned to its compo-
nent CD units using a baseline mel-fb DNN acoustic model trained on
clean data. Each training example consisted of 275 ms input samples
and a CD unit label as output. Each training dataset was randomly
split into train (95%) and validation (5%) sets. The training data was
normalized to have zero mean and unit variance.

All weights and biases were randomly initialized with the unit
normal distribution unless specified otherwise. The network was
trained with Asynchronous Stochastic Gradient Descent [19] using
1200 CPUs in a compute cluster. Weights were adjusted by Adagrad
[20], with a learning rate of 0.01. The batch size was 100 examples,
each containing a single frame, and the network was trained for 800
million examples (13 epochs).

4.1. Features learned

The magnitude responses of the convolution filters trained on a single
channel of Varied are plotted in the right two panels of Fig. 2. The



Model Clean Fixed Varied

Mel-fb DNN 25.6% 39.8% 39.5%
Waveform CNN 27.2% 41.6% 41.5%
Waveform CNN
mel gammatone fixed 28.8% 43.6% 43.5%
Waveform CNN
mel gammatone init 27.1% 41.7% 41.5%
Waveform CNN no log 28.5% 43.0% 42.9%

Table 1. Single-channel word error rate (WER). The DNN has
10.59M parameters. CNNs have 10.61M params. All models have 40
dimensions/frame, 26 stacked frames, and are trained on Varied.

Model Train set Fixed Varied

Stacked mel-fb DNN Fixed 39.2% 39.3%
Stacked mel-fb DNN Varied 39.0% 38.9%
Waveform CNN Fixed 37.5% 52.0%
Waveform CNN Varied 38.4% 38.1%
Beamformer mel-fb DNN Fixed 35.9% 36.6%
Beamformer mel-fb DNN Varied 36.0% 36.3%

Table 2. Two-channel WER. The DNNs have 11.26M parameters.
CNNs have 11.32M params. All models have 80 dimensions/frame
and 26 stacked frames.

filterbanks converge to an auditory filter-like representation, consist-
ing of primarily bandpass filters with nonuniformly spaced center
frequencies (although not exactly matching the mel scale) and band-
widths that increase with center frequency. These properties have
been observed in the human auditory system and are typically man-
ually encoded in the hand engineered features. Similar filters were
also observed by [3, 5].

To test the effects of initialization we initialized the weights of
the convolutional layer to gammatone impulse responses with center
frequencies on the same scale as mel-fb. Fig. 2 shows the magnitude
response of the initial filters, the converged filters after gammatone
initialization and the filters learned using random initialization. In all
cases, the filters have similar bandpass structures, and the converged
filters look similar regardless of the initialization.

In the multichannel scenario, we train our network on 2 chan-
nels from Varied using 80 filters in the first layer to match the 80-
dimensional stacked mel-fb features (40 features from each micro-
phone) in our baseline DNN. Fig. 3 shows several example filters
learned by the network. The right column shows the time domain
filter weights and the left column shows the beampattern [10, Ch.
3], plotting the magnitude response of each filter as a function of
direction of arrival relative to the microphone array. As in the single
channel case, the filters primarily have bandpass responses. For each
filter, the impulse responses tend to have similar shape but different
time delays across channels. The delay corresponds to a beam steered
in a particular direction which can suppress interference from else-
where. The network sometimes learns filters with the same support in
frequency, but different inter-channel delays and therefore different
spatial responses, e.g. as in the fourth and fifth rows of the figure.

Fig. 4 shows an utterance passed through a two-microphone mel-
scale spectrogram without frame stacking (top) and the corresponding
“brainogram” output of the log layer in our 2 channel network (bot-
tom). The response of the pooling layer is similar to the response of
the mel-scale spectrogram, but note that our features have been able

to suppress some of the noise that the standard spectrogram retained
(see for example at time 2.0s). This illustrates that our network has
effectively learned mel-spectrogram-like multichannel features that
are able to deal with noisy conditions.

4.2. Quantitative results

In Table 1 (single channel), our waveform CNN is compared to a
standard front-end using the stacked mel-fb features described in
Sec. 3 fed into the top layers of the network described in Sec. 3 (the
fully connected layers and the softmax layer). We find that the net-
work is able to learn good quality acoustic models with only slightly
lower performance than the standard features (1.5-2%) for clean and
noisy data. This result extends the results in [2, 3] to multicondition
training with noise and reverberation. We also found that the network
performs equally well with random initialization as with gammatone
initialization. In both cases learning filter weights performs better
(2%) than fixing (not training) the convolutional layer to compute
gammatone filters. Finally, removing the log operation from the fron-
tend hurts waveform CNN performance by 1.5%, highlighting the
importance of dynamic range compression.

