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ABSTRACT

Recurrent neural network language models (RNNLM) have become
an increasingly popular choice for state-of-the-art speech recogni-
tion systems. Linguistic factors influencing the realization of surface
word sequences, for example, expressive richness, are only implic-
itly learned by RNNLMs. Observed sentences and their associated
alternative paraphrases representing the same meaning are not ex-
plicitly related during training. In order to improve context cover-
age and generalization, paraphrastic RNNLMs are investigated in
this paper. Multiple paraphrase variants were automatically gener-
ated and used in paraphrastic RNNLM training. Using a paraphras-
tic multi-level RNNLM modelling both word and phrase sequences,
significant error rate reductions of 0.6% absolute and perplexity re-
duction of 10% relative were obtained over the baseline RNNLM
on a large vocabulary conversational telephone speech recognition
system trained on 2000 hours of audio and 545 million words of
texts. The overall improvement over the baselinen-gram LM was
increased from 8.4% to 11.6% relative.
Index Terms: recurrent neural network, language model, para-
phrase, speech recognition

1. INTRODUCTION

In order to handle the data sparsity problem associated with conven-
tional back-offn-gram language models (LMs), language modelling
techniques that represent preceding history contexts in a continu-
ous and lower dimensional vector space, such as neural network lan-
guage models (NNLMs) [2, 27, 25, 19, 29, 11], can be used. NNLMs
are widely used in state-of-the-art speech recognition systems due to
their inherently strong generalization performance. Depending on
the network architecture, NNLMs can be categorised into two major
types: feedforward NNLMs [2, 27, 25, 11], which use a vector rep-
resentation of preceding contexts of a fixed number of words, and
recurrent NNLMs (RNNLMs) [19, 20, 29], which use a recurrent
vector representation of variable length full histories. In recent years
RNNLMs have been shown to give significant improvements over
conventional back-offn-gram LMs and feedforward NNLMs, thus
drawing increasing research interest [19, 20, 29, 5, 28, 30, 9, 10].

A crucial set of generalization patterns that all statistical lan-
guage models, including RNNLMs, are expected to acquire dur-
ing training, are the linguistic factors influencing the realization of
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surface word sequences, for example, expressive richness. Natu-
ral languages are well known for this important attribute. Multi-
ple surface realizations that are mutually paraphrastic can be used
to represent the same meaning. In order to handle such variabil-
ity, both the surface word sequences and their associated alternative
expressions need to be considered during model training. In conven-
tional RNNLMs, the relationship between observed words, phrases
and sentences and their paraphrase alternatives are only implicitly
learned via the similarity between their respective vector space rep-
resentations [22], but not explicitly used during training. This can
lead to insufficient context coverage and generalization.

In order to address this issue, paraphrastic LMs, were previously
proposed [14, 17] to learn the rich paraphrastic relationship between
longer span syntactic structures, such as phrases, without manually
deriving the associated expert semantic labelling. A phrase level
generative model statistically estimated from standard text data is
used to explicitly generate multiple paraphrase variants for each
training data sentence. Maximizing the marginal probability of
these variants produces automatically smoothed statistics that are
re-distributed over multiple surface realizations. This intuitively and
interpretable discounting method can be exploited by many different
forms of LMs that do not explicitly model the expressive richness
of natural languages. In previous research, this technique were
used to improve the performance of back-offn-gram LMs [14] and
feedforward NNLMs [15].

In this paper, paraphrastic recurrent neural network language
models are investigated. Multiple paraphrase variants were explic-
itly generated and used in paraphrastic RNNLM training. The rest of
the paper is organized as follows. Recurrent neural network LMs are
reviewed in section 2. Paraphrastic LMs are introduced in section 3.
Paraphrastic RNNLMs are proposed in section 4. In section 5 para-
phrastic RNNLMs are evaluated on a state-of-the-art conversational
telephone speech transcription task. Section 6 is the conclusion and
future work.

2. RECURRENT NEURAL NETWORK LMS

In contrast to feedforward NNLMs, recurrent NNLMs [19] represent
the full, non-truncated historyhi−1

1 =<wi−1, . . ., w1> for word
wi using the 1-of-k encoding of the most recent preceding word
wi−1 and a continuous vectorvi−2 for the remaining context. For
an empty history, this is initialized, for example, to a vector of all
ones. The topology of the recurrent neural network used to compute
LM probabilitiesPRNN(wi|wi−1,vi−2) consists of three layers, as
is shown in figure 1. The full history vector, obtained by concatenat-
ing the those ofwi−1 andvi−2, is fed into the input layer. The
hidden layer compresses the information of these two inputs and
computes a new representationvi−1 using a sigmoid activation to



achieve non-linearity. This is then passed to the output layer to pro-
duce normalized RNNLM probabilities using a softmax activation,
as well as recursively fed back into the input layer as the “future”
remaining history to compute the LM probability for the following
wordPRNN(wi+1|wi,vi−1).
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OOV input node
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softmax

OOS output node
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vi−1
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Fig. 1. A full output layer RNNLM with OOS nodes.

