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Abstract

Given recent advances in information technology and artificial intelligence, web-based education

systems have became complementary and, in some cases, viable alternatives to traditional classroom

teaching. The popularity of these systems stems from their ability to make education available to a large

demographics (see MOOCs). However, existing systems do not take advantage of the personalization

which becomes possible when web-based education is offered: they continue to be one-size-fits-all. In

this paper, we aim to provide a first systematic method for designing a personalized web-based education

system. Personalizing education is challenging: (i) students need to be provided personalized teaching

and training depending on their contexts (e.g. classes already taken, methods of learning preferred,

etc.), (ii) for each specific context, the best teaching and training method (e.g type and order of teaching

materials to be shown) must be learned, (iii) teaching and training should be adapted online, based on the

scores/feedback (e.g. tests, quizzes, final exam, likes/dislikes etc.) of the students. Our personalized online

system, e-Tutor, is able to address these challenges by learning how to adapt the teaching methodology

(in this case what sequence of teaching material to present to a student) to maximize her performance

in the final exam, while minimizing the time spent by the students to learn the course (and possibly

dropouts). We illustrate the efficiency of the proposed method on a real-world eTutor platform which is

used for remedial training for a Digital Signal Processing (DSP) course.

Index Terms

Online learning, personalized education, eLearning, intelligent tutoring systems.

I. INTRODUCTION

The last decade has witnessed an explosion in the number of web-based education systems due to the

increasing demand in higher-level education [1], limited number of teaching personnel, and advances in
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information technology and artificial intelligence. Nowadays, most universities have integrated Massive

Open Online Course (MOOC) platforms into their education systems such as edX consortium, Coursera

or Udacity [2]–[4], to give students the possibility to learn by interacting with a software program instead

of human teachers. Several advantages of these systems over traditional classroom teaching are: (i) they

provide flexibility to the student in choosing what to learn and when to learn, (ii) they do not require the

presence of an interactive human teacher, (iii) there are no limitations in terms of the number of students

who can take the course. However, there are significant limitations of currently available online teaching

platforms. Since courses are taken online, there is no interaction between the students and the teacher

as in a classroom setting. This makes it very difficult to meet the personalized needs of each student,

which may arise due to the differences between qualifications, learning methods and cognitive skills of

the students. It is observed that if the personalization of teaching content is not carried out efficiently,

high drop-outs will occur [1]. For instance, the students that are very familiar with the topic may drop-out

if the teaching material is not challenging enough, while the students that are new to the topic may get

overstrained if the teaching material is hard.

Due to these challenges, a new web-based education system that personalizes education by learning

online the needs of the students based on their contexts, and adapting the teaching material based on

the feedback signals received from the student (answers to questions, quizzes, etc.) is required. For this

purpose we develop the eTutor (illustrated in Fig. 1), which is an online web-based education system,

that learns how to teach a course, a concept or remedial materials to a student with a specific context

in the most efficient way. Basically, for the current student, eTutor learns from its past interactions with

students with similar contexts, the sequence of teaching materials that are shown to these students, and

the response of these students to the teaching materials including the final exam scores, how to teach

the course in the most effective way. This is done by defining a teaching effectiveness metric, referred

to as the regret, that is a function of the final exam score and time cost of teaching to the student, and

then designing a learning algorithm that learns to optimize this metric. This tradeoff between learning

(exploring) and optimizing (exploiting) is captured by the eTutor in the most efficient way, i.e., the

average exam score of the students converge to the average exam score that could be achieved by the

best teaching strategy. We illustrate the efficiency of the proposed system in a real-world experiment

carried out on students in a DSP class.
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Fig. 1. eTutor, student and professor interaction.

A. Related Work

Although web-based education systems have recently become popular, there is no consensus or stan-

dards on how to design an optimal web-based education system. A detailed comparison of our work

with the related work in web-based education is given in Table I. Most of the recent works focus on

the subfield of MOOCs, which are online courses with very large number of students [1]–[4]. Among

these, several works examine students’ interaction with commercially available MOOC systems such as

Coursera [2], [3] and edX [4].

