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ABSTRACT

Recurrent neural network language models (RNNLMs) are be
coming increasingly popular for speech recognition. Rnesiy,
we have shown that RNNLMs with a full (non-classed) output
layer (F-RNNLMs) can be trained efficiently using a GPU g@in
a large reduction in training time over conventional clbased
models (C-RNNLMs) on a standard CPU. However, since test-ti
RNNLM evaluation is often performed entirely on a CPU, stmad
F-RNNLMs are inefficient since the entire output layer neauls
be calculated for normalisation. In this paper, it is deni@ted
that C-RNNLMs can be efficiently trained on a GPU, using our
spliced sentence bunch technique which allows good CPUitast
performance (42x speedup over F-RNNLM). Furthermore, #re p
formance of different classing approaches is investiga¥d also
examine the use of variance regularisation of the softmanomte
inator for F-RNNLMs and show that it allows F-RNNLMs to be
efficiently used in test (56x speedup on CPU). Finally the ofse
two GPUs for F-RNNLM training using pipelining is describadd
shown to give a reduction in training time over a single GPUaby
factor of 1.6.

Index Terms— language models, recurrent neural network,
GPU, speech recognition

1. INTRODUCTION

Recurrent neural network language models (RNNLMs) havevsho
promising performance improvements in many applicatisnsh as
speech recognition [1, 2, 3, 4, 5], spoken language undelisig
[6, 7, 8], and machine translation [9, 10] .

methods to improve CPU-based evaluation efficiency. Fistra
ple modification is introduced to allow class based RNNLM$&¢o
trained on GPUs with the same method. Furthermore, difteverd
clustering algorithms are investigated and compared. Ecersl
method allows the RNNLM to be used without softmax normalisa
tion during testing, by training with an extra variance regigation
term in the training objective function. This approach wpplid

on feedforward NNLMs and class based RNNLM in previous work
[12, 10, 13]. It can also be applied to full output layer RNN&M
Finally, to further improve training speed, pipelined miag using
multiple GPUs is explored.

The rest of this paper is structured as follows. Sectiongeves
RNNLMs. Efficient training of class based RNNLMs is descdlie
Section 3, and variance regularisation in Section 4. Ripdlirain-
ing of RNNLMs is described in Section 5. Experimental resaoh a
conversational telephone speech transcription task aea gn Sec-
tion 6 and conclusions presented in Section 7.

2. RECURRENT NEURAL NETWORK LMS

In contrast to feedforward NNLMs, recurrent NNLMs [1] repeat
the full, non-truncated historg: ™' =< w;_1,...,w; > for word
w; using the 1-ofk encoding of previous word);_; and a contin-
uous vectomw;_» for the remaining context. For an empty history,
this is initialised, for example, to a vector of all ones. Tbpology

of the recurrent neural network used to compute LM probiddsli
Prnn (wi|w;—1,v;—2) consists of three layers. The full history vec-
tor, obtained by concatenating;,_1 andwv;_o, is fed into the input
layer. The hidden layer compresses the information of tiese

One key practical issue is slow training speed of standard?Puts and computes a new representation using a sigmoid ac-

RNNLMs on standard CPUs. Previously we showed that usin
the “spliced sentence bunch” technique, which processesy ma
sentences in parallel and performs mini-batch parametdatap,
RNNLMs with a full output layer (F-RNNLMs) could be trained
efficiently on a GPU [11], resulting in a 27 speed-up over a CPU
with a class-based factorised output layer. However, F-RMSI
are very time-consuming to evaluate (e.g. for lattice-wegsg) on
CPUs, and hence techniques that allow fast GPU-basedngeémid
efficient CPU-based evaluation are of great practical value

ivation to achieve non-linearity. This is then passed ® ahtput

g?ayer to produce normalised RNNLM probabilities using atreaix

activation, as well as recursively fed back into the inpyetaas the
“future” remaining history to compute the LM probability rfthe
following word Prnn (wiq1|wi, vi—1). As RNNLMs use a vector
representation of full histories, they are mostly used fepast list
rescoring. For more efficient lattice rescoring using RNN, Mp-
propriate approximation schemes, for example, based ateting
among complete histories [14] can be used.

