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ABSTRACT

Recurrent neural network language models (RNNLMs) are be-
coming increasingly popular for speech recognition. Previously,
we have shown that RNNLMs with a full (non-classed) output
layer (F-RNNLMs) can be trained efficiently using a GPU giving
a large reduction in training time over conventional class-based
models (C-RNNLMs) on a standard CPU. However, since test-time
RNNLM evaluation is often performed entirely on a CPU, standard
F-RNNLMs are inefficient since the entire output layer needsto
be calculated for normalisation. In this paper, it is demonstrated
that C-RNNLMs can be efficiently trained on a GPU, using our
spliced sentence bunch technique which allows good CPU test-time
performance (42x speedup over F-RNNLM). Furthermore, the per-
formance of different classing approaches is investigated. We also
examine the use of variance regularisation of the softmax denom-
inator for F-RNNLMs and show that it allows F-RNNLMs to be
efficiently used in test (56x speedup on CPU). Finally the useof
two GPUs for F-RNNLM training using pipelining is describedand
shown to give a reduction in training time over a single GPU bya
factor of 1.6.

Index Terms— language models, recurrent neural network,
GPU, speech recognition

1. INTRODUCTION

Recurrent neural network language models (RNNLMs) have shown
promising performance improvements in many applications,such as
speech recognition [1, 2, 3, 4, 5], spoken language understanding
[6, 7, 8], and machine translation [9, 10] .

One key practical issue is slow training speed of standard
RNNLMs on standard CPUs. Previously we showed that using
the “spliced sentence bunch” technique, which processes many
sentences in parallel and performs mini-batch parameter updates,
RNNLMs with a full output layer (F-RNNLMs) could be trained
efficiently on a GPU [11], resulting in a 27× speed-up over a CPU
with a class-based factorised output layer. However, F-RNNLMs
are very time-consuming to evaluate (e.g. for lattice-rescoring) on
CPUs, and hence techniques that allow fast GPU-based training and
efficient CPU-based evaluation are of great practical value.

In this paper we extend our previous work on GPU-based
RNNLMs training with spliced sentence bunch [11] and present two
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methods to improve CPU-based evaluation efficiency. First asim-
ple modification is introduced to allow class based RNNLMs tobe
trained on GPUs with the same method. Furthermore, different word
clustering algorithms are investigated and compared. The second
method allows the RNNLM to be used without softmax normalisa-
tion during testing, by training with an extra variance regularisation
term in the training objective function. This approach was applied
on feedforward NNLMs and class based RNNLM in previous work
[12, 10, 13]. It can also be applied to full output layer RNNLMs.
Finally, to further improve training speed, pipelined training using
multiple GPUs is explored.

The rest of this paper is structured as follows. Section 2, reviews
RNNLMs. Efficient training of class based RNNLMs is described in
Section 3, and variance regularisation in Section 4. Pipelined train-
ing of RNNLMs is described in Section 5. Experimental results on a
conversational telephone speech transcription task are given in Sec-
tion 6 and conclusions presented in Section 7.

2. RECURRENT NEURAL NETWORK LMS

In contrast to feedforward NNLMs, recurrent NNLMs [1] represent
the full, non-truncated historyhi−1

1 =< wi−1, . . ., w1 > for word
wi using the 1-of-k encoding of previous wordwi−1 and a contin-
uous vectorvi−2 for the remaining context. For an empty history,
this is initialised, for example, to a vector of all ones. Thetopology
of the recurrent neural network used to compute LM probabilities
PRNN(wi|wi−1, vi−2) consists of three layers. The full history vec-
tor, obtained by concatenatingwi−1 andvi−2, is fed into the input
layer. The hidden layer compresses the information of thesetwo
inputs and computes a new representationvi−1 using a sigmoid ac-
tivation to achieve non-linearity. This is then passed to the output
layer to produce normalised RNNLM probabilities using a softmax
activation, as well as recursively fed back into the input layer as the
“future” remaining history to compute the LM probability for the
following word PRNN(wi+1|wi, vi−1). As RNNLMs use a vector
representation of full histories, they are mostly used for N-best list
rescoring. For more efficient lattice rescoring using RNNLMs, ap-
propriate approximation schemes, for example, based on clustering
among complete histories [14] can be used.

