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ABSTRACT
Super-resolving a natural image is an ill-posed problem. The clas-
sical approach is based on the registration and subsequent interpola-
tion of a given set of low-resolution images. However, achieving sat-
isfactory results typically requires the combination of a large number
of them. Such an approach would be impractical over heterogeneous
rate-constrained wireless networks due to the associated communi-
cation cost and limited data available. In this paper, we present an
approach for local image enhancement following the finite rate of
innovation sampling framework, and motivate its application to the
super-resolution problem over heterogeneous networks. Local esti-
mates can be exchanged among the nodes of the network in order
to regularize the super-resolution problem while, at the same time,
reduce data exchange.

Index Terms— FRI sampling, super-resolution, distributed pro-
cessing

1. INTRODUCTION

The goal of super-resolution is to produce a better quality image
from a set of lower-resolution ones. After proper registration, the
reconstruction of the high-resolution image is an ill-posed inverse
problem. This issue can be alleviated by employing regularization
techniques where some prior information about the image can be
used in order to make the problem well posed [1]. Typically, a
centralized scenario is assumed in the super-resolution problem.
However, due to the ubiquitous presence of mobile wireless devices
in our everyday life, distributed scenarios should be considered,
too. This is a particularly challenging task since one faces two main
additional problems. First, different devices have different charac-
teristics in their acquisition systems leading to different noise levels
and pixel resolutions. Second, communications should be done
over a wireless network. Thus, being energy-efficient and keeping
communication cost at a minimum are a must. To the best of our
knowledge, these constraints have not been considered before in the
context of super-resolution problems.

In this work, we propose a new method for local edge extraction
based on the theory of sampling signals with finite rate of innovation

[2]. Our motivation is to take advantage of local processing power
in order to precisely extract image features such as edges that can be
later used to regularize the image restoration problem. The use of lo-
cal information (such as edges) is also well motivated by biological
evidence on how the early stages of the visual system work (see [3]
and references therein). Once nodes have extracted edges from the
images they can exchange that information in order to better regu-
larize the image enhancement part. Note that following this strategy,
the exchange of raw pixels can be significantly reduced while, at the
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same time, producing perceptually better reconstructions.

A method for step-edge estimation using the polynomial repro-
ducing property of basis splines (B-splines) was initially proposed in
[4] and later extended in [5] to the case of E-splines. One of the main
issues with these two approaches is that they recast the problem as a
set of one-dimensional problems making them less robust to noise.
In our case, we propose to use all the image samples (within some
region of interest) in the estimation process and not just those corre-
sponding to a particular row. In our formulation this is possible since
we consider that the observed signals (edges) have a finite length. In
the simulations part, we will show that our method performs well
in practice even when we observe a segment whose span is outside
the boundaries of our observation window. In such cases, we also
observe that windowing the data results in an improved estimation
performance. We also show a motivating example of the developed
theory to the case of image super-resolution when two devices with
significantly different spatial resolutions are cooperating. Our exper-
iments indicate that a significant reduction in the data volume to be
exchanged is possible while achieving sharper reconstructions.

2. SAMPLING LINE SEGMENTS

2.1. Exponential Splines

Let us first start by introducing some background material that will
be used in later in the paper. For a detailed treatment of E-splines
and their properties we refer the reader to [6].

Let ↵ be a complex number and consider the (one-dimensional)
function

�

↵

(t) = e

↵t

�0(t), (1)

where �0(t) is the “box” function given by

�0(t) =

⇢
1 0  t < 1
0 otherwise . (2)

The function �

↵

(t) has the property of reproducing the exponen-
tial function e

↵t by combining appropriately scaled integer-shifted
replicas of it: X

n2Z
e

↵n

�

↵

(t� n) = e

↵t

. (3)

Higher order E-splines can be easily constructed by convolution. In
particular, let ↵ = [↵1, . . . ,↵K

] then, an E-spline of order K is
given by

�↵(t) = �

↵1(t) ⇤ · · · ⇤ �↵K (t), (4)

where ⇤ denotes convolution. It becomes clear from (4) that the
Fourier transform of �↵(t) is given by

B↵(!) =
KY

k=1

B

↵k (!) =
KY

k=1

e

↵k�j! � 1
↵

k

� j!

