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ABSTRACT

Current statistical parametric text-to-speech (TTS) synthesis meth-
ods allow production of neutral speech with acceptable quality.
However, prosody is often qualified as unsatisfactory and sounding
too flat. In this paper, we address intonation modelling for TTS
based on physiological aspects of prosody production. A set of
gamma distribution shaped atoms is defined and then intonation de-
composition is performed using a matching pursuit algorithm. Some
preliminary experiments show that this model allows easy extraction
of physiologically meaningful atoms that could be used to generate
intonation in a TTS system.

Index Terms— Intonation modelling, matching pursuit, physi-
ology, text-to-speech synthesis

1. INTRODUCTION

We are interested in modelling prosody in the context of speech to
speech translation. To this end, we require a model that can be both
extracted from a speech signal and recreated in a synthetic speech
signal. Further, given that prosodic events will need to be translated,
it is necessary that the semantic events be clearly associated with
their acoustic realisation.

Prosody modelling is a topic that has been investigated for many
decades. With regard to TTS, it has become even more critical with
the emergence of efficient statistical parametric TTS in the last years,
as in recent systems, prosody is a limiting factor towards naturalness.
Although neural networks recently started to be used for this pur-
pose [1, 2, 3], hidden Markov model (HMM)-based TTS [4] remains
the most popular way of achieving statistical parametric synthesis.

If we consider the three main aspects of prosody in a speech
signal — intonation, duration and intensity — HMM-based TTS deals
with intensity and intonation in a similar manner, as they are mod-
elled framewise. Duration is modelled using hidden semi-Markov
models (HSMMs) which encode duration as a parameter. The higher
level dependencies of prosody are modelled using decision trees that
take into account the context of each phone (position in syllable,
in word, in phrase, stress, etc.). This framework allows synthesis
of neutral read speech with satisfactory quality, but in the case of
expressive speech, prosody often impacts the naturalness of the pro-
duced speech.

There are many intonation models, that we can divide in two cat-
egories: the ones which directly model fundamental frequency Fy —
e.g. [5, 6, 7, 8, 9] and the ones which try to imitate the underlying
Fy production process — e.g. [10, 11]. Our interest towards the latter
category lead us to develop a model that is based on physiological
evidence of prosody production. One of the motivations of such a
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model is that it would be language independent. The possiblity to ex-
tract information from intonation and to synthesise intonation from
parameters also makes it appealing for speech to speech translation.
We propose a model using a matching pursuit algorithm to decom-
pose intonation into physiologically meaningful atoms and present
some preliminary results.

The paper is organised as follows: Section 2 presents the under-
lying physiological aspect of prosody production, Section 3 intro-
duces our model, Sections 4 and 5 give details on the experimental
setup, evaluation and results, and Section 6 concludes the paper and
gives perspectives.

2. PHYSIOLOGICAL ASPECT OF INTONATION
GENERATION

The physiology of the production of intonation gives a solid basis
for building an intonation model that will be language independent
as the same vocal apparatus is used to generate pitch in all languages.
The physiological mechanisms at work determining the frequency of

vocal fold vibration are quite complex.
2.1. Sources of physiological variation in F{

Four physiological sources of F change were identified by Strik [12]
where their influence on pitch was assessed through measurements
including electromyographic (EMG) recordings of the relevant la-
ryngeal muscles.

1. Cricothyroid (CT) muscle — rotates the thyroid cartilage in
respect to the cricoid, stretching the vocal cords and raising
ko,

2. Vocalis (VOC) muscle — found within the vocal cords, its con-
traction decreases vocal cord length, but increases their ten-
sile stress, the net effect being a rise in Fy [13],

3. Sternohyoid (SH) muscle — one of three strap muscles used to
alter the position of the larynx; lowers the larynx decreasing
vocal cord tension and Fy,

4. Subglottal pressure (Ps;) — increased Py, is found to linearly
correlate with increased Fp.

The measurements presented by Strik [12] show that the CT and
VOC activations are correlated and effectuate a rise in Fp, as do
peaks in Pgp. In contrast, the activation of SH coincides with drops
in Fp. Another important observation made by Strik is that only
the Py signal has a global component, while the other feature only
local ones. This leads him to argue that it is in fact the Ps, which is
responsible for the phrase component of intonation.

2.2. Physiological interpretation of Fujisaki’s model

Fujisaki’s model [10] is based on modelling intonation using a global
phrase component and local accent components. Seeking physiolog-
ical interpretation of these two parameters, Fujisaki stated that they



are both attributed to the CT muscle, i.e. to its two functionally dif-
ferent parts [14]:

e pars obliqua — causes horizontal translation of the thyroid,
stretches the vocal cords and raises Fp, responsible for the
phrase component,

e pars recta — causes thyroid rotation as described in 2.1, re-
sponsible for the accent component.