2.1. Full output layer based RNNLMs (F-RNNLMs)

A traditional RNNLM architecture with an unclustered, fulloutput
layer (F-RNNLM) is shown in Figure 1. RNNLMs can be trained
using an extended form of the standard back propagation algorithm,
back propagation through time (BPTT) [15], where the error is
propagated through recurrent connections back in time for aspecific
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Fig. 1. A full output layer RNNLM with OOS nodes.

number of time steps, for example, 4 or 5 [2]. This allows the re-
current network to record information for several time steps in the
hidden layer. To reduce the computational cost, a shortlist[16, 17]
based output layer vocabulary limited to the most frequent words
can be used. To reduce the bias to in-shortlist words during NNLM
training and improve robustness, an additional node is added at the
output layer to model the probability mass of out-of-shortlist (OOS)
words [18, 19, 14].

2.2. Class Based RNNLMs (C-RNNLMs)

Although F-RNNLMs could be trained and evaluated efficiently us-
ing GPUs in [11], it is computationally expensive on CPUs dueto the
normalisation on output layer. Class based RNNLMs (C-RNNLMs)
provides an alternative choice to speedup training and evaluation on
CPUs, which adopts a modified RNNLM architecture with a class
based factorised output layer [2]. An illustration of C-RNNLM is
given in Figure 2. Each word in the output layer is assigned toa
unique class. The LM probability assigned to a word is factorised
into two individual terms.

PRNN(wi|wi−1, vi−2) = P (wi|ci, vi−1)P (ci|vi−1). (1)

The calculation of word probability is based on a small subset of
words from the same class, and the number of classes is normally
significantly smaller than the full output layer size. Hence, compu-
tation is able to be reduced. It is worth noting that a specialcase of
C-RNNLMs using a single class is equivalent to a traditional, full
output layer based F-RNNLM introduced in Section 2.1.

In state-of-the-art ASR systems, NNLMs are often linearly in-
terpolated withn-gram LMs to obtain both a good context coverage
and strong generalisation [16, 17, 18, 1, 5, 19]. The interpolated LM
probability is given by

P (wi|h
i−1
1 ) = λPNG(wi|h

i−1
1 ) + (1− λ)PRNN(wi|h

i−1
1 ) (2)

λ is the weight assigned to then-gram LM distributionPNG(·), and
kept fixed as 0.5 in all experiments of this paper for all RNNLMs.
In the above interpolation, the probability mass of OOS words as-
signed by the RNNLM component needs to be re-distributed among
all OOS words [18, 19].
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Fig. 2. A class based RNNLM with OOS nodes.

3. CLASS BASED RNNLMS TRAINING WITH SPLICED
SENTENCE BUNCH

Spliced sentence bunch training operates on many sentencesin par-
allel and performs a mini-batch update. For F-RNNLMs this uses
the same output layer matrix irrespective of the next word tobe pre-
dicted and can be performed very efficiently on a GPU due to the
large number of computational units. A very efficient implementa-
tion of C-RNNLMs training with bunch mode is not easy since the
data samples in one bunch may belong to different classes, which
requires a different sub-matrix to be used and greatly complicates
implementation. However, here the aim is to train a C-RNNLM
for efficient CPU-evaluation, rather than to provide a speed-up over
GPU-based F-RNNLM training. During training, only the outputs
for each parallel stream that belong to the subset of words that be-
longs to the target class for that stream are kept from the forward
pass, and the outputs for other words are set to zero. By applying
this modification C-RNNLMs can be trained on a GPU with bunch
mode with a similar cost to F-RNNLMs.