. (5)
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Fig. 1. Reproduction property of an E-spline function. The function
cos(t/5) is locally approximated by adding scaled shifted versions
of an E-spline.

In this paper, we will be considering the particular case where the
↵

k

’s are purely imaginary (i.e., ↵
k

= j!

k

). Furthermore, we will
consider pairs of frequencies (�j!

k

, j!

k

), which will give rise to
real-valued E-spline functions that reproduce complex exponentials,
that is X

n2Z
c

n

(!
k

)�↵(t� n) = e

↵kt
, (6)

where (for this particular choice of E-splines) the coefficients
c

n

(!
k

) are given by

c

n

(!
k

) = e

j!kn
/B↵(!k

). (7)

It is important to remark that the reproduction property will allow
us to compute continuous-time quantities from the discrete samples.
An example of the reproduction property of E-splines is illustrated
in Figure 1.

2.2. Sampling Line Segments

Let f(x) denote the two-dimensional signal that we want to capture.
During acquisition the observed signal is convolved with a low-pass
filter (due to the lens) and sampled on a regular grid. Mathematically,
this operation is described as

y

nm

= hf(x), �
nm

(x)i =
Z

R2
f(x)�

nm

(x) dx, (8)

where y

nm

is the sample (pixel) at the (n,m) position in the image,
x = [x, y]T 2 R2 is a two-dimensional point, and �

nm

(x) = �(x�
n, y �m) is the sampling kernel. Consider a line segment between
two points x1 and x2, and let C be a parametric representation of
the segment:

C = {x 2 R2
, s.t. x = tx1 + (1� t)x2, 0  t  1}. (9)

Fig. 2. Example of an image obtained from sampling a line segment.
The true and the estimated segment are also displayed.

Let f(x) = �(x 2 C), where �(·) is the Dirac’s delta function.
Then we have that

y

nm

=

Z

R2
�(x 2 C)�

nm

(x) dx =

Z

C

�

nm

(x) dx

=

Z 1

0

�

nm

(C(t)) kC0(t)k dt

= kx1 � x2k
Z 1

0

�

nm

(tx1 + (1� t)x2) dt,

(10)

where we have made explicit the parametrization of the curve C

with respect to t, and where C0(t) is the gradient of C(t). An exam-
ple of an image obtained from sampling a line segment is displayed
in Figure 2.

Assume that the kernel �
nm

(x) is able to reproduce exponen-
tials (e.g., E-spline kernel) such that

X

n2Z

X

m2Z
c

nm

(!)�
nm

(x) = e

j!T
x

, (11)

for some frequency vector ! 2 R2. If we now consider the weighted
sum of samples we have

F (!) =
X

n,m2Z
c

nm

(!)y
nm

= kx1 � x2k
Z 1

0

e

j!T (tx1+(1�t)x2)
dt

= kx1 � x2k e

j!(x1+x2)/2 sinc(!T (x1 � x2)/2⇡),

(12)

where the last equality follows after manipulating the integration re-
sult and where sinc(x) = sin(⇡x)/⇡x.

2.3. Parameter Estimation

Based on Equation (12) we can now establish a procedure for deter-
mining the points that define the segment. If we restrict ourselves to
low frequencies, it is clear from (12) that we can get an estimate of

s = x1 + x2 (13)
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by just looking at the phase of F (!). For that purpose, we need
at least a pair of distinct frequencies in order to solve a system of
equations of the form

2

64
!T

1

...
!T

L

3

75 s =

2

64
^F (!1)

...
^F (!