Apart from these, two approaches exist in designing web-based education systems: adaptive education

systems and intelligent tutoring systems. In an adaptive education system [5], [6], the teaching materials

that are shown to each student are adapted based on the context of the student, but not based on the

feedback the student provides during the course. This adaptation is based on numerous contexts including

the student’s learning style, her knowledge, background, origin, grades, previously taken courses etc. In

contrast, in an intelligent tutoring system adaptation is done based on the response of the student to the

given teaching material [7]–[13], without taking into account contexts. Our work combines both ideas by

adapting the sequence of teaching materials that is presented to a student based on both the context and

the feedback of the student. However, our techniques are very different from both lines of research. Our

goal is to learn the optimal way to teach a course in a way that is most effective for each student. To

learn effectively, our method utilizes the past knowledge gained about the efficacy of the material from

students with similar contexts who have taken the course before. This is different from [7]–[13], which

only take into account the current student’s response to the previously shown teaching material.
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Method Context-based Feedback-based Learns from Regret
learning learning final exam bound

[5], [6] Yes No No No
[7]–[13] No Yes No No
Our work Yes Yes Yes Yes

TABLE I
COMPARISON WITH RELATED WORK.

II. FORMALISM, ALGORITHM AND ANALYSIS

In this section we mathematically formalize the online teaching/tutoring problem, define a benchmark

tutor (i.e. the ”ideal” tutor) and propose an online learning algorithm for the eTutor which converges in

performance to the benchmark tutor that knows the optimal sequence of teaching materials to show for

each student.

A. Problem Definition

Consider a set of students participating in an online education system and a concept that should be

learned by the students. The comprehension of the concept will be tested via a final exam (test). We assume

that the students arrive sequentially over time and use index i to denote the ith student. Additionally, we

assume that when a student first interacts with the online education system, she needs to answer a set of

questions, which will form the context of the student. Context may include information about the student

such as age, grades, whether she prefers visual or written instructions, etc. Denote the finite set of all

possible contexts by X and an element of X by x. The concept will be taught by presenting a set of

teaching materials (written or visual) to the student and asking a set of questions about these materials

and providing their answers. Let Q be the set of teaching materials (consists of text/images to learn from

and questions) that can be given to the student. The number of elements of Q is denoted by Q.

The materials that are shown to a student are chosen in an online way based on the context of the

student, previous materials that are shown to the student, the student’s response to shown questions

(whether the answer is correct or not) and all the previous knowledge obtained from past students with

contexts, responses and scores similar to the current student. It is also important to learn in which order

the materials should be shown, since learning from one material may require knowledge of a concept

which can be learned by understanding another material.

For each student i, we consider a discrete time model t = 1, 2, . . . , Ti, where time t denotes the

sequence of events related to the tth material that is shown to the student. Ti denotes the number of

teaching materials shown to student i before the final exam is given (depends on student’s feedback).
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Clearly, Ti ≤ Q. The tth teaching material shown to student i is denoted by qi,t. Let qi := (qi,1, . . . , qi,Ti),

and qi[t] := (qi,1, . . . , qi,t).

We denote student i’s response to qi,t by ai,t ∈ A, where A is the set of possible feedbacks that the

student can provide to a teaching material. We assume that A is finite. For instance, an example can be

the case when A := {−1, 0, 1}. If the student does not provide any feedback on the teaching material,

we have ai,t = 0; when the teaching material is a (multiple-choice) question, ai,t = 1 denotes a correct

answer and ai,t = −1 denotes a wrong answer. Let ai := (ai,1, . . . , ai,Ti) and ai[t] := (ai,1, . . . , ai,t),

t ≤ Ti. In addition, let ai,0 := 0, which indicates that no feedback is available prior to 1st teaching

material.

Let S denote the set of all sequences of teaching materials that can be shown.1 We have

|S| =
Q∑
t=1

(
Q

t

)
t! = Q!

Q∑
t=1

1

(Q− t)!
= Q!

(
eΓ(Q+ 1, 1)

Γ(Q+ 1)
− 1

)
≥ Q!,

where Γ(y) is the gamma function and Γ(x, y) is the incomplete gamma function.

For a sequence of materials s ∈ S, let A(s) be the set of sequences of feedbacks a student can

provide. The expected final exam score for a student with context x, sequence of questions s ∈ S and

sequence of feedbacks a ∈ A(s) is denoted by rx,s,a. We assume that the final exam score of a student

with context x, the sequence of teaching materials s and the sequence of feedbacks a is randomly drawn

from a Fx,s,a with expected value rx,s,a. Both Fx,s,a and rx,s,a are unknown.

