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ABSTRACT
Abstract Models of morphologically rich languages suffer from data
sparsity when words are treated as atomic units. Word-based lan-
guage models cannot transfer knowledge from common word forms
to rarer variant forms. Learning a continuous vector representa-
tion of each morpheme allows a compositional model to represent
a word as the sum of its constituent morphemes’ vectors. Rare and
unknown words containing common morphemes can thus be repre-
sented with greater fidelity despite their sparsity. Our novel neural
network language model integrates this additive morphological rep-
resentation into a long short-term memory architecture, improving
Russian speech recognition word error rates by 0.9 absolute, 4.4%
relative, compared to a robust n–gram baseline model.

Index Terms— language modeling, neural networks, long
short-term memory, compositional morphology

1. INTRODUCTION

Continuous space language models (CSLMs) have been shown to
reduce automatic speech recognition (ASR) word error rate (WER)
when used to smooth an n–gram language models (NGLMs) [1].
Typically, CSLMs learn, or use, a continuous vector representation,
or embedding, of each word with no explicit consideration for mor-
phology. Any clustering, and thus implied similarity, of embeddings
for related forms, such as hope, hopeful, hopefully, etc., is achieved
indirectly via contextual similarity alone. Notably, such models are
unable to transfer information learned about one form to other re-
lated forms. Knowing that hope often appears in similar contexts as
optimism tells these models nothing about how likely hopeful is to
appear in similar contexts to optimistic. This is of particular rele-
vance to languages with rich morphology such as Czech, Russian,
and German; languages which may also suffer from more limited
training data compared to English.

Morphological language models aim to achieve improved per-
formance by using knowledge of the common morphemes found in
rare or unknown words to help inform the task decision. For ex-
ample, such a model can apply what it knows about the common
stem hope to the less common variant form hopefully since the latter
contains the same stem.

We present an alternate formulation of compositional morphol-
ogy for word representations used previously within a log-bi-linear
(LBL) language model [2]. This previous work showed that learn-
ing embeddings for each morpheme type, composed additively to
form word representations, can provide benefits both intrinsically
(perplexity reductions) and extrinsically (better word similarity and
machine translation BLEU scores). We show how the same addi-
tive morphological representations can be formulated as a hidden
layer within a neural network language model (NNLM). Botha and

Blunsom [2] experimented with limited quantities of training data;
we show a morphology-based NNLM outperforms the NGLM even
when large quantities of training data are available.

Word-based NNLMs have been shown to outperform NGLMs
[3, 4]. We replicate this general result and go on to show that
morphology-based NNLMs outperform word-based NNLMs. We
demonstrate improvements in Russian ASR but our approach is
general and may help in other tasks or with other morphologically
rich languages. Mousa et al. [5] demonstrated the value of mor-
phological inputs to a non-recurrent neural network language model
when working with, the morphologically rich, Egyptian Arabic.
Unlike [5], we use multi-hot word-morpheme input vectors instead
of concatenating one-hot vectors for each component.

Deep NNLMs can achieve better results than single-layer
NNLMs [6]. Such models present each word, along with their
fixed length contexts, as independent training instances. In contrast,
we use a recurrent architecture where each word is presented alone
and the model is required to retain whatever information is pertinent
from its context internally. Our recurrent model, a variant of the
Long Short-Term Memory (LSTM) architecture [7, 8], is shown to
outperform a conventional recurrent neural network (RNN) [9].

2. ADDITIVE MORPHOLOGICAL REPRESENTATION

Following [2], we represent a word as the sum of the fixed-length
vectors representing its morphemes. For example, if−→un = (1, 0, 3)′,
−−−→
sight = (2, 4, 1)′, and

−→
ly = (0, 1, 1)′ then

−−−−−−→
unsightly = −→un +

−−−→
sight+

−→
ly = (3, 5, 5)′.

We include the word surface form as a pseudo-morpheme to ac-
count for non-compositional words and avoid order ambiguity, e.g.,
we wish to avoid

−−−−−−−−→
understand =

−−−→
under +

−−−→
stand, and

−−−−−→
outlook =

−→
out+

−−→
look =

−−−−−→
lookout. These considerations are of more importance

in languages other than English.
In principle, any feature of a word may be used in its addi-

tive representation. For example, we may include its phonemes, its
length, or its part of speech. The set of such feature types is denoted
F . However, the compositional hypothesis breaks down when non-
morpheme features are included so we limit ourselves to morpheme
features and henceforth refer to F as the set of morpheme types.