L

)

3

75 , (14)

for a set of L distinct frequencies !1, . . . ,!L

. In practice, due to
noise and other corruptions, the above system of equations needs to
be solved in the least-squares sense. In order to resolve the endpoints
of the segment we will use the magnitude of the frequency response
given by

|F (!)| =
���sinc(!T (2x1 � s)/2⇡)

��� , (15)

where we have made use of relation (13). In particular, consider the
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Fig. 3. Mean Squared Error as a function of the signal to noise ratio,
and for different line slopes. The MSE is measured as the average
relative error between the original image and the reconstructed one
using the estimated parameters.

ratios
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)
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)

���� =

�����
sinc(!T

i

(2x1 � s)/2⇡)

sinc(!T

j

(2x1 � s)/2⇡)

����� , (16)

where we have made use of relation (13).
Since we are considering low frequencies, we can safely skip the

absolute value in the last part of (16). Keeping this in mind we can
compute several ratios in order to estimate x1 as the solution to the
following nonlinear least-squares problem

x̂1 = argmin
x

g(x), (17)

where g(x) is given by

g(x) =
1
2

X

i,j

 
sinc(!T

i

(2x� s)/2⇡)

sinc(!T

j
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ij
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1
2

X

i,j

✓
sinc

i

(x)
sinc

j

(x)
� r

ij

◆2
(18)

Having computed x1, we can find the other extreme point by using
(13). A simple strategy to (locally) solve for (17) is to use a gradient-
descent strategy or the Gauss-Newton method.
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Fig. 4. Mean Squared Error as a function of the signal to noise ratio,
and for different line slopes. The MSE is measured as the aver-
age relative error between the original image and the reconstructed
one using the estimated parameters. The data is windowed using an
isotropic 2D Gaussian window prior to parameter estimation.

3. NUMERICAL SIMULATIONS

For all the experiments we consider centered and symmetric E-spline
sampling kernel obtained as the tensor product of 1D kernels with
parameters ↵ = j2⇡(�2,�1, 1, 2)/50.

3.1. Line Estimation

We proceed now to evaluate the estimation performance of the pro-
posed scheme in the presence of noise. For that purpose, we ran-
domly generate lines with different orientations. In particular, we
generate lines centered in the image, and with different slopes in the
range [0, ⇡/2]. We then sample them using an E-spline kernel and
produce an image of 10 by 10 pixels. The sampled image is cor-
rupted (pixel wise) with independent additive Gaussian noise sam-
ples. If we denote I as the noiseless sampled image and �

2 as the
(per pixel) noise variance then, the Signal to Noise Ratio (SNR) is
defined as

SNR =

P
nm

I

2(n,m)

r

x

r

y

�

2
, (19)

where r

x

and r

y

are the horizontal and vertical pixel resolutions of
the image, respectively. It is important to mention that the param-
eters of the line (slope and intercept with the y-axis) can be easily
retrieved from the estimated endpoints x̂1 and x̂2.

The results of the simulation are depicted in Figure 3 where it is
displayed the average relative error between the original (noiseless)
image and the reconstructed one using the estimated parameters. As
it can be seen, the performance degrades slightly as we move away
from ✓ = ⇡/4, being less severe as we approach the extremes ✓ =
0 and ✓ = ⇡/2. The reason is that in those cases we are having
boundary effects that cause a small bias in the solution. In order
to reduce such effect, we could window the observed data using an
isotropic window such as a Gaussian 2D window of 10⇥10 samples.
The estimation results with windowing are depicted in Figure 4.

As it can be seen in Figure 4 a better reconstruction in terms of
MSE can be obtained (gain around 5 dB). However, in such case the
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Fig. 5. Original high-resolution image (left), captured from device 1
(middle) and from device 2 (right). Yellow lines show the estimated
edges of device 1.

most challenging lines to estimate are horizontal and vertical lines.
This is to be expected since in those cases we are dealing with a
1D estimation problem, hence reducing the amount of samples (by
windowing) has a greater effect on the variance of the estimator.