The physiological basis for negative accent components corre-
sponding to drops in Fp, which are needed to model tonal languages
with Fujisaki’s model, are attributed to the thyrohyoid (TH) muscle
which, like SH, is one of the strap muscles and rotates the thyroid in
the opposite direction to the one caused by the CT.

The physiological interpretation of Fujisaki’s model is not in
complete accord with the findings presented by Strik (section 2.1).
One noteworthy difference is that Strik [12] has shown that negative
local components are not exclusive to tonal languages, as they are
clearly found in Dutch. This leads us to believe that a more physio-
logically plausible intonation model can be developed.

3. INTONATION MODELLING

Based on the physiological aspects described in section 2 and using
prior work on intonation modelling, we derive a new way of decom-
posing intonation.

3.1. Prior work on intonation modelling

We are interested in intonation modelling for TTS. Describing all
the models proposed to explicitly parameterise intonation would be
a difficult task and we will only mention a few of the most popular
ones.

The INTSINT model [6] aims to provide a transcription of into-
nation in a multi-lingual framework in an automatic way. An into-
nation curve is described as a sequence of target points, which are
defined using the speaker’s pitch range and/or the previous point as
a reference. This model has been used for synthesis of French into-
nation [15].

The tilt model [7] is an evolution of the rise/fall/connection
(RFC) model [16], which models intonation as a sequence of events.
These events are described using three parameters: duration, am-
plitude and tilt, where the tilt parameter describes the shape of the
event. These three parameters can be related to RFC parameters.
They can be extracted automatically and the synthesis steps are
straightforward. The main criticism on this model is the difficulty of
predicting the parameters from linguistics.

Another interesting model is SFC [8] (Superposition of Func-
tional Contours), which is a data driven model relying on metalin-
guistic information for synthesis. The model is superpositional as it
is composed of several components trained using neural networks.
The functional contours are extracted from a prosody rich corpus.

Finally, one of the most popular and that has been used a lot in
the past is the command-response model [10], that will be described
in more detail in Section 3.2.

All these models share a common distinctive feature which is the
use of continuous Fy contour. It was shown that using continuous
Fy improves the quality of synthesised intonation [17]. Therefore
we use continuous Fy contours and except if mentioned otherwise,
Fp will refer to a continuous curve in the rest of the paper.

3.2. Decomposition of Fj

Following previous work [18], Fujisaki defined the logarithm of Fj
as the sum of a baseline level, phrase components, and accent com-
ponents [10].

This formulation, also known as the command-response model,
assumes that the global shape of an utterance log Fp is generated
from the response to phrase commands, while the local variations
are accounted for by accent command response. This model assumes
critically-damped second-order linear systems. Phrase components
are then response of the system to impulsive driving forces, accent
components are responses of the system to step driving functions.

A discrete-time version of Fujisaki’s model was derived and a
statistical model for the Fp contours proposed [19]. Phrase and ac-
cent command pairs are modelled using an HMM with some par-
ticular constraints: a phrase component cannot occur while an ac-
cent command is still active, there cannot be overlap between accent
commands. Using generative models such as HMM should allow for
synthesis of plausible Fy contours. This model was further improved
to model duration of the step functions using substates [20].

The step response function to the accent command is equivalent
to the impulse response to a train of phrase command like impulses
(and we can relate it to the spikes sent from the brain to muscles). It
is then possible to define all Fujisaki parameters in terms of impulse
responses and therefore by responses of the type [10]:
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Prom-on found that using higher order systems improves mod-
elling [21]. Third order was found to perform better than second
order, and fourth order to improve marginally compared with third
order. Higher order critically damped systems lead to functions
of the general gamma form, which has a convenient definition.
Equation (1) can then be written as:
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withk =2and 0 = 1/a.

Based on these observations, we try to decompose F{ using a set
of kernel functions of the form (2). If higher order gamma shapes fit,
we can infer that the underlying process is also higher order.

3.3. Using matching pursuit to decompose Fp

The matching pursuit algorithm [22] allows approximation of a sig-
nal z(¢) into a linear combination of so-called atoms, given a dictio-
nary of kernel functions in the following way:

Im
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where {¢1, ..., ¢} is the dictionary, aum,,; is the gain of the instance
1 of kernel ¢,,, and 7., ; its time delay, and € is the residual error.
Matching pursuit is a greedy algorithm which achieves this decom-
position up to some error € by operating iterative local optimisations.
At each iteration, the algorithm computes the correlation between
the signal and every atom from the dictionary, finds the most corre-
lated atom and subtracts the weighted atom from the signal. These
steps are applied on the residual signal until some accuracy threshold
is reached.