B. The Benchmark Tutor

Due to the enormous number of possible sequences of teaching materials, it is not possible to learn

the best sequence of teaching materials by trying all of them for different students. In this section we

define a benchmark tutor, whose teaching strategy can be learned very fast. We call it the best-first (BF)

benchmark. Due to limited space its pseudocode is given in Fig. 2, however, we describe it in detail

below. In order to explain this benchmark, we require a few more notations.

Given a sequence s of teaching materials, let Qs be the set of remaining teaching materials that can be

given to the student. Let S[t] ⊂ S be the set of sequences that consists of t teaching materials followed

by the final exam. In order to explicitly state the number of teaching materials in a sequence of teaching

materials, we will use the notation s[t] to denote an element of S[t]. We will also use as[t][t
′] to denote

1In practice, it is possible to give S as an input in addition to Q. For instance, some sequences which are classified by the
professor as unreasonable can be discarded, significantly reducing the size of S.
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1: Receive student context x
2: Show q∗x,1 = arg maxq∈Q yx,q,0
3: Receive a∗1.
4: while 1 < t ≤ Q do
5: if

rx,s∗[t−1],a∗[t−1] ≥ maxq∈Qs∗[t−1]
yx,s∗[t−1],a∗[t−1] − c then

6: Give the final exam. //BREAK
else

8: q∗x,t = arg maxq∈Qs∗[t−1]
yx,s∗[t−1],a∗[t−1]

end if
t = t+ 1

11: end while
Fig. 2. Pseudocode for BF.

the student’s feedback to the first t′ teaching materials in s[t]. Let

yx,s[t],as[t][t−1] := Eat [rx,s[t],(as[t][t−1],at)],

be the ex-ante final exam score of a student with context x which is given teaching materials s[t] and

provided feedback to all of them except the last teaching material.

The BF benchmark incrementally selects the next teaching material to show based on the student’s feed-

back about the previous teaching materials. The first teaching material it shows is q∗x,1 = arg maxq∈Q yx,q,0.

Let q∗x = (q∗x,1, q
∗
x,2, . . . , q

∗
x,T ) be the sequence of teaching materials shown by the BF benchmark to a

student with context x, where T is the random total number of materials shown to the student, which

depends on the feedback of the student to the shown materials. In general, the tth teaching material to

show, i.e., q∗x,t, depends on both q∗x[t − 1] and aq∗x[t−1][t − 1]. We assume that the following property

holds for the expected final exam score given the sequence of materials shown by the BF benchmark

and the feedback obtained from these shown materials:

Assumption 1: Consider a context x ∈ X and any two sequences (q∗,a) and (q∗,a′), where q∗ is the

set of teaching materials shown by the BF benchmark and a and a′ are two feedback sequences that are

associated with this set of teaching materials. Then, we have

arg max
q∈Qq∗[t]

yx,(q∗[t],q),a[t] = arg max
q∈Qq∗[t]

yx,(q∗[t],q),a′[t].

We have q∗x,t = arg maxq∈Qq∗x[t−1]
rx,q∗x[t−1],a∗t−1

. For any t, if rx,q∗x[t],a∗[t] ≥ yx,(q∗x[t],q),a∗[t] − c for all

q ∈ Q(q∗x[t]), then the BF benchmark will give the final exam after the tth teaching material. Here c > 0

is the teaching cost of showing one more material to the student, which is the cost related to the time it
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Fig. 3. Operation of the eTutor.

takes for the student to complete the teaching material. The average final exam score minus the teaching

cost achieved by following the BF benchmark for the first n students is equal to

RWBF(n) =

n∑
i=1

E[Yxi,Q∗i,,A∗i − c|Q
∗
i,|]

n
,

where Yxi,Q∗i,A∗i is the random variable that represents the final exam score of student i, where Q∗i is

the random variable that represents the sequence of teaching materials given to student i by the BF

benchmark, and A∗i is the random variable that represents the sequence of feedbacks provided by student

i to the teaching materials Q∗i . The BF benchmark is an oracle policy because we assume that nothing

is known about the expected exam scores a priori. Any learning algorithm α which selects a sequence

of teaching materials Qα
i based on the sequence of feedbacks Aα

i has a average regret with respect to

the BF benchmark which is given by

R(n) = RWBF (n)−
n∑
i=1

E[Yxi,Qα
i,A

α
i
− |Qα

i |]
n

. (1)

The next example illustrates that when the cost of showing new materials, i.e., c, is high, BF benchmark

is better than the best fixed sequence.