In this paper we extend our previous work on GPU-based

RNNLMs training with spliced sentence bunch [11] and présen
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2.1. Full output layer based RNNLMs (F-RNNLMs)

A traditional RNNLM architecture with an unclustered, follitput
layer (F-RNNLM) is shown in Figure 1. RNNLMs can be trained
using an extended form of the standard back propagatiomitigg
back propagation through time (BPTT) [15], where the ersor i
propagated through recurrent connections back in time $peaific
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Fig. 1. A full output layer RNNLM with OOS nodes.

number of time steps, for example, 4 or 5 [2]. This allows the r
current network to record information for several time sté@pthe
hidden layer. To reduce the computational cost, a shofilgt17]
based output layer vocabulary limited to the most frequenitde/
can be used. To reduce the bias to in-shortlist words duriNgM
training and improve robustness, an additional node iscddt¢he
output layer to model the probability mass of out-of-shst{{OOS)
words [18, 19, 14].

2.2. Class Based RNNLMs (C-RNNLMSs)

Although F-RNNLMs could be trained and evaluated efficignt-
ing GPUs in [11], it is computationally expensive on CPUs tiuidne
normalisation on output layer. Class based RNNLMs (C-RNN)LM
provides an alternative choice to speedup training andiatiah on
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softmax
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Fig. 2. A class based RNNLM with OOS nodes.

3. CLASS BASED RNNLMS TRAINING WITH SPLICED
SENTENCE BUNCH

Spliced sentence bunch training operates on many sentempas
allel and performs a mini-batch update. For F-RNNLMs thissus
the same output layer matrix irrespective of the next wordet@re-
dicted and can be performed very efficiently on a GPU due to the
large number of computational units. A very efficient imparta-
tion of C-RNNLMs training with bunch mode is not easy since th
data samples in one bunch may belong to different classeishwh
requires a different sub-matrix to be used and greatly ciangls
implementation. However, here the aim is to train a C-RNNLM
for efficient CPU-evaluation, rather than to provide a spegaver
GPU-based F-RNNLM training. During training, only the outtp
for each parallel stream that belong to the subset of woralshé&-

CPUs, which adopts a modified RNNLM architecture with a clasdongs to the target class for that stream are kept from thedat

based factorised output layer [2]. An illustration of C-RNW is

pass, and the outputs for other words are set to zero. By iagply

given in Figure 2. Each word in the output layer is assigned to this modification C-RNNLMs can be trained on a GPU with bunch

unique class. The LM probability assigned to a word is faseat
into two individual terms.
P(wi|Ci,’U,’_1)P(C,’|’U,’_1). (1)

The calculation of word probability is based on a small stlose

Pann (wi|wi—1,vi—2) =

words from the same class, and the number of classes is fgrmal

significantly smaller than the full output layer size. Hencempu-
tation is able to be reduced. It is worth noting that a spezaak of
C-RNNLMs using a single class is equivalent to a traditipfall
output layer based F-RNNLM introduced in Section 2.1.

In state-of-the-art ASR systems, NNLMs are often lineanly i

terpolated withn-gram LMs to obtain both a good context coverage

and strong generalisation [16, 17, 18, 1, 5, 19]. The infatpd LM
probability is given by

P(wilhi™") = APuc(wilhi™") + (1 — X) Pann(wilhi7Y)  (2)

A is the weight assigned to thegram LM distributionPyg(-), and
kept fixed as 0.5 in all experiments of this paper for all RNN+&.M
In the above interpolation, the probability mass of OOS waad-

signed by the RNNLM component needs to be re-distributednamo

all OOS words [18, 19].

mode with a similar cost to F-RNNLMSs.