As explained in section 2, we want to decompose the intonation
contour using a two layer representation: a layer corresponding to a



phrase component, and a layer of local components corresponding
to muscle responses. For that purpose, we decompose Fp in a two
pass process: first an iteration of matching pursuit is applied on the
continuous Fp contour to get the main component of the intonation.
This is done with a dictionary of long atoms that can span more than
the length of the utterance. The second step consists of applying
matching pursuit on the residual obtained in the first step. The ex-
tracted atoms are then selected using a weighted root mean square
error (WRMSE) criterion defined in 3.4.

The dictionary consists of atoms of the form of equation (2).

Our contour is then modelled as a base offset component, a
phrase component, and the sum of gamma distribution shaped atoms:

Na
log Fo(t) = Fy + apFop(t) + »_ aiGr, 0, (t — 7) + €(t)  (4)
=1

where G, ¢ and Fy,, are defined in (2) (with k = 2 for Fpp) , ap
is the gain of the phrase component, and «; and 7; are the weights
and the time offsets associated to the atoms G, g, (t), €(t) is the
residual. The phrase component is the same as in Fujisaki’s model,
except that 6 can take different values.

The way matching pursuit decomposes Fy does not allow to ex-
tract a train of impulses modelling an accent component from Fu-
jisaki’s model, as it will replace it by a bigger atom. However, Fu-
jisaki developed the command-response model to model Japanese
intonation, in which case it makes perfect sense due to the structure
of the intonation produced in Japanese. Our model aims to be suit-
able for any language, and its physiological basis is a way to achieve
1t.

A summary of the procedure is given in Algorithm 1.

Algorithm 1 Atom decomposition

1: procedure ATOM DECOMPOSITION
2: Extract Fp, energy and POV from waveform.

3: Subtract F'b = Fomin.
4: Extract Fp), using matching pursuit and subtract it.
5: Extract atoms using matching pursuit.
6: Loop:
7: if WRMSE < Threshold then
8: goto End.
9: else
10: if Atom decreases WRMSE by more than 0.001 then
11: Keep the atom and goto Loop.
12: else
13: Discard the atom and goto Loop.
14: end if
15: end if
16: End.

17: end procedure

3.4. Intonation similarity measures

Two methods were used to evaluate the perceptual distance of the
intonation contour obtained with the atom decomposition process:
the weighted root mean square error (WRMSE) and the weighted
correlation coefficient, both introduced by Hermes [23]. The first is
also used within the atom decomposition process.

The weighted RMS distance between the modeled and the orig-
inally extracted pitch contour, was calculated using (5). Here w(%)
and p(7) are the weighing functions, i.e. the speech signal power

and the probability of voicing (POV), fo is the estimated version

of the intonation contour fo. Hermes introduced the subharmonic
sumspectrum (SHS spectrum) [24] and used its maximum amplitude
later for weighing RMS [24]. Rillard [25] and d’Allessandro [26]
have suggested using the power of the speech signal instead, eas-
ing wWRMSE calculation. We have opted for the latter, augmenting it
with the POV calculated as detailed by Ghahremani [27]. Incorpo-
rating the POV in the weighing eliminates the need to hard threshold
the POV to obtain voicing, making the whole approach more robust.
It also brings the calculation of the wRMSE arguably closer to that
originally proposed by Hermes [23].

. \/ X, w(Dp(i) (Foli) — fol0))?
= - (%)
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It should be noted that the two pitch contours in (5) were calcu-
lated in semitones (ST), as in d’Allessandro’s work [26], because of
the possibility to relate the distance measures to perceptual research
on intonation.

In line with (5), the weighted correlation was calculated using
(6). Here fé(z) and f{ are the zero mean versions of the two pitch
contours, and again the power of the speech signal was used for the
weighting function augmented by the POV.

o 3, w(p() A3 ) S3(0) ©
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4. EXPERIMENTAL FRAMEWORK

At the outset, aside from demonstrating the general utility of the
atom based model, we have the opportunity to evaluate whether the
model order suggested by Prom-on [21] is more suitable than that of
Fujisaki [10]. Fujisaki’s model is £ = 2; if K = 3 or 4 turns out
to be more efficient, we can conclude that Prom-on’s higher order
mechanism is more likely.

4.1. Data

The decomposition was run on a total of 60 sentences using speech
from 6 different speakers and 3 different languages: English, French
and German. For each language, a male (M) and a female (F)
speaker were chosen: rjs (M), released for Blizzard Challenge 2010
and st (F) for English [28], Bernard (M)? and Isabelle Brasme (F)°
for French and spid (M) and alzn (F) for German [29].

4.2. Tools and settings

The Kaldi pitch tracker was used for Fi and probability of voic-
ing (POV) extraction [27]. We used 50ms frame length with Sms
frameshift for extraction. The matching pursuit toolkit (MPTK) was
used to decompose intonation with our dictionaries [30].