To reduce computational cost, a shortlist based output layer vo-
cabulary limited to the most frequent words can be used. This was
previously used for feedforward NNLMs [27, 6]. A similar approach
may also be used at the input layer when a large vocabulary is used.
In order to reduce the bias to in-shortlist words during NNLM train-
ing, two alternative network architectures that model a full vocabu-
lary at the output layer can be considered. The first uses a class based
factorized output layer structure [23]. Each word in the output layer
vocabulary is attributed to a unique class.As the number of classes
are normally significantly smaller than the output layer vocabulary
size, training time speed-ups can be achieved for both feedforward
NNLMs [23] and RNNLMs [20]. The second explicitly models the
probability mass of out-of-shortlist (OOS) words using an additional
output node [25, 11]. This ensures that all training data are used in
training, and the probabilities of in-shortlist words are smoothed by
the OOS probability mass to obtain a more robust parameter esti-
mation. The performance sensitivity to word classing in class based
RNNLMs is also removed. This form of full ouput RNNLMs with
OOS nodes is used in the rest of this paper.

RNNLMs can be trained using an extended form of the standard
back propagation algorithm, back propagation through time [26],
where the error is propagated through recurrent connections back
in time for a specific number of time steps. This allows the recur-
rent network to record information for several time steps in the hid-
den layer. Full output RNNLM can be efficiently trained in a bunch
mode on GPUs [4]. A modified version of the RNNLM toolkit [21]
supporting the above full output architecture with an output layer
OOS node and the associated bunch mode GPU training is used.

In state-of-the-art speech recognition systems, NNLMs are often
linearly interpolated withn-gram LMs to obtain both a good cover-
age of contexts and strong generalisation ability [27, 6, 25, 19, 29,
11]. The interpolated LM probability is given by

P (wi|hi−1
1 ) = λPNG(wi|hi−1

1 ) + (1− λ)PRNN(wi|hi−1
1 ) (1)

λ is the weight assigned to the back-offn-gram LMPNG(·), and kept

fixed as 0.5 in all experiments of this paper. In the above interpola-
tion, the probability mass of OOS words assigned by the RNNLM
component needs to be re-distributed among all OOS words [25, 11].

3. PARAPHRASTIC LANGUAGE MODELS

Paraphrastic Language Models(PLMs) [14, 17] directly target ex-
pressive richness related variability in natural languages. A statisti-
cally trained phrase level generative model is used to produce multi-
ple paraphrase sentences for each training data sentence. Paraphras-
tic LM probabilities are then estimated by maximizing the marginal
probability of these paraphrase variants. For anL word long sen-
tenceW =< w1, w2, ..., wi, ..., wL > in the training data, the
marginal probability over all paraphrase sequences is maximized,

F(W) = ln







∑

ψ,ψ′

,W′

P (W|ψ)P (ψ|ψ′)P (ψ′|W ′)PPLM(W ′)






(2)

where

• PPLM(W ′) is paraphrastic LM probability to be estimated.

• P (ψ′|W ′) is a word to phrase segmentation model assigning
the probability of a phrase level segmentation,ψ′, given a
paraphrase word sequenceW ′;

• P (ψ|ψ′) =
∏

v,v′ P (v|v′) uses a phrase to phrase para-
phrase model to compute probability of a phrase sequence
ψ being paraphrastic to anotherψ′;

• P (W|ψ) is a phrase to word segmentation model that con-
verts a phrase sequenceψ to a word sequenceW, and by
definition is a deterministic, one-to-one mapping, thus con-
sidered non-informative.