We pack the morpheme vectors into matrix Q ∈ R|F|×d with
a row per morpheme type. This matrix defines a morpheme embed-
ding space of dimensionality d.

The ordered set of known word types V (i.e. the set of all distinct
words found in the training data) are statically morphologically ana-
lyzed to form the ordered set of known morpheme types F (i.e. the
set of all distinct morphemes found in the decomposition of all words
types in V). The surface form is included as a pseudo-morpheme so
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V ⊆ F . The mapping from words to morphemes is encoded in the
sparse binary matrix M ∈ {0, 1}|V|×|F| such that Mi,j = 1 if and
only if the i’th word type contains the j’th morpheme type.

Word tokens may be represented using 1-hot vectors. If wt ∈
[1, |V|] is the index of the type of the t’th word of an utterance then
xt ∈ {0, 1}|V| is a 1-hot vector representation such that xt,i = 1 if
and only if wt = i.

Words may alternatively be represented via their morphemes us-
ing multi-hot vectors. zt = M ′xt ∈ {0, 1}|F| is a multi-hot vector
representation such that zt,i = 1 if and only if Vwt = Fi. Given
this representation we may define a neural network hidden layer

ht = σ
(
Whzzt + bh

)
∈ Rdh (1)

where Whz ≡ Q′ and dh ≡ d yielding, when using the iden-
tity function for σ () and b = 0, ht = Q′zt = Q′M ′xt =(∑

i∈{j|Mwt,j
=1}Qi

)′
, the additive morphological representation

we sought. In practice we generalize with a non-linear activation
function, σ (), and allow a non-zero bias, bh. Viewing the additive
morphological representations in this way highlights the ease with
which they can be incorporated into an arbitrary NNLM.

LBL++ [2] encodes the common and valid sequence patterns to
be found in a language in the separate morpheme representations for
context,Q, and target,R, and the position-dependent transformation
matrices, Cj . Our model uses a single representation for morphemic
features (including words) which we encode in a hidden layer for-
mulation within a recurrent neural network architecture capable of
learning the sequence patterns. Unlike [2], the embedding vectors
we learn will thus represent the morphemes more generally with no
explicit bias towards context or target positions.

3. NETWORK ARCHITECTURES

Given our morphological input projection layer ht (equation 1), an
RNN language model is formed by the network equations

rt = σ
(
W rhht +W rrrt−1 + br

)
∈ Rdr (2)

yt = φ (W yrrt + by) ∈ R|V| (3)

where dr is the dimensionality of the recurrent layer. rt can be
thought of as the network’s memory and may also be viewed as a
fixed-size representation of the sequence prefix seen so far.

For yt to be the model’s probabilistic prediction for wt+1,
φ () must be defined such that 0 ≤ yt,i ≤ 1 and

∑|V|
i=1 yt,i = 1;

we use a hierarchical variant of the softmax function φ (s)i =
exp(si)∑|s|

j exp(−sj)
[10]. For the other two activation functions, which

have no restrictions, we use the element-wise logistic function
σ (si) =

1
1+exp(−si)

.
In principle, the RNN architecture can learn long distance de-

pendencies by unrolling the recursion to cover the full sequence but
in practice this capacity is limited by the vanishing gradient prob-
lem [11]. A solution to the vanishing gradient problem is offered
by the Long Short-Term Memory (LSTM) model [7] that avoids the
problematic non-linearity in the recursion (rt−1 is used inside σ in
equation 2 but outside any non-linearity in equation 4). The LSTM
also uses input, forget, and output gates (it, ft, and ot respectively
in equations 4 and 5) to attenuate the input, recurrent, and output
signals respectively; these allow the model to ignore unimportant in-
puts, memories, and outputs. We use an LSTM layer with one cell

Fig. 1. Depiction of the neural network language models that are
the focus of our experiments. Layers are fully connected where
edges exist. Dotted edges denote connections to layers in the pre-
vious time-step.