4.3. Dictionaries

Following the MPTK dictionary requirements, we built some dictio-
naries that could be used to decompose Fpy. All the atoms are based
on eq. (2). Two sets of atoms were used: one set for the phrase com-
ponent extraction, with k = 2 and § = {0.1, ..,0.8} and one for lo-
cal components. For the local components, several dictionaries were
compared for k = {2,3,..., 7}, with § = {0.012,0.014, ..., 0.8}.

Thttp://www.synsig.org/index php/Blizzard_Challenge_2010

Zhttps://librivox.org/a-lombre-des-jeunes-filles-en-fleur-by-marcel-
proust-0905/

3https://librivox.org/la-princesse-de-cleves-by-madame-de-la-fayette/
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Fig. 1. Fy decomposition for the sentence “I don’t know why you’re
here at all” by English female speaker slt using k=4. Top picture:
For original Fy, POV is represented as highly voiced in green and
unvoiced in blue, dashed red curve is reconstructed using atoms from
bottom picture, orange curve is phrase component. Bottom picture:
atoms extracted.
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Fig. 2. Weighted RMSE (in semitones) vs number of atoms per syl-

lable for speaker slt.

5. RESULTS

An example of decomposition is given in figure 1. The parts where
original Fj is green are highly probably voiced and the parts where
the curve is blue are highly probably unvoiced. We can notice the
influence of the weighted correlation-based atom selection, with
strongly blue parts of the curve between 0.25 an 0.35 seconds and
between 1.1 and 1.3 seconds. In these cases, the deviation of the
curve is not considered by the model so atoms which would fit the
curve are discarded, the dashed red curve is then smoothing Fy in
these unvoiced regions.

Figure 2 shows the average weighted root mean square error ver-
sus the number of atoms per syllable for the different k tested (from
2 to 7) for one example speaker (slf). We can notice that second and
seventh orders perform worse when the WRMSE is getting lower.
k = 3,4,5,6 and were found to perform better than k = 2,7 for
all the speakers. An experiment was also done using all the k values
in the same dictionary. As expected, using all the k’s results in a
slightly lower WRMSE with the same number of atoms per syllable,
as the dictionary is bigger and offering more possibilities for decom-
position. However, the greediness of the matching pursuit algorithm
will optimise locally the decomposition, then sometimes choosing
different k’s to fit the curve. This was done to verify the under-
lying model, and we found that the majority of atoms selected are
using k = 4,5,6. More generally speaking, increasing the order
up to k = 6 is increasing the performance. In most of the cases,
k = 4 was giving the best performance, in line with Prom-on’s find-
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Fig. 3. Weighted RMSE (in semitones) and correlation vs number of

atoms per syllable for k = 4.

ings [21]. The high variance across sentences makes it difficult to
strongly chose one k. Moreover there is no plausible reason to use
several orders in the model, so we assume that using order 4 is more
reasonable than 5 or 6 as they do not show significant differences.

Figure 3 shows the average WRMSE error versus the number
of atoms per syllable and the average weighted correlation versus
number of atoms per syllable for each speaker, using k = 4 which
was found to perform best over all sentences, as we would expect,
the global trend is an increasing correlation and a decreasing RMSE
as the number of atoms per syllable increases. The desired accuracy
can then be reached by selecting more atoms. Furthermore, using
only one atom per syllable, the wWRMSE and wCorr are close to 0
and 1, respectively. In languages like French and English, it makes
sense to have one atom for each syllable, as they both have syllable-
based stress. The language independent characteristic — at least for
the languages under scrutiny — of our model is also demonstrated by
similar results on the different languages.

Additionally, some informal listening tests revealed that resyn-
thesising speech with the modelled F{y was perceptually not different
than the original Fp, even with small number of atoms. The listen-
ers agreed that formal listening tests would not be more informative
than the objective results.

6. CONCLUSION

Using previous work on intonation and on physiological aspects of
intonation production, we proposed a model that decomposes intona-
tion into gamma distribution-shaped atoms using a matching pursuit
algorithm. The decomposition allows to model as precisely as de-
sired a continuous intonation curve, and takes into account the voic-
ing of speech. We found that higher order models were performing
better than second order model. Only a few atoms are needed to
achieve a level of accuracy that is not perceptually distinguishable
from original intonation. The parameters associated to the atoms are
easy to extract, and the approximation of intonation they provide is
promising for prosody extraction and synthesis.

The atom dictionaries could be adapted to the data, using dic-
tionary learning techniques. The model was originally envisaged as
a means of connecting physiology to semantic meaning and some
informal results have indeed showed a strong correlation between
atoms and prosodic events. Linking atoms automatically to prosodic
events is a matter of future work.
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