Example 1: Consider Q = {a, b}, A = {0, 1} and X = {x}. Assume that the expected rewards are

given as follows: rx,a,0 = 0, rx,b,0 = 0, rx,a,1 = 12, rx,b,1 = 6, rx,(a,b),(1,1) = 13, rx,(a,b),(1,0) = 12,

rx,(a,b),(0,1) = 10, rx,(a,b),(0,0) = 9. Let Px(a|q) denote the probability that feedback sequence a is

given by a student with context x as a response to the sequence q. Assume that we have Px(1|a) = 0.5,

Px(0|a) = 0.5, Px((0, 0)|(a, b)) = 0.3, Px((0, 1)|(a, b)) = 0.2, Px((1, 1)|(a, b)) = 0.4, Px((1, 0)|(a, b)) =

0.1.
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The BF benchmark shows a as the first teaching material. Then if feedback is 0 it also shows b before

giving the final exam. Else, it gives the final exam just after showing a. Hence the expected reward of

the BF is

RWBF(n) = 0.5× 12 + 0.3× (9− c) + 0.2× (10− c) = 10.7− 0.5c,

where c is the cost of showing the second material. The best fixed sequence always shows a first, b

second, and then gives the final exam. Its expected reward is equal to

0.3× 9 + 0.4× 12 + 0.2× 10 + 0.1× 11− c = 11− c.

Clearly, the BF benchmark is better than the best fixed sequence given that c > 3/5.

C. eTutor

In this section we propose eTutor (pseudocode given in Fig. 4), which learns the optimal sequence

of teaching materials to show based on the student’s context and feedback about the previously shown

teaching materials (as shown in Fig. 3). In order to minimize the regret given in (1), eTutor balances

exploration and exploitation when selecting the teaching materials to show to the student. Consider a

student i and the tth teaching material shown to that student. eTutor keeps the following sample mean

reward estimates: (i) r̂x,t,q,a(i) which is the estimated final exam score for students with context x that

took the course before student i who are given the final exam right after material q is given as the tth

material and feedback a is observed, (ii) ŷx,a,t,q(i) which is the estimated final exam score for students

with context x that took the course before student i who are given the final exam right after material q is

given as the tth material after observing feedback a for the t− 1th material. In addition to these, eTutor

keeps the following counters: (i) Tx,t,q,a(i) which counts the number of times material q is shown as the

tth material and feedback a is obtained for students with context x that took the course before student i,

(ii) Tx,a,t,q(i) which counts the number of times material q is shown as the tth material after feedback

a is obtained from the previously shown material for students with context x that took the course before

student i.

Next, we explain how exploration and exploitation is performed. Consider the event that eTutor asks

question qi,t = q and receives feedback ai,t = a. It first checks if Tx,t,q,a(i) < D log(i/δ), where

D > 0 and δ > 0 are constants that are input parameters of eTutor. If this holds, then eTutor explores

by giving the final exam and obtaining the final score X(i), by which it updates r̂x,t,q,a(i + 1) =

(r̂x,t,q,a(i+ 1) +X(i))/(Tx,t,q,a(i) + 1). Else if Tx,t,q,a(i) ≥ D log(i/δ), eTutor checks if there are any
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1: Input D > 0, δ > 0.
2: Initialize: r̂x,t,q,a = 0, ŷx,a,t,q = 0, Tx,t,q,a = 0, Tx,a,t,q = 0, ∀x ∈ X , a ∈ {−1, 0, 1}, q ∈ Q, t =

1, . . . , Q. ai,0 = 0, qi[0] = ∅, ∀i = 1, 2, . . ..
3: while i ≥ 1 do
4: Receive student context x = xi
5: U1 = {q ∈ Q : Tx,0,1,q < D log(i/δ)}
6: if U1 6= ∅ then
7: Give qi,1 randomly selected from U1, get ai,1.
8: Give the final exam, get the score X(i), t∗ = 1, //BREAK
9: else

10: Give qi,1 = arg maxq∈Q ŷx,0,1,q, get ai,1.
11: end if
12: t = 2
13: while 2 ≤ t ≤ Q do
14: Ut = {q ∈ Qqi[t−1] : Tx,ai,t−1,t,q < D log(i/δ)}
15: if Tx,t−1,qi,t−1,ai,t−1