It has been shown that the training accuracy and speed are sen
sitive to word clustering for RNNLM training. In [2], frequey
based class was adopted to speedup training. However, ridked)
perplexity on the Penn Tree Bank corpus [2, 20]. Word clursger
using Brown'’s classing method [21] was investigated in 2),23]
and improved perplexity were reported compared to frequbased
classes. As well as frequency-based and Brown-like worstet
ing', word clustering derived from a vector-based word represen
tation is also explored. Each word can be represented bytarvec
in a low-dimensional space [25] obtained from the matrixoass
ated input word and hidden nodes. The similarity of wordslatou
be measured by the distance of vectors in the continuou spac
F-RNNLMs, the weight matrix between the hidden nodes coldd a
be used to represent wofdsA k-means approach is used to cluster
words into a specific number of classes in this work and thetinp
and output matrices are obtained from a well-trained F-RNINL

1We adopted the Brown-like classing method from [24], whicklightly
different to the original version in [21].

2Most previous work on vector word representation used arattbical
output layer.



4. F-RNNLM WITH VARIANCE REGULARISATION obtained from hidden layer to output layer, followed by efvack
propagation and parameter update. The communicationdapy

Another type of solution to speedup evaluation for NNLMsbasn  operation) between GPUs happens afterwards. For the fiolipw
proposed both in [12] (variance regularisation) and [16lfteorm).  bunches, GPU 0 updates model parameters using corresgardin
The variance of the softmax log normalisation is added intoab-  ror signal and input with BPTT, then forwards the new inpuadar
jective function for optimisation. If the normalisationrte can be  the next bunch. GPU 1 performs successively a forward pass, e
regarded as constant at test time, a large speedup can beexthy  back propagation and update . Although there is one bunchtepd
only computing the outputs needed a and avoiding the cdionla delay for the update of WO, pipelined training can guaratiaethe
of the time-consuming softmax function. The use of variarege  update direction is correct and deterministic for everyaipd
ularisation was also explored for RNNLMs training in [13]here

C-RNNLMs were used and trained sample by sample. In this work  oypu Layer
we investigate the use of variance regularisation on F-RMBBNd  weigni1 J ! ! onGPU1
train using GPU-based sentence-splice bunch mode. Thetivgje Hidden Layer 1 2 ] 3 ] 4 ]
function to be minimised is Weight 0 /‘—1 l L OnGPUO
Lgnsh . o (] [ [ [ [ -
0" =07+ 233" (L 1og(2) ~ (LogZ)*)  (3) _
i=1 j=1 Bunch index
whereO* is the cross-entropy based loss function, Fig. 3. Data flow in pipelined training using two GPUs
N M
=-= Z > (log(P(w”|h{")) (4) 6. EXPERIMENTS

=1 j=1

T is the number of training samples ar is the number of In the main part of this section, RNI\_ILMS are evaluated on the C

bunches in the training corpus and is the bunch size. Here HTK !_VCSR system for conversatlonalntelephone spee.ch (CTS)
()« e o T used in the 2004 DARPA EARS evaluation. The acoustic models

Z is the normalisation term for wordy; in ith bunch,LogZ:; = \yere trained on approximately 2000 hours of Fisher contiersa

M Z 1 log( Z“)) is the mean of log normalisation (Log-Norm) speech released by the LDC. A 59k recognition word list waslus

term in thezth bunch It is worth mentioning that in C-RNNLMs in decoding. The system uses a multi-pass recognition fremie

training with variance regularisation in [13], the meanagf hormal- A detailed description of the baseline system can be fourjd8p

isation is set to zero, which works well for C-RNNLMs. Howeve The 3 hourdev04data, which includes 72 Fisher conversations, was

it doesn’t work well for F-RNNLMs training where the numbefr o used as a test set. The baseline 4-gram LM was trained usagigla t

classes equals one. Hence, Itis important to calculate g#esrand  of 545 million words from 2 text sources: the LDC Fisher a¢imus

variance of Log-Norm for every bunch. transcriptions Fisher, of 20 million words (weight 0.75), and the