3.1 Automatic n-gram paraphrase induction: In order to gener-
ate multiple paraphrase variants{W ′}, the phrase level paraphrase
model{P (v|v′)} in equation (2) needs to be estimated. To obtain
sufficient phrase coverage, a large number of paraphrase phrase pairs
are required. As it is impractical to obtain expert semantic labelling
at the phrase level, adistributional similarity[8] based automaticn-
gram paraphrase induction algorithm proposed in [14, 17] is used.
The co-occurrence counts of two phrases of variable lengths, for ex-
ample, from one word to four words maximum, sharing the same left
and right three word contexts, are used to estimate the phrase level
paraphrase model1. Ambiguity can occur during word to phrase seg-
mentation. If there is no clear reason to favor one phrase segmenta-
tion over another,P (ψ′|W ′) can be treated as non-informative.
3.2 Generation of paraphrase variants: In order to train para-
phrastic LMs, multiple paraphrase variants are required. Weighted
finite state transducers (WFST) [24] can be can used to efficiently
generate paraphrases [14, 17]. For each training data sentence, the
paraphrase word latticeTW′ is generated using a sequence of WFST
composition operations as

TW′ = det
(

πW′

(

TW:W ◦ T
W:ψ ◦ Tψ:ψ′ ◦ Tψ′

:W′

))

(3)

where TW:W is the transducer containing the original word se-
quence,T

W:ψ is the word to phrase segmentation transducer,Tψ:ψ′

1In common with other paraphrase induction methods [1, 18], this
scheme can also produce phrase pairs that are non-paraphrastic, for exam-
ple, antonyms. However, this is of less concern for language modelling, for
which improving context coverage is the prime aim.



the phrase to phrase paraphrase transducer andTψ′

:W′
the phrase to

word transducer derived by taking the word to phrase transducer’s
inverse. ◦, det(·) andπ(·) denote the WFST composition, deter-
minization and projection operations. It is possible in general that
some phrases may have no suitable paraphrases available. In order
to ensure the resulting paraphrase lattice is fully connected, self-
reflexive arcs that map the input phrases to the same output are also
included in the paraphrase transducer with zero cost.

In order to deweight the statistics accumulated from very un-
likely paraphrase sequences and improve efficiency, a standard bi-
gram LM trained on the surface word sequence can be applied to the
paraphrase lattices generated using equation (3). Using this WFST
based decoding approach and a paraphrase model trained on 545
million words of conversational data, for a sentence “And I gener-
ally prefer”, the following paraphrase variants inside the lattice are
among those generated: “And I just like”, “ I mean I want”, “ I guess
I prefer ”, “ You know I need”, “ And I appreciate”, “ I would have”,
“ ‘Cause I like”, “ Well I need” and “So I like”.
3.3 Paraphrastic discounting: After paraphrase generation, the
sufficient statistics,C(hi, wi), used to estimate the paraphrastic LM
probabilityPPLM(wi|hi) predicting wordwi following history hi,
are now accumulated over each paraphrase word sequence in the
paraphrase lattices, or equivalently n-best lists, and weighted by its
posterior probability. This form of intuitive and interpretable counts
smoothing automatically re-distributes statistics to alternative ex-
pressions of the same observed word sequence. It was previously
exploited to improve the context coverage and generalization for
several forms of LMs that do not explicitly capture the expressive
richness related variability in natural languages, including back-off
n-gram LMs [14], and feedforward NNLMs [15].

4. PARAPHRASTIC RNN LANGUAGE MODELS

As discussed in section 1, RNNLMs acquire their strong general-
ization by internally clustering variable length full history contexts
using the similarity measure between their vector space representa-
tions. In this process, linguistic factors, such as paraphrase alterna-
tives, are implicitly learned but not explicitly used in training to drive
the underlying smoothing mechanism. An assumption is made that
history contexts that differ significantly in their surface form or vec-
tor representations, despite being strongly related in meaning, are
considered unlikely to share a similar RNNLM distribution. This
can lead to poor context coverage and generalization. In order to
address this issue, the general form of paraphrastic language mod-
elling framework presented in section 3 can also be used to improve
RNNLMs’ performance.
4.1 Paraphrastic RNNLM training: The phrase level paraphrase
model estimation and paraphrase lattice generation stages described
in sections 3.1 to 3.2 to are performed first during paraphrastic
RNNLM training. As discussed in section 2, RNNLMs model
untruncated, full history contexts. Hence, explicit N-best represen-
tation of multiple paraphrase variants, rather than lattices, is required
in paraphrastic RNNLM training. As expected, when the number
of alternative expressions increases, directly training RNNLMs on
N-best paraphrase sentences becomes highly expensive. In order to
handle this problem, the GPU based bunch mode training algorithm
proposed in [4] was used to efficiently train paraphrastic RNNLMs.