< D log i then
16: Give the final exam, get the score X(i), t∗ = t− 1, //BREAK
17: else if Ut 6= ∅ then
18: Show qi,t randomly selected from Ut and get the feedback ai,t.
19: Give the final exam, get the score X(i), t∗ = t− 1, //BREAK
20: else
21: if r̂x,t−1,q,ai,t−1

≥ ŷx,ai,t−1,t,q′ − c, ∀q ∈ Qqi[t−1] then
22: Give the final exam, get the score X(i), t∗ = t− 1, //BREAK
23: else
24: Show qi,t = arg maxq∈Qqi[t−1]

ŷx,ai,t−1,t,q′ and get the feedback ai,1
25: end if
26: end if
27: t = t+ 1
28: end while
29: Update r̂x,t∗,qi,t∗ ,ai,t∗ , ŷx,ai,t∗−1,t∗,qi,t∗ using X(i) (sample mean update).
30: Tx,t∗,qi,t∗ ,ai,t∗ + +, Tx,ai,t∗−1,t∗,qi,t∗ + +.
31: i = i+ 1
32: end while

Fig. 4. Pseudocode for eTutor.

questions q′ ∈ Qqi[t]
for which Tx,ai,t,t+1,q′(i) < D log(i/δ). If there are such questions, then eTutor

explores one of them randomly by showing that material to the student, obtaining the feedback, giving

the final exam, and obtaining the final exam score. The obtained final exam score X(i) is used for both

updating r̂x,t+1,q′,ai,t+1
(i + 1) and ŷx,ai,t,t+1,q′(i + 1). If none of the above events happen, then eTutor

exploits at t. To do this it first checks if r̂x,t,q,ai,t(i) ≥ ŷx,ai,t,t+1,q′(i) − c, for all q′ ∈ Qqi[t]
. If this

is the case, it means that showing one more teaching material does not increase the final exam score

enough to compensate for the teaching cost of showing one more material. Hence, eTutor gives the final

exam after its tth material. If the opposite happens, then it means that showing one more material can
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improve final exam score sufficiently enough for it to compensate the cost of teaching. Hence, eTutor

will show one more teaching material to the student which is qi,t+1 = arg maxq′∈Qqi[t]
ŷx,ai,t,t+1,q′(i).

The next decision to take will be based on the student’s feedback to qi,t+1 which is ai,t+1. This goes on

until eTutor gives the final exam, which will eventually happen since Q is finite.

D. Regret and Confidence Bounds For eTutor

The regret of eTutor can be written as the sum of two separate regret terms: regret for the experimental

materials shown to students when eTutor explores, i.e., Re(n), and regret for students that eTutor exploits,

i.e., Rs(n). Hence we can write R(n) = E[Re(n)] + E[Rs(n)].

For a sequence of numbers {r}r∈R, let min2({r}r∈R) be the difference between the highest and the

second highest numbers. Consider any sequence of materials q∗x[t] ∈ S[t] and feedback a[t] ∈ A(q∗x[t]),

where q∗x[t] is the sequence of materials shown by the BF benchmark to a student with context x. Let

∆min,1 := min2({yx,q,0}q∈Q),

and

∆min,t := min2(rx,q∗x[t],a[t], {yx,(q∗x[t],q),a[t]}q∈Qq∗x[t]
),

for 1 < t < Q. Let ∆min := mint=1,...,Q−1 ∆min,t. Given that the constant D that is input to eTutor is

such that D ≥ 4/∆2
min, where ∆min = (minx∈X ,s∈S,a∈A(s) rx,s,a)2, Assuming that the maximum final

exam score is equal to 1, we have the following bounds on the regret.

Theorem 1: Setting the parameters of eTutor as D = 4/∆2
min and δ =

√
ε/(Q

√
2β), where β =∑∞

t=1 1/t2, we have the following bounds on the regret of eTutor. The regret of eTutor for the first n

students is bounded as follows:

(i) Re(n) ≤ 2|X ||A|Q2D log(n/δ)/n with probability 1.

(ii) Rs(n) = 0 with probability at least 1− ε.

(iii) R(n) ≤ 2|X ||A|Q2D log(n/δ)/n+ ε.

Proof: Our proof involves showing that when the eTutor estimates the final exam scores for the

sequences of materials it gives to the students such that they are within ∆min/2 of the true final exam

score, then it will always show the same set of teaching materials as the BF benchmark does.