In the multichannel case (Table 2) we compare the waveform
CNN against stacked mel-fb features similar to [13, 14] (but without
pooling across channels) and against mel-fb features computed on
the output of a delay-and-sum beamformer. By learning spatial filters
the waveform CNN is able to outperform the mel DNN baseline in
both scenarios when the train and test sets are matched. In contrast,
the stacked mel-fb baseline only observes the magnitude from each
channel, so it cannot make use of the timing differences between
them. Delay-and-sum beamforming, which exploits the fine time
structure of the waveforms to reduce noise coming from directions
other than the target direction, performs best overall, consistent with
our single-channel findings regarding waveform CNN vs. mel-fb.

The waveform CNN trained on Fixed performs poorly on the
Varied test set because it is overfit to the (fixed) geometry of the
training data. In contrast, the waveform CNN trained on Varied
outperforms stacked mel-fb on both Varied and Fixed.

5. CONCLUSION

We presented a DNN architecture for speech acoustic modeling from
multichannel waveforms. With network filter length, pooling window
and hop chosen to match a mel-fb baseline, we find that the network
learns a bank of bandpass beamformers which qualitatively follow an
auditory filterbank-like scale and which have spatial selectivity that
exploits the structure of the data. When noise always arrives from a
consistent direction, the network learns to steer nulls in that direction,
reducing the noise level and improving recognition performance
compared to a stacked mel-fb magnitude-based baseline. However
this is not robust to more realistic situations where interfering noise
can arrive from any direction. We show that expanding the training
data to include noise from a variety of directions leads to more robust
performance, and to spatial filters steered in many different directions.

Although the network learns a reasonable feature representation,
performance remains slightly worse than the baselines, mirroring
previous results in the literature. We believe that there is room for
improvement by moving away from the parameterization of the mel-
fb baseline to see if performance can be improved, e.g. by exploring
smaller pooling window sizes, potentially retaining filterbank output
at multiple time scales, and by giving the frontend layers additional
filtering capacity, e.g. by incorporating recurrent state in the early
layers which might be able to compensate for reverberation.
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“Acoustic modeling with deep neural networks using raw time
signal for LVCSR,” in Interspeech, Singapore, Sept. 2014.

[4] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-
rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, Tara N Sainath, et al., “Deep
neural networks for acoustic modeling in speech recognition:
The shared views of four research groups,” Signal Processing
Magazine, IEEE, vol. 29, no. 6, pp. 82–97, 2012.

[5] Navdeep Jaitly and Geoffrey Hinton, “Learning a better rep-
resentation of speech soundwaves using restricted Boltzmann
machines,” in ICASSP. IEEE, 2011, pp. 5884–5887.

[6] Keisuke Kinoshita, Marc Delcroix, Takuya Yoshioka, Tomohiro
Nakatani, Armin Sehr, Walter Kellermann, and Roland Maas,
“The REVERB challenge: A common evaluation framework
for dereverberation and recognition of reverberant speech,” in
WASPAA. IEEE, 2013, pp. 1–4.

[7] Emmanuel Vincent, Jon Barker, Shinji Watanabe, Jonathan
Le Roux, Francesco Nesta, and Marco Matassoni, “The second
CHiME speech separation and recognition challenge: Datasets,
tasks and baselines,” in ICASSP. IEEE, 2013, pp. 126–130.

[8] Marc Delcroix, Takuya Yoshioka, Atsunori Ogawa, Yotaro
Kubo, Masakiyo Fujimoto, Nobutaka Ito, Keisuke Kinoshita,
Miquel Espi, Takaaki Hori, Tomohiro Nakatani, and Atsushi
Nakamura, “Linear prediction-based dereverberation with ad-
vanced speech enhancement and recognition technologies for
the reverb challenge,” in REVERB Workshop, 2014.

[9] Zhaozhang Jin and DeLiang Wang, “Reverberant speech segre-
gation based on multipitch tracking and classification,” IEEE
Transactions on Audio, Speech, and Language Processing, vol.
19, no. 8, pp. 2328–2337, 2011.

[10] Jacob Benesty, Jingdong Chen, and Yiteng Huang, Microphone
Array Signal Processing, Springer, 2008.

[11] Tara N. Sainath, Brian Kingsbury, Abdel-rahman Mohamed,
and Bhuvana Ramabhadran, “Learning filter banks within a
deep neural network framework,” in ASRU. IEEE, 2013, pp.
297–302.

[12] Satoshi Imai, “Cepstral analysis synthesis on the mel frequency
scale,” in ICASSP. IEEE, 1983, vol. 8, pp. 93–96.

[13] Pawel Swietojanski, Arnab Ghoshal, and Steve Renals, “Hybrid
acoustic models for distant and multichannel large vocabulary
speech recognition,” in ASRU. IEEE, 2013, pp. 285–290.

[14] Pawel Swietojanski, Arnab Ghoshal, and Steve Renals, “Convo-
lutional neural networks for distant speech recognition,” Signal
Processing Letters, 2014.

[15] Vinod Nair and Geoffrey E Hinton, “Rectified linear units
improve restricted Boltzmann machines,” in Proceedings of the
27th International Conference on Machine Learning (ICML-10),
2010, pp. 807–814.
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