per memory block and an extension [8] that uses a recurrent output
projection layer, pt ∈ Rdp , to reduce the number of parameters in
the model (since typically dp < dr). In place of equations 2 and 3
the LSTM model uses equations

rt = ft � rt−1 + it � ψ
(
W chht +W crpt−1 + bc

)
(4)

pt = W rm (ot � ψ (rt)) ∈ Rdp (5)

yt = φ (W yrpt + by) ∈ R|V| (6)

where � is the element-wise product operator and ψ () is another
type of activation function (we use the element-wise hyperbolic tan-
gent, ψ (si) = tanh (si) = exp(2si)−1

exp(2si)+1
). The input, forget, and

output gate activation values are given by equations

it = σ
(
W ihht +W irpt−1 +W icct−1 + bi

)
(7)

ft = σ
(
W fhht +W frpt−1 +W fcct−1 + bf

)
(8)

ot = σ
(
W ohht +W orpt−1 +W occt + bo

)
(9)

All matrices are dense with the exception of the diagonal ma-
trices W ic, W fc, and W oc– the “peephole connections” [12]. The
sigmoid function, σ, in equations 7 through 9 must have the range
[0, 1] (we use the element-wise logistic function). This range en-
sures that the gates determine what proportion of the signals they are
multiplied with are propagated.

Either model type, RNN or LSTM, may be trained on 1-hot word
vectors or on multi-hot word-morpheme vectors by substituting xt

for zt in the network equations as required. We use the name prefixes
Word– and Morph– to refer to these two model variants.

We focus our experiments on the three neural network language
models depicted in figure 1. The layer dimensionalities shown there
are for a word vocabulary size of 100k, yielding a morpheme vocab-
ulary size of 125k. In the case of Word–LSTM, the input is a 1-hot
word vector. In the cases of Morph–LSTM and Morph–RNN the in-
put is a multi-hot word-morphemes vector. The Word–LSTM’s input
projection layer and the Morph–RNN’s recurrent layer are sized to
give those models roughly the same total number of parameters as
the Morph–LSTM: approximately 42 million.
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4. IMPLEMENTATION

4.1. Training data

Our NNLM training data is a simple concatenation of five differ-
ent written, or transcribed spoken domain, corpora comprising of
4.7 billion sentences or 15.4 billion word tokens. There are 67 mil-
lion unique word types. 90% of the normalized data set is used for
training; the remaining 10% is used to compute perplexity scores.
Normalization includes, for example, lower casing but does not in-
clude verbalization (i.e., “21”��→ “twenty one”). 2% of our training
data tokens were ‘unknown’ when using a vocabulary truncated at
the 100k most frequent word types.

4.2. Morphological analysis

We apply a rule-based morphological analyzer to the task of decom-
posing words into morphemes. Our analyzer uses a rule-set based on
Russian morphology described by Zaliznyak [13]. Analysis labels
are attached to the morphemes to disambiguate morpheme types; for
example in as a prefix and in as a stem (”insight” → ”PX =
in”, ”S = sight” and ”in sight”→ ”S = in”, ”S = sight”).

For NNLM training, the vocabulary is truncated, e.g., the 100k
most frequently used word types. All word types in the truncated
vocabulary are morphologically analyzed, producing a word-to-
morphemes mapping. Morphemes that occur only once in the
training data (i.e., those that appear in only one word type and
where that word type is itself a singleton) are replaced by the
pseudo-morpheme <unk_morph> because we cannot hope to learn
an embedding for infrequently occurring morphemes but do need
to learn a representation for unknown morphemes in general. Ad-
ditional identity mappings are added for the surface forms and for
the pseudo-tokens <s> and </s>, denoting the start and end of an
utterance respectively.

The word-to-morpheme mapping is implemented as a multimap
hash table allowing the zt = M ′xt transformation to be computed
in O (1) time for known words. Unknown words are dynamically
analyzed producing a mixture of known and unknown morphemes.
All unknown morphemes in the resulting dynamic analysis are rep-
resented by <unk_morph>.