In a well-trained F-RNNLM, the mean of the normalisatiomter University Washington conversational web data [29}VWeb, of
on a validation set, denoted, is calculated. It is used to compute 525 million words (weight 0.25). This baseline LM gave a pexp

the probability of predicted words at test time as ity of 51.8 and word error rate (WER) of 16.7% devO4measured
. _ using lattice rescoring. THeisher data was used to train RNNLMs.
P(wjlh;) = P(w;|h;)/Z () A 32k word input layer vocabulary and 20k word output layesrsh

list were used. All RNNLMs are trained in a sentence indepahd
mode. The size of hidden layer is set as 512, the BPTT steprd 5 a
the bunch size set to 128. For the C-RNNLMs, the number okclas
is 200. The NVidia GTX Titan GPU is used in RNNLM training.
The CPU used in this paper is the dual Intel Xeon E5-2670 26GH
5. PIPELINED TRAINING OF RNNLMS processors with a total of 16 physical cores. All RNNLMs are i
terpolated with the baseline 4-gram LM using a fixed weight 0.
The parallel structure of neural network training can bessified  The 100-best hypotheses extracted from the baseline 4-gham
into two categories: model parallelism and data parafel|26].  |attices were then rescored for performance evaluation etaild
The difference lies in whether the model or data is split s€mul-  description of the baseline RNNLM can be found in [11].
tiple machines or cores. Pipelined training is a type of nhpdeal-
lelism. It was proposed to speedup the training of deep heeta
work for acoustic models in [27]. Here, we extend it to thénireg
of RNNLMs. Layers of the network are distributed acrossedéht  The performance of the bunch mode trained C-RNNLMs desdribe
GPUs, and operations on these layers (e.g. forward-padsT)Bie  in section 3 are evaluated first. The performance of the typss of
executed on their own GPUs. It allows each GPU to proceed indeword clustering schemes presented in section 3 based arefiey,
pendently and simultaneously, and communication betwagers  Brown classing or K-Means based classing are compared inian i
happens after a parameter update step. tial experiment conducted on the Penn Tree Bank (PTB) coripus
The data flow of pipelined training is shown in Figure 3. Two common with previous research reported in [2, 30, 20, 22}tice
weight matrices (WO and W1) are kept in two GPUs (denoted a§-20 were used as the training data (about 930K words), \gkite
GPU 0 and GPU 1). For the first bunch in each epoch, the inputions 21-22 kept as the validation data (74K) and sectio?23as
is forwarded to the hidden layer and the output of hiddenrlaye the test data (82K). The size of vocabulary is 10K. RNNLMs mod
copied from GPU 0 to GPU 1. For ti#nd bunch, the input is for- elling cross-sentence dependency were trained usingugviord
warded again. Simultaneously, GPU 1 forwards the previamelp  clustering methods with 200 hidden layer nodes, 100 clessds

whereP(w;]|h;) is the unnormalised probability that can be used in
evaluation time. This significantly reduces the compuratt the
output layer as the normalisation is no longer required.

6.1. Experiments on C-RNNLMs training



BPPT step of 5. In practice, the GPU-based bunch mode tgainin . . s
speed of C-RNNLMs was found close to that of F-RNNLMs. Their Table 3. PPL and WER results with variance regularisation

respective perplexities (PPLs) are then evaluated. As sliowa- v log(norm) | PPL | WER | WER*"
ble 1, the performance of C-RNNLMs were found to be sensitive mean| var |
to the underlying word clustering scheme being used at tiygubu 0.0 154 | 167 | 46.3| 1522 | 16.24
layer. The C-RNNLM trained with Brown classing gave the Istve 0.1 142 | 0.12 | 46.5| 15.21| 15.34
perplexity of 127.4 among all C-RNNLMs, though slightly h&r 0.2 || 139 | 0.08 || 46.6 | 15.33| 15.35
than the F-RNNLM. Frequency based C-RNNLMs gave the highest 0.3 | 14.0 | 0.06 || 46.5| 15.40| 15.30
PPL score of 135.3. 0.4 14.2 | 0.05| 46.6 | 15.29| 15.28
05| 144 | 0.04 | 46.5| 15.40| 15.42

1 WER* denotes WER using unnormalised RNNLM

Table 1. PPL using different word clustering on Penn Corpus probability from Eqn (5).