It has been shown that the training accuracy and speed are sen-
sitive to word clustering for RNNLM training. In [2], frequency
based class was adopted to speedup training. However, it degraded
perplexity on the Penn Tree Bank corpus [2, 20]. Word clustering
using Brown’s classing method [21] was investigated in [20,22, 23]
and improved perplexity were reported compared to frequency based
classes. As well as frequency-based and Brown-like word cluster-
ing1, word clustering derived from a vector-based word represen-
tation is also explored. Each word can be represented by a vector
in a low-dimensional space [25] obtained from the matrix associ-
ated input word and hidden nodes. The similarity of words could
be measured by the distance of vectors in the continuous space. For
F-RNNLMs, the weight matrix between the hidden nodes could also
be used to represent words2. A k-means approach is used to cluster
words into a specific number of classes in this work and the input
and output matrices are obtained from a well-trained F-RNNLM.

1We adopted the Brown-like classing method from [24], which is slightly
different to the original version in [21].

2Most previous work on vector word representation used an hierarchical
output layer.



4. F-RNNLM WITH VARIANCE REGULARISATION

Another type of solution to speedup evaluation for NNLMs hasbeen
proposed both in [12] (variance regularisation) and [10] (self-norm).
The variance of the softmax log normalisation is added into the ob-
jective function for optimisation. If the normalisation term can be
regarded as constant at test time, a large speedup can be achieved by
only computing the outputs needed a and avoiding the calculation
of the time-consuming softmax function. The use of variancereg-
ularisation was also explored for RNNLMs training in [13], where
C-RNNLMs were used and trained sample by sample. In this work,
we investigate the use of variance regularisation on F-RNNLMs and
train using GPU-based sentence-splice bunch mode. The objective
function to be minimised is

Ovr = Oce +
1

T

N∑

i=1

M∑

j=1

(
γ

2
(log(Z

(i)
j )− (LogZ̄i))

2) (3)

whereOce is the cross-entropy based loss function,

Oce = −
1

T

N∑

i=1

(

M∑

j=1

(log(P (w
(i)
j |h

(i)
j )) (4)

T is the number of training samples andN is the number of
bunches in the training corpus andM is the bunch size. Here
Z

(i)
j is the normalisation term for wordwj in ith bunch,LogZ̄i =

1
M

∑M

j=1 log(Z
(i)
j ) is the mean of log normalisation (Log-Norm)

term in theith bunch. It is worth mentioning that in C-RNNLMs
training with variance regularisation in [13], the mean of log normal-
isation is set to zero, which works well for C-RNNLMs. However,
it doesn’t work well for F-RNNLMs training where the number of
classes equals one. Hence, It is important to calculate the mean and
variance of Log-Norm for every bunch.

In a well-trained F-RNNLM, the mean of the normalisation term
on a validation set, denoted̄Z, is calculated. It is used to compute
the probability of predicted words at test time as

P (wj |hj) = P̃ (wj |hj)/Z̄ (5)

whereP̃ (wj |hj) is the unnormalised probability that can be used in
evaluation time. This significantly reduces the computation at the
output layer as the normalisation is no longer required.

5. PIPELINED TRAINING OF RNNLMS

The parallel structure of neural network training can be classified
into two categories: model parallelism and data parallelism [26].
The difference lies in whether the model or data is split across mul-
tiple machines or cores. Pipelined training is a type of model paral-
lelism. It was proposed to speedup the training of deep neural net-
work for acoustic models in [27]. Here, we extend it to the training
of RNNLMs. Layers of the network are distributed across different
GPUs, and operations on these layers (e.g. forward-pass, BPTT) are
executed on their own GPUs. It allows each GPU to proceed inde-
pendently and simultaneously, and communication between layers
happens after a parameter update step.