The paraphrastic LM counts smoothing presented in section 3.3
uses the the posterior probability of each paraphrase alternative in
the paraphrase N-best list to deweight the contribution from unlikely
paraphrase variants. The storage and use of these posterior proba-
bilities complicates the bunch mode training algorithm [4] and also

introduces additional computational overhead. To address this issue,
a simplified approach is used in this paper. The generated N-best
paraphrase data are arranged into a total of N blocks. Each block
provides a paraphrase re-expression of the entire training corpus so
that theith block contains the(N − i + 1)th paraphrases for each
of the training sentences occurring in the same order. Such ordering
of the blocks retains the ranking ordering of the N-best paraphrase
alternatives and implicitly assigns a higher weighting to the more
likely paraphrases with higher posterior probabilities during train-
ing. The overall model training process is summarized below.

1: phrase level paraphrase model estimation on LM data using the
n-gram paraphrase induction algorithm described in [14];

2: for every sentence in training datado
3: generate a paraphrase lattice using WFSTs as in section 3;
4: extract N-best paraphrase alternatives from the lattices;
5: end for
6: arrange N-best paraphrase data into N blocks such that theith

block contains the(N − i + 1)th paraphrase variants for each
of the training sentence curring in the same order.

7: back propagation through time training in spliced sentence
bunch mode until convergence.

In common with paraphrastic back-off or feedforward NNLMs, the
resulting paraphrastic RNNLMPPRNN(·|hi) is interpolated the con-
ventional RNNLMPRNN(·|hi) trained on the standard surface text
data only. LetP̄RNN(w̃i|hi) denote the interpolated RNNLM proba-
bility for an in-vocabulary wordw̃i following some historyhi,

P̄RNN(w̃i|hi) = λPRNN(w̃i|hi) + (1− λ)PPRNN(w̃i|hi) (4)

whereλ is the weight assigned to the baseline RNNLM distribution
PRNN(·) to be optimized on the perplexity of some held-out data.
4.2 Phrase and multi-level paraphrastic RNNLMs: In order to
increase the context span, phrase level paraphrastic RNNLMs can
also be trained by optimizing a simplified form of the criterion in
equation (2), by dropping the word to phrase segmentation model
P (ψ′|W ′). Phrase level segmented paraphrase lattices or N-best
alternatives can then be generated and used to train phrase level
paraphrastic RNNLMs. In order to incorporate richer linguistic con-
straints, RNNLMs that model different units, for example, words and
phrases, can be used. These RNNLMs are first equal weight inter-
polated with the respective word, or phrase level, back-offn-gram
LMs [14, 17], before finally log-linearly combined. The resulting
multi-level paraphrastic RNNLMs can be used to further improve
discrimination [12, 13]. When applying this model, word level lat-
tices need to be first converted to phrase level lattices before the
log-linear combination is performed. The log-linear interpolation
weights were set as 2:1 for word and phrase level RNNLMs, and
kept fixed for all experiments of this paper.

5. EXPERIMENTS AND RESULTS

In this section performance of paraphrastic RNNLMs are evaluated
on the CU-HTK LVCSR system for conversational telephone speech
(CTS) used in the 2004 DARPA EARS evaluation. The acoustic
models were trained on approximately 2000 hours of Fisher conver-
sational speech released by the LDC. A 59k recognition word list
was used in decoding. The system uses a multi-pass recognition
framework. A detailed description of the baseline system can be



found in [7]. The 3 hourdev04 data, which includes 72 Fisher con-
versations was used. For all results presented in this paper, matched
pairs sentence-segment word error (MAPSSWE) based statistical
significance test was performed at a significance levelα = 0.05.

The baseline 4-gram back-off LM was trained on a total of 545
million words from 2 text sources: the LDC Fisher acoustic tran-
scriptions,Fisher, of 20 million words (weight 0.75), and the Uni-
versity Washington conversational web data [3],UWWeb, of 525
million words (weight 0.25). The baseline RNNLM was trained on
the Fisher data. The modified architecture described in section 2
with 512 hidden layer nodes, a 38k word input layer vocabulary and
20k word output layer shortlist was used. A total of 3.0M phrase
pairs of one word to four words maximum were automatically ex-
tracted from theFisher andUWWeb data. More detailed descrip-
tion of the paraphrase extraction is in [17]. These were then used
to generate N-best paraphrase sentences for theFisher data to train
various paraphrastic RNNLMs. These LMs are then used for lattice
rescoring using a 6-gram truncated history based approximation [16]
and word error rate (WER) performance evaluation.