To proceed, we define the following sets of students. Let E1(n) be the set of students in {1, . . . , n} for

which eTutor explores the teaching material in the first slot, i.e., i ∈ {1, . . . , n} for which Txi,0,1,q(i) <

D log(i/δ) for some q ∈ Q such that after the material is shown, the final exam is given. Let Et(n),
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1 < t ≤ Q be the set of students in {1, . . . , n} for which eTutor explores in the tth slot, i.e., the set

of time slots for which eTutor exploited up to the t − 1th slot and r̄xi,t−1,qi,t−1,ai,t−1
(i) ≤ D log(i/δ)

or ŷxi,ai,t−1,t,q ≤ D log(i/δ) for some q ∈ Qqi[t−1] such that the final exam is given either after the

t − 1th slot or the tth slot depending on which teaching material is under-explored. Let τ1(n) be the

set of students in {1, . . . , n} for which eTutor exploits for the first slot, i.e., Txi,0,1,q ≥ D log(i/δ) for

all q ∈ Q. Let τt(n) be the set of students in {1, . . . , n} for which eTutor exploits for the tth slot, i.e.,

r̄xi,t−1,qi,t−1,ai,t−1
(i) ≥ D log(i/δ) and ŷxi,ai,t−1,t,q ≥ D log(i/δ) for all q ∈ Qqi[t−1] such that eTutor has

not given the final exam before slot t−1. Let Zt(n) := τt(n)−τt+1(n)−Et+1(n), 1 ≤ t < Q denote the

set of students in {1, . . . , n} for which eTutor stops and gives the final exam after the t− 1th teaching

material is shown at times when it exploits. Let ZQ(n) := τQ(n). The set of all students for which eTutor

explores until the nth student is equal to E(n) :=
⋃Q
t=1E1(n), where Et(n)∩Et′(n) = ∅ for t 6= t. The

set of all students for which eTutor exploits until the nth student is equal to Z(n) :=
⋃Q
t=1 Zt(n), where

Zt(n) ∩ Zt′(n) = ∅. We also have Z(n) := τ1(n), τt(n) = τt+1(n) ∪ Et+1(n) ∪ Zt(n) for 1 ≤ t < Q.

In the following we will bound Rs(n). Next, we define the events which correspond to the case that

the estimated final exam scores for the sequences followed by the BF benchmark are within ∆min/2 of

the expected final exam scores. Let

Perf1(n) := {|ŷxi,0,1,q − yxi,q,0| < ∆min/2, ∀q ∈ Q, ∀i ∈ τ1(n)},

and

Perft(n) :=
{
|r̂xi,t−1,qi,t−1,ai,t−1

− rxi,q∗xi [t−1],aq∗xi
[t−1][t−1]| < ∆min/2,

|ŷxi,ai,t−1,t,q − yxi,(q∗xi [t−1],q),aq∗xi
[t−1][t−1]| < ∆min/2, ∀q ∈ Qq∗xi [t−1]

,∀i ∈ τt(n)
}

Let

Perf(n) =

Q⋂
t=1

Perft(n).

On event Perf(n), eTutor selects teaching materials for the students in the same way as BF benchmark

does. Hence the contribution to the regret given in (1) on event Perf(n) is zero.
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Next, we lower bound the probability of event Perf(n). Using the chain rule we can write

P(Perf(n)) = P(PerfQ(n),PerfQ−1(n), . . . ,Perf1(n))

= P(PerfQ(n)|PerfQ−1(n), . . . ,Perf1(n))× P(PerfQ−1(n)|PerfQ−2(n), . . . ,Perf1(n))

× . . .× P(Perf2(n)|Perf1(n))× P(Perf1(n)). (2)

For an event E, let Ec denote its complement. Note that we have

P(Perf1(n)c) ≤
∑

i∈τ1(n)

∑
q∈Q

P(|ŷxi,0,1,q − yxi,q,0| < ∆min/2)

≤
∑

i∈τ1(n)

2Q exp(−2D log(i/δ)∆2
min/4) (3)

≤
∑

i∈τ1(n)

2Qδ2/i2 ≤ 2Qβδ2, (4)

since D ≥ 4/∆2
min and β =

∑∞
i=1 1/i2. Hence, we have

P(Perf1(n)) ≥ 1− 2Qβδ2.