The data flow of pipelined training is shown in Figure 3. Two
weight matrices (W0 and W1) are kept in two GPUs (denoted as
GPU 0 and GPU 1). For the first bunch in each epoch, the input
is forwarded to the hidden layer and the output of hidden layer is
copied from GPU 0 to GPU 1. For the2nd bunch, the input is for-
warded again. Simultaneously, GPU 1 forwards the previous bunch

obtained from hidden layer to output layer, followed by error back
propagation and parameter update. The communication (i.e.copy
operation) between GPUs happens afterwards. For the following
bunches, GPU 0 updates model parameters using corresponding er-
ror signal and input with BPTT, then forwards the new input data for
the next bunch. GPU 1 performs successively a forward pass, error
back propagation and update . Although there is one bunch update
delay for the update of W0, pipelined training can guaranteethat the
update direction is correct and deterministic for every update.
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Fig. 3. Data flow in pipelined training using two GPUs

6. EXPERIMENTS

In the main part of this section, RNNLMs are evaluated on the CU-
HTK LVCSR system for conversational telephone speech (CTS)
used in the 2004 DARPA EARS evaluation. The acoustic models
were trained on approximately 2000 hours of Fisher conversational
speech released by the LDC. A 59k recognition word list was used
in decoding. The system uses a multi-pass recognition framework.
A detailed description of the baseline system can be found in[28].
The 3 hourdev04data, which includes 72 Fisher conversations, was
used as a test set. The baseline 4-gram LM was trained using a total
of 545 million words from 2 text sources: the LDC Fisher acoustic
transcriptions,Fisher, of 20 million words (weight 0.75), and the
University Washington conversational web data [29],UWWeb, of
525 million words (weight 0.25). This baseline LM gave a perplex-
ity of 51.8 and word error rate (WER) of 16.7% ondev04measured
using lattice rescoring. TheFisher data was used to train RNNLMs.
A 32k word input layer vocabulary and 20k word output layer short-
list were used. All RNNLMs are trained in a sentence independent
mode. The size of hidden layer is set as 512, the BPTT step as 5 and
the bunch size set to 128. For the C-RNNLMs, the number of class
is 200. The NVidia GTX Titan GPU is used in RNNLM training.
The CPU used in this paper is the dual Intel Xeon E5-2670 2.6GHz
processors with a total of 16 physical cores. All RNNLMs are in-
terpolated with the baseline 4-gram LM using a fixed weight 0.5.
The 100-best hypotheses extracted from the baseline 4-gramLM
lattices were then rescored for performance evaluation. A detailed
description of the baseline RNNLM can be found in [11].

6.1. Experiments on C-RNNLMs training

The performance of the bunch mode trained C-RNNLMs described
in section 3 are evaluated first. The performance of the threetypes of
word clustering schemes presented in section 3 based on frequency,
Brown classing or K-Means based classing are compared in an ini-
tial experiment conducted on the Penn Tree Bank (PTB) corpus. In
common with previous research reported in [2, 30, 20, 22], section
0-20 were used as the training data (about 930K words), whilesec-
tions 21-22 kept as the validation data (74K) and section 23-24 as
the test data (82K). The size of vocabulary is 10K. RNNLMs mod-
elling cross-sentence dependency were trained using various word
clustering methods with 200 hidden layer nodes, 100 classesand a



BPPT step of 5. In practice, the GPU-based bunch mode training
speed of C-RNNLMs was found close to that of F-RNNLMs. Their
respective perplexities (PPLs) are then evaluated. As shown in Ta-
ble 1, the performance of C-RNNLMs were found to be sensitive
to the underlying word clustering scheme being used at the output
layer. The C-RNNLM trained with Brown classing gave the lowest
perplexity of 127.4 among all C-RNNLMs, though slightly higher
than the F-RNNLM. Frequency based C-RNNLMs gave the highest
PPL score of 135.3.

Table 1. PPL using different word clustering on Penn Corpus
Word clustering type PPL

Frequency 135.3
Brown 127.4

K-means on input matrix 132.2
K-means on output matrix 130.6

none 126.1

Table 2 shows a comparable set of PPL and WER results ob-
tained on the CTS task described above. As is shown in the table,
the K-Means based clustering on the output layer matrix parameters
gave the best performance in terms of both PPL and WER, thoughis
slightly outperformed by the F-RNNLM in terms of WER. The other
three word clustering methods gave comparable error rates.This in-
dicates that using a larger amount of training data, the performance
of C-RNNLMs become less sensitive to the word clustering algo-
rithm being used.