[ Word clustering type | PPL ]

Frequency 135.3
Brown 127.4 regularisation. As is shown in the table, the C-RNNLM gavpeesi
K-means on input matrix| 132.2 up of 42 times over the CE trained F-RNNLM baseline. Using-var
K-means on output matrix 130.6 ance regularisation during F-RNNLM training, a 56 time dez
none 126.1 tion in evaluation speed was obtained compared to the bas€l-

based F-RNNLM.

Table 2 shows a comparable set of PPL and WER results ob-

tained on the CTS task described above. As is shown in the,tabl Table 4. Evaluation speed of RNNLMs on CPUs
the K-Means based clustering on the output layer matrixrpaters [ RNNLMs [ Train Crit | Speed (w/s)]
gave the best performance in terms of both PPL and WER, thisugh E-RNNLM 0 14K

slightly outperformed by the F-RNNLM in terms of WER. The eth C-RNNLM CE 5'-9k

three word clustering methods gave comparable error rates.in-
dicates that using a larger amount of training data, theop@idnce
of C-RNNLMs become less sensitive to the word clustering-alg
rithm being used.

F-RNNLM +VR 7.9k

6.3. Experiments on dual GPU pipelined training of --RNNLMs
Table 2. PPL and WER results using different word clustering  In this section, the performance of a dual GPU based pipelie

. CTS RNNLM training algorithm is evaluated. In the previous esipe
Word clustering PPL | WER ments, a single NVidia GeForce GTX TITAN GPU (designed for
Frequency 47.4 ] 15.36 a workstation) was used. For multi-GPU work, two slightlgvsér
Brown 6.3 | 15.36 NVidia Tesla K20m GPUs housed in the same server were used. Ta
K-means on Input matrix| 47.1 | 15.40 b!e 5_ gives t_he_ training_speed, PPL scores and WER _resm_JIh;eof t
K-means on Output matrix 46.2 | 15.28 plpe!lned training algorithm. Accprdlng to these resufifpelined
none 263 15.22 training gave a speed up of 1.6 times and performance coivlpara

to a single GPU based training.
6.2. Experiments on F-RNNLMs with variance regularisation

In this section, the performance of F-RNNLMs trained withiaace Table 5. Train Speed, PPL and WER results for pipelined training
regularisation are evaluated. These experimental resrdtshown of F-RNNLMs

in table 3. In practice the training of F-RNNLMs with varianegu- Model GPU Train Speed| PPL | WER
larisation normally requires one more epoch than CE basénuirig Type D)

for good convergence. The error rates marked as “WER” inahlet | C-RNN | - [ 037k [465] 15.31]
are the WER scores measured using normalised RNNLM prababil IXTITAN 9.9k 26.3 | 15.22
ities, while “WER*” in the last column are the WERSs obtainest u F-RNN 1xK20m 6.9k ' '

ing a more efficient, and unnormalised RNNLM probabilityegiin 2xK20m 11.0k 46.3 | 15.23

equation (5). The first row of the table gives results with@artance

regularisation by setting to 0. As expected, the WER increases

from 15.22 to 16.24 without normalisation. This confirmsttthe 7. CONCLUSION

normalisation term computation for the softmax functiorrigcial

for using cross entropy (CE) trained RNNLMs in decoding. Whe Following our previous research on efficient parallelisadhing of

the variance regularisation term is applied in RNNLM tramithe  full output layer RNNLMs [11], several approaches are itigeted

difference between the “WER” and “WER*” metrics are quitesdin  in this paper to further improve their efficiency during tiaig and

As expected, when the setting 9fis the increased, the variance of evaluation time: class based RNNLMs were efficiently trdioa

the log normalisation term is decreasing. Whers set as 0.4, it GPU in a modified spliced sentence bunch mode and gave a 42

gives a WER of 15.28 comparable to that of the baseline CBddai time speed up in evaluation time; the variance normaliseah fof

RNNLM, and a much faster speed in evaluation time. RNNLM training scheme produced a 56 time speed up in test time
Table 4 shows the CPU based evaluation speed of a CE-trainedpipelined RNNLM training algorithm using two GPUs also gav

C-RNNLM, F-RNNLM and a CE-trained F-RNNLM using variance an additional 1.6 time acceleration of training speed.
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