5.1. Perplexity of Paraphrastic RNNLMs

RNNLM
LM Paraph. N-best dev04
w4g - - 51.80

rnn

× - 51.02

√

1 48.92
2 47.89
3 47.14
4 46.99
5 46.89
10 45.97
25 46.17

w4g+rnn

× - 45.64

√

1 45.16
2 44.82
3 44.47
4 44.45
5 44.45
10 43.97
25 44.10

Table 1. Perplexity of paraphrastic RNNLMs ondev04. “w4g” de-
notes a 4-gram back-off LM. “rnn” is an RNNLM trained onFisher
data and optionally its paraphrase alternatives . “w4g+rnn” is an
interpolated LM combining “w4g” with “rnn” with equal weights.

The perplexity performance of various word level RNNLMs are
shown in table 1. Consistent perplexity reductions were obtained by
increasing the number of paraphrase alternatives used in paraphras-
tic RNNLM training from 1 to 10. The 10-best paraphrase vari-
ants based paraphrastic RNNLM (8th line in table 1), outperformed
the non-paraphrastic baseline RNNLM (2nd line in table 1) by 5.1
points in perplexity (10% relative). However, no further perplex-
ity improvements were found when further increasing the number of
paraphrase alternatives used to 25. The same trend was also found
after these paraphrastic RNNLMs were interpolated with the base-
line 4-gram back-off LM (1st line in table 1). These are shown the
bottom section of table 1. Again the 10-best paraphrase variants
based paraphrastic RNNLM gave the lowest perplexity.

5.2. WER Performance of Paraphrastic RNNLMs

RNNLM
LM Paraph. N-best dev04
w4g - - 16.67

w4g+rnn

× - 15.30

√

1 15.09
2 15.00
3 14.90
4 15.00
5 15.11
10 14.97
25 14.97

(w4g+rnn) ◦ (p4g+rnnp)
√

3 14.73

Table 2. Word error rate performance of paraphrastic RNNLMs on
dev04. “(w4g+rnn) ◦ (p4g+rnnp)” denotes a multi-level RNNLM
log-linearly combining word and phrase sequence level RNNLMs.
Other naming conventions same as table 1.

The WER performance of these RNNLMs are shown in table 2
for dev04. The word level 4-gram baseline LM “w4g” gave a WER
of 16.7%. After linearly interpolated with the baseline RNNLM
trained on the standard data, the WER was reduced to 15.30%, as
shown in the 2nd line in table 2. In common with the trend found
on perplexity in table 1, paraphrastic RNNLMs trained with various
number of paraphrase variants consistently outperformed the base-
line RNNLM by 0.19%-0.40% absolute in WER. Using 3 paraphrase
alternatives in paraphrastic RNNLM training gave the lowest WER
of 14.90%. Again, no further improvements were obtained using a
larger number of paraphrase variants. This is may be due to the de-
terioration of the paraphrase quality further down the N-best lists.
It was also found that when restricting the paraphrase generation of
section 3.2 to only allow word to word paraphrasing, the paraphrastic
RNNLMs trained on the resulting paraphrase variants outperformed
the baseline RNNLM, though the improvements were smaller than
using a full phrase level paraphrase model.

The incorporation of phrase level constraints in the form of
a multi-level paraphrastic RNNLM that log-linearly combines the
word level paraphrastic RNNLM “w4g+rnn” using 3 paraphrase
alternatives and a comparable phrase level paraphrastic RNNLM
“p4g+rnnp” gave a further small reduction in WER, as is shown in
the last line of table 2. Using this paraphrastic multi-level RNNLM,
total WER reductions of 1.94% absolute and 0.57% absolute were
obtained over the baseline 4-gram word level LM “w4g” and the
non-paraphrastic RNNLM “w4g+rnn” respectively, both being sta-
tistically significant. The overall improvements over the baseline
4-gram LM was increased from 8.4% to 11.6% relative.

6. CONCLUSION AND RELATION TO PRIOR WORK

Paraphrastic RNNLMs were investigated in this paper. Experimen-
tal results suggest the proposed method is also effective in improv-
ing RNNLM performance, consistent with the earlier research con-
ducted on back-offn-gram LMs [14] and feedforward NNLMs [15].
Significant word error rate reductions of 1.94% absolute (12% rel-
ative) were obtained on a state-of-the-art large vocabulary speech
recognition task. In contrast, previous research on RNNLMs used
no explicit paraphrastic modelling [19]. Future research will focus
on modeling richer linguistic variabilities for RNNLMs.
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