Table 2. PPL and WER results using different word clustering

Word clustering
CTS

PPL WER

Frequency 47.4 15.36
Brown 46.3 15.36

K-means on Input matrix 47.1 15.40
K-means on Output matrix 46.2 15.28

none 46.3 15.22

6.2. Experiments on F-RNNLMs with variance regularisation

In this section, the performance of F-RNNLMs trained with variance
regularisation are evaluated. These experimental resultsare shown
in table 3. In practice the training of F-RNNLMs with variance regu-
larisation normally requires one more epoch than CE based training
for good convergence. The error rates marked as “WER” in the table
are the WER scores measured using normalised RNNLM probabil-
ities, while “WER*” in the last column are the WERs obtained us-
ing a more efficient, and unnormalised RNNLM probability given in
equation (5). The first row of the table gives results withoutvariance
regularisation by settingγ to 0. As expected, the WER increases
from 15.22 to 16.24 without normalisation. This confirms that the
normalisation term computation for the softmax function iscrucial
for using cross entropy (CE) trained RNNLMs in decoding. When
the variance regularisation term is applied in RNNLM training, the
difference between the “WER” and “WER*” metrics are quite small.
As expected, when the setting ofγ is the increased, the variance of
the log normalisation term is decreasing. Whenγ is set as 0.4, it
gives a WER of 15.28 comparable to that of the baseline CE trained
RNNLM, and a much faster speed in evaluation time.

Table 4 shows the CPU based evaluation speed of a CE-trained
C-RNNLM, F-RNNLM and a CE-trained F-RNNLM using variance

Table 3. PPL and WER results with variance regularisation
γ log(norm) PPL WER WER* 1

mean var

0.0 15.4 1.67 46.3 15.22 16.24
0.1 14.2 0.12 46.5 15.21 15.34
0.2 13.9 0.08 46.6 15.33 15.35
0.3 14.0 0.06 46.5 15.40 15.30
0.4 14.2 0.05 46.6 15.29 15.28
0.5 14.4 0.04 46.5 15.40 15.42
1 WER* denotes WER using unnormalised RNNLM

probability from Eqn (5).

regularisation. As is shown in the table, the C-RNNLM gave a speed
up of 42 times over the CE trained F-RNNLM baseline. Using vari-
ance regularisation during F-RNNLM training, a 56 time accelera-
tion in evaluation speed was obtained compared to the baseline CE-
based F-RNNLM.

Table 4. Evaluation speed of RNNLMs on CPUs
RNNLMs Train Crit Speed (w/s)

F-RNNLM
CE

0.14k
C-RNNLM 5.9k
F-RNNLM +VR 7.9k

6.3. Experiments on dual GPU pipelined training of F-RNNLMs

In this section, the performance of a dual GPU based pipelined F-
RNNLM training algorithm is evaluated. In the previous experi-
ments, a single NVidia GeForce GTX TITAN GPU (designed for
a workstation) was used. For multi-GPU work, two slightly slower
NVidia Tesla K20m GPUs housed in the same server were used. Ta-
ble 5 gives the training speed, PPL scores and WER results of the
pipelined training algorithm. According to these results,pipelined
training gave a speed up of 1.6 times and performance comparable
to a single GPU based training.

Table 5. Train Speed, PPL and WER results for pipelined training
of F-RNNLMs

Model GPU Train Speed PPL WER
Type (w/s)

C-RNN - 0.37k 46.5 15.31

F-RNN

1xTITAN 9.9k
46.3 15.22

1xK20m 6.9k
2xK20m 11.0k 46.3 15.23

7. CONCLUSION

Following our previous research on efficient parallelised training of
full output layer RNNLMs [11], several approaches are investigated
in this paper to further improve their efficiency during training and
evaluation time: class based RNNLMs were efficiently trained on
GPU in a modified spliced sentence bunch mode and gave a 42
time speed up in evaluation time; the variance normalised form of
RNNLM training scheme produced a 56 time speed up in test time;
a pipelined RNNLM training algorithm using two GPUs also gave
an additional 1.6 time acceleration of training speed.
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