4.3. Neural network language model training

We train the NNLMs using back propagation through time (BPTT)
with stochastic gradient descent distributed over multiple servers
each running multiple threads via the DistBelief framework [14].
We use mini-batches of size 20 and a single exponentially decaying
learning rate. To reduce the training time, we truncate the BPTT
at 5 steps, limiting the model’s ability to learn from longer-distance
dependencies and giving these models some comparability with the
baseline NGLM which is of order 5. Roughly 2.5 epochs of training
were completed for each model. Matrix operations are implemented
with the Eigen library [15] with OpenMP parallelization.

A typical issue for NNLMs is the high cost of computing the
normalized probability scores at the output layer. Naively computing
a softmax over a 100k vocabulary is too slow. Botha and Blunsom
[2] used a class-based partitioning of the vocabulary to solve the
problem. We use the hierarchical softmax [10] approach with cross-
entropy objective and a minimum height tree over the vocabulary
where internal nodes have up to 1024 children.

The learning curves (see figure 2) flatten out but are still improv-
ing when training is terminated. The models are either too simple,
or not trained for long enough, for us to experience over-fitting.

Fig. 2. Neural network language model learning curves. All un-
known words are treated as instances of the pseudo-word type
<unk> when computing perplexity.

Name Utterances Tokens
TS1 11,263 34,707
TS2 12,047 40,246
TS3 20,171 63,490
TS4 7,341 19,356

Table 1. Russian testing data; each set is either transcribed dictation
or transcribed search queries.

4.4. Speech recognition pipeline and baseline

A production quality ASR pipeline produces a lattice of recognition
hypotheses scored by a 1st–pass NGLM. The single best hypothesis
from the NGLM scored lattice forms our baseline.

The 1st–pass NGLM is of order 5, has a vocabulary size of 100k,
and is smoothed with Stupid Backoff [16]. It is trained on the same
corpora as the NNLMs but with additional preprocessing performed
(e.g., verbalization [17] in addition to normalization) and the corpora
are interpolated instead of concatenated; ‘all’ is not used.

The NNLMs re-score the 500 best hypotheses from the NGLM
scored lattice. The final hypothesis scores are an equal mixture of the
original NGLM score, and the NNLM re-score. The NNLMs were
not used alone in decoding due to the impractical computational cost
of evaluating all possible hypotheses.

Table 1 details the four different test sets used in evaluation.
All test sets are transcribed and only include those utterances whose
transcriptions are agreed upon by at least two of three transcribers.

5. EXPERIMENTAL RESULTS

Our NNLMs are probabilistic language models and can be compared
using the intrinsic evaluation measure perplexity per word (PPW), as
long as the output vocabulary remains constant.

PPW = exp

(
− 1

N

N∑
i=1

log (P (wi | w1:i−1))

)
(10)

5248



WER
Model PPW TS1 TS2 TS3 TS4 WM

1st–pass n–gram 18.7 19.8 19.4 26.4 20.4
Word–LSTM 223.5 18.0 19.5 18.8 24.1 19.6

Morph–LSTM 172.1 17.8 19.4 18.6 24.4 19.5
Morph–RNN 485.7 18.2 20.0 19.1 24.9 20.0

Table 2. Main results: word error rates computed over the four test
sets described in table 1. All neural network language models trained
on ‘all’ data set with 100k truncated vocabulary. PPW is perplexity
per word. WM is test set size weighted mean. Bold values are col-
umn minima. The WER change from 1st–pass n–gram to Morph–
LSTM is significant at p = 0.02 (TS2) and p ≤ 7e−6 (TS1, TS3,
and TS4).

WER
Model TS1 TS2 TS3 TS4 WM

Morph–LSTM 17.8 19.4 18.6 24.4 19.5
Morph–LSTM–1m +0.1 +0.3 +0.3 -0.2 +0.2
Morph–LSTM–50k +0.2 +0.1 +0.3 = +0.2

Morph–2LSTM = -0.2 = -0.4 -0.1
Morph–LSTM–5pc -0.1 = +0.1 -0.2 =
Morph–LSTM–1pc -0.1 +0.1 = -0.1 =

Table 3. Supplemental results: word error rates change from best
main result (in first row) for various model variants (–1m: 1 million
word type vocabulary, –50k: 50 thousand word type vocabulary, –
2LSTM: 2 LSTM layers in stack, –5pc: 5% ‘all’ training data, –1pc:
1% ‘all’ training data). WM is test set size weighted mean. Bold
values are improvements.