3.2. Image Enhancement

In order to motivate the applicability of the proposed edge-detection
framework, consider the acquisition of a scene by two devices with
very different spatial resolutions as illustrated in Figure 5. For sim-
plicity, let’s assume that the images are registered (i.e., they have a
common coordinate system). A 1000 ⇥ 1000 high-resolution syn-
thetic image has been generated and sampled with an E-spline ker-
nel. The same sampling kernel is used for the two devices but with
different scaling factor 1 : 4 (i.e., kernel of device 2 is 4 times wider).
As a result, the images acquired from device 1 has dimensions of
40⇥40 pixels while the one from device 2 is only 10⇥10 pixels. At
that resolution, the edges in the image cannot be properly extracted.
However, device 1 has enough resolution to perform reliable esti-
mation (see Figure 5) and communicate those estimates to device 2.
Note that in the acquired images we do not directly observe sampled
lines but instead, edges are present in the acquired data. Edges in
an image can be well approximated by the use of a step-function [4]
and the support of the discontinuity can be retrieved by using finite
differences of the samples [7]. More concretely, the image samples
around an edge are given by

y

nm

= Ahh(hn, xi), �
nm

(x)i, (20)

where h(t) is the step function, n is the normal vector to the curve
defining the edge and A denotes the amplitude of the step-edge. By
taking sample differences along the x-direction (see [7]) we get

d

nm

= y

nm+1 � y

nm

= Ah@h(hn, xi)
@x

, �̃

nm

(x)i

/ h�(C(t)), �̃
nm

(x)i,
(21)

where �̃

nm

(x) = �

nm

(x, y) ⇤ �0(x). It is clear from (21) that
by working with sample differences we are back to our estimation
framework (cf. Section 2). Since the above model holds only locally
(around edges), an edge detector is first used to determine regions
of interest following a similar procedure as in [4]. A Canny edge
detector [8] is used in our simulations. For each pixel marked as an
edge, we center a 10 ⇥ 10 window and extract a patch of the im-
age. We then take the finite differences along the x-dimension and
perform the estimation of the segment parameters on the differenti-
ated patch. Estimates from neighboring pixels are finally clustered
and averaged. The results of these operations on the acquired image
of device 1 are displayed in Figure 5. Once device 1 has identified

Fig. 6. Acquired image (top-left), generated mask (top-right), initial
guess (bottom-left), reconstruction (bottom-right).

edges in the image, it communicates those to device 2. In our par-
ticular example this would mean the transmission of 4 segments (8
points). This information can be used to enhance the resolution of its
own acquisition. In particular, we consider the enhancement of the
image captured by device 2 by solving the following optimization
problem:

Ŷ = argmin
Y

kY0 �Yk2
F

+ �

x

kvec(M� (YD))k1

+ �

y

kvec(DT

Y)k1,
(22)

where Y0 is an initial estimate of our target image (e.g., obtained by
interpolation), M is a mask image that reproduces the sampling of
the segments (low value where segments are located and close to 1
outside the support), and D implements the finite difference opera-
tor. The operator vec(·) vectorizes a matrix, � denotes element-wise
product, k·k

F

is the matrix Frobenius norm while k·k1 is the `1 vec-
tor norm. The scalars �

x

and �

y

help to balance the reconstruction
between data fidelity and smoothness on its respective dimension.
In Figure 6 we have displayed the reconstructed image at device
2 using an up-sampling factor of 4. Problem (22) is solved using
(�

x

,�

y

) = (0.5, 0.1) and bicubic interpolation to generate the ini-
tial guess Y0. As it can be appreciated, a perceptually good recon-
struction can be obtained by using the side information provided by
device 1 (just a few bytes). The reconstruction gets poorer towards
the boundaries where no constraints have been imposed.

4. CONCLUSIONS

In this paper we have presented a new method for the estimation of
edges in an image using the properties of E-splines. We have illus-
trated its performance and motivated its application to the problem
of image enhancement over heterogeneous wireless networks. This
work constitutes a first step towards a more general theory for dis-
tributed and cooperative image super-resolution.
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