On event Perf1(n), it is always the case that the first teaching material that is shown is chosen according

to the BF benchmark, independent of whether the eTutor explores or exploits the second slot. Hence

given Perf1(n), the sample mean estimates that are related to Perf2(n) are always sampled from the

distribution in which the first teaching material is shown according to the BF benchmark. Because of

this, we have

P(Perf2(n)|Perf1(n)) ≥ 1− 2Qβδ2.

Similarly, it can be shown that

P(Perft(n)|Perft−1(n), . . . ,Perf1(n)) ≥ 1− 2Qβδ2.

Combining all of this and using (4) we get

P(Perf(n)) ≥ (1− 2Qβδ2)Q

≥ 1− 2Q2βδ2.

= 1− ε, (5)
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since δ =
√
ε/(Q

√
2β).

Next we bound Re(n). From the definition of Et(n), t = 1, . . . , Q, we know that |E1(n)| ≤ |X ||A|QD log(n/δ).

Similarly, for Et(n), t = 2, . . . , Q, we have |Et(n)| ≤ 2|X ||A|QD log(n/δ). Hence, we have |E(n)| ≤

2|X ||A|Q2D log(n/δ). Since the worst-case reward loss due to showing a suboptimal set of teaching

materials to a student is at most 1, we have

Re(n) ≤ 2|X ||A|Q2D log(n/δ)/n.

Finally, the regret bound on R(n) holds by taking the expectation.

Theorem 1 implies that the average final exam score of students tutored by eTutor converges to the

average final exam score of students tutored by BL (with probability at least 1 − ε) which knows the

expected final exam scores, and hence, how students learn for each sequence of teaching materials

perfectly. Moreover, the regret gives the convergence rate, and since it decreases with log n/n, eTutor

converges very fast.

III. ILLUSTRATIVE RESULTS

We deployed our eTutor system for students who have already studied digital signal processing (DSP)

one or more years ago, and the goal of this implementation of the eTutor is to have them refresh the

material about discrete Fourier transform (DFT) in the minimum amount of time. Student contexts belong

to X = {0, 1}, where for a student i, xi = 0 implies that she is not confident about her knowledge of

DFT, and xi = 1 implies that she is confident about her knowledge of DFT. Q contains three (remedial)

materials: one text that describes DFT and two questions that refreshes DFT knowledge. If a question

is shown to the student and if the student’s answer is incorrect, then the correct answer is shown along

with an explanation. For each q ∈ Q, we set the cost to be cq = 0.04 × θq, where θq (in minutes) is

the average time it takes for a student to complete material q. The value of θq is estimated and updated

based on the responses of the students. Performance of the students after taking the remedial materials

are tested by the same final exam.

We compare the performance of eTutor with a random rule (RR) that randomly selects the materials to

show and a fixed rule (FR) that shows all materials (text first, easy question second, hard question third).

The average final score achieved by these algorithms for n = 100 and n = 500 students are shown in

Table II. From this table we see that eTutor achieves 15,7% and 1.1% improvement in the average final

score for n = 500 compared to RR and FR, respectively. The improvement compared to FR is small
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# of students n = 100 n = 500
eTutor (66.4, 8.7) (75.8, 8.5)
RR (62.4, 10.2) (62.5, 10.2)
FR (75.5, 17.0) (75.0, 17.0)

TABLE II
COMPARISON OF ETUTOR WITH RR AND FR: FOR EACH ENTRY (x, y), x DENOTES THE AVERAGE FINAL SCORE (MAXIMUM

= 100) AND y DENOTES THE TIME SPENT IN MINUTES TAKING THE COURSE.

because FR shows all the materials to every student. It is observed that the average final score of eTutor

increases with n, which is expected since eTutor learns the best set of materials to show for each context

as more students take the course. In contrast, RR and FR are non-adaptive, hence their average final exam

scores do not improve as more students take the course. For n = 500, the average time spent by each

student taking the course is 8.5 minutes for eTutor which is 16.7% and 50% less than the average time

it takes for the same set of students by RR and FR, respectively. eTutor achieves significant savings in

time by showing the best materials to each student based on her context instead of showing everything

to every student.

IV. CONCLUSION

In this paper, we proposed a novel online education system called eTutor. While in this paper, eTutor

was used to learn the best sequence of materials to show a specific student, eTutor can also be easily

adapted to learn the best teaching methodology such as what types of materials/examples to show (visual

or not), what style of teaching to use etc.
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