PPW cannot be computed for the NGLM because it uses Stupid
Backoff, with unnormalized scores as output, and is thus not a prob-
abilistic model.

Of potentially more interest is to compare the models using the
extrinsic WER evaluation measure, applied to ASR. WER is a more
direct proxy for inverse recognition quality.

WER =
substitutions+ deletions+ insertions

length of transcription truth
(11)

The results given in table 2 show all our NNLMs improve,
on average, over the baseline 1st–pass NGLM. The Morph–RNN
test set size weighted mean WER improves on that of the NGLM
by 0.4 absolute while the Word–LSTM improves by 0.8 absolute.
The Morph–LSTM achieves a greater improvement compared to
Morph–RNN than when compared to Word–LSTM suggesting the
change from RNN to LSTM is more significant than the change
from word representations to morphological representations. The
best improvement over baseline incorporates both of these changes:
Morph–LSTM achieves a weighted mean WER improvement of 0.9
absolute (4.4% relative).

Our perplexity differences are correlated with the WER differ-
ences and show a similar improvement pattern: switching from RNN
to LSTM reduces perplexity more substantially than changing the
word representation structure. The large difference between RNN
and LSTM demonstrates the value of ‘learning to forget’ in Russian
language modeling.

Additional variations of the Morph–LSTM model were evaluated
to determine the impact of factors such as vocabulary size, network
structure, and sensitivity to training data quantity. Table 3 compares

these model variants. PPW values are not given since our simplistic
handling of unknown words in the perplexity calculations makes the
resulting values incomparable when the vocabulary size is changing.

Among the model variants, the largest WER losses compared to
the Morph–LSTM model occur when the vocabulary size is increased
to 1 million word types. It is unclear why increasing the vocabu-
lary size impaired performance. One possibility is that a larger vo-
cabulary includes rarer morphemes and, given the same quantity of
training data and training time, the model’s representations of these
morphemes will be noisier. Furthermore, the rarer morphemes will
be those that offer less advantage for transferring information to rare
and unknown words. The noisier morpheme representations may
thus overpower the expected improvements of transferring knowl-
edge of known morphemes to rare and unknown words. WER also
increases when the vocabulary is made smaller so the optimal vo-
cabulary size is between 50k and 1m.

Beyond the results shown in table 3, we found that the WER
change was barely noticeable when the NNLMs re-scored the top
1000 hypotheses instead of only the top 500. Heavily skewing the
mixing of the 1st–pass NGLM’s score and the NNLM’s re-score in
either direction (i.e., mixing weights of 0.1 or 0.9) substantially in-
creased the resulting WER.

6. CONCLUSIONS AND FUTURE WORK

We have presented a model, Morph–LSTM, that reduces the WER
of a production-quality Russian ASR system by 0.9 absolute when
evenly mixing the model’s scores with those of the 1st–pass NGLM
on the 500 best hypotheses. The LSTM architecture shows a sub-
stantial improvement over the simpler RNN architecture and both
offer substantial improvements over the 1st–pass baseline NGLM
alone. Switching to morphological word representations provides
less of a benefit than switching from the RNN to LSTM.

Other experiments, whose results are not presented here, suggest
training on just one of the data sets alone can provide even better
WER reductions. A NNLM that interpolates between the available
data sets may provide the better average results.

Previous work [18, 19] has found that the dimensionality of
word embeddings plays an important role in determining the quality
of results. Our models used embeddings of size 128 which is larger
than previous optimal sizes which tend to be in the region of 50. Fur-
ther work is needed to optimize this and similar hyper-parameters.

We have not compared our new model to the LBL++ [2] or to a
system that uses a larger, richer, 2nd–pass NGLM. It is unclear how
the more complex non-linear neural network model compares with
the simple bi-linear model.

There are many options for varying the network input and output
forms. For example, instead of including the word surface forms
within the vocabulary we could supply the word and its morphemes
in two separate inputs allowing the network to learn when one or
the other is more important. Similarly we could train the network
to predict both the next word and its morphemes via two separate
outputs; this may force the network to generalize better.

Using an alternate input representation with an input projection
layer is a powerful and principled mechanism for incorporating in-
formation about the input beyond the words alone. There is a wide
scope for variations and improvements on this theme.
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