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A DISTRIBUTED ALGORITHM FOR ROBUST LCMV BEAMFORMING

Thomas Sherson1 W. Bastiaan Kleijn1,2 Richard Heusdens1

1 Faculty of EEMCS, Delft University of Technology, Netherlands
2 School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

ABSTRACT

In this paper we propose a distributed reformulation of the lin-
early constrained minimum variance (LCMV) beamformer for use
in acoustic wireless sensor networks. The proposed distributed
minimum variance (DMV) algorithm, for which we demonstrate
implementations for both cyclic and acyclic networks, allows the
optimal beamformer output to be computed at each node without
the need for sharing raw data within the network. By exploiting the
low rank structure of estimated covariance matrices in time-varying
noise fields, the algorithm can also provide a reduction in the total
amount of data transmitted during computation when compared to
centralised solutions. This is particularly true when multiple mi-
crophones are used per node. We also compare the performance of
DMV with state of the art distributed beamformers and demonstrate
that it achieves greater improvements in SNR in dynamic noise
fields with similar transmission costs.

Index Terms— Distributed, LCMV, acoustic, beamforming.

1. INTRODUCTION

In speech processing, a common problem of interest is the recov-
ery of a speech signal from within a set of recordings containing
noise and interference. This task is often addressed via the use of
beamformers (BFs), algorithms that exploit the spatial correlation
of recordings to favour particular source locations over others [19].
While such systems are traditionally comprised of physically con-
nected arrays of microphones, recent improvements in sensor and
battery technologies have made it practical to use wireless sensor
networks (WSNs) for the same application [5]. However, the decen-
tralised nature of data acquisition in WSNs makes designing statisti-
cally optimal BFs a challenging procedure. Thus, distributed signal
processing is an important tool in the implementation of WSN-based
BFs, particularly in the presence of time-varying noise fields.

Existing distributed BFs are based on a range of different ap-
proaches. In [22] a distributed delay and sum BF utilising ran-
domised gossip is proposed. While operating in any undirected
network, this method only minimises the presence of uncorrelated
noise. In many practical applications this results in a sub-optimal
BF response.

In [6], a message passing approach is adopted to compute a min-
imum variance distortionless response (MVDR) BF for a known co-
variance matrix. However, this method requires that the sparsity pat-
tern of the covariance matrix matches that of the network adjacency
matrix. Either this sparsity pattern dictates the WSN connectivity
and thus the network topology or an approximation of the covariance
matrix needs to be made to enforce this match. Such an approxima-
tion again leads to a sub-optimal response.

This work was sponsored by a grant from Huawei Technologies Co.

In [14], a diffusion adaptation approach was used to design an
approximate MVDR BF by constructing local covariance matrices
based on the exchange of data between nodes. Unfortunately this ap-
proach requires the transmission of a solution vector between nodes
which scales with network size, increasing each nodes power con-
sumption and memory requirements. Additionally as this technique
does not capture the true covariance of the centralised problem it
also results in a suboptimal BF.

In contrast, the BFs in [1, 11] choose to restrict the WSN net-
works to be either fully connected or acyclic (tree shaped). By
exploiting the ease of data aggregation in such networks, these al-
gorithms allow for the combination of local BFs based on linearly
constrained minimum variance (LCMV) [1] and generalised side-
lobe canceller (GSC) [11] topologies, to approximate a global BF
response. Both algorithms achieve fully scalable distributed imple-
mentations which, in static noise fields, converge to the optimal BF
over multiple updates. However, in the case of varying noise fields,
the rate of adaptation of these solutions can again result in subop-
timal performance due to their inherently iterative nature. Further-
more the requirement of tree-shaped or fully connected networks is
an unrealistic constraint for the likes of ad-hoc or self configuring
networks. This in turn limits the practicality and use of these algo-
rithms in real world applications.

The work presented in this paper approaches the development of
a distributed BF by casting a robust version of the standard LCMV
BF as a distributed convex optimisation problem [3, 24]. Unlike ex-
isting distributed implementations, the proposed algorithm does not
require multiple updates to compute the optimal BF response. Ad-
ditionally, the BF computation can be performed via a range of ex-
isting distributed tools [2, 13, 16, 21, 17] for both cyclic and acyclic
networks. This flexibility makes it possible to use the proposed al-
gorithm for optimal beamforming without the impractical restriction
of enforcing tree-shaped networks, as required in [1, 11].

In the remainder of this paper we introduce our distributed refor-
mulation of the robust LCMV BF, termed the distributed minimum
variance (DMV) BF, for which we provide both cyclic and acyclic
implementations. The performance of the DMV algorithm is then
compared to existing state of the art approaches in the case of a per-
block updating scheme. This shows how our algorithm provides an
improved rate of adaptation in dynamic noise fields compared to ex-
isting solutions with a similar overall communication cost.

2. THE DISTRIBUTED MINIMUM VARIANCE (DMV)
BEAMFORMER

In this section we develop a distributed reformulation of the diago-
nally loaded (robust) LCMV BF. Subsection 2.1 describes the sepa-
rable conversion of the robust LCMV algorithm; subsection 2.2 con-
structs a distributed dual problem to eliminate the global constraint
functions; and finally, in subsections 2.3 and 2.4 we demonstrate
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DMV implementations for acyclic and cyclic networks respectively.

2.1. Constructing a separable robust LCMV beamformer

Consider the use of a WSN of N nodes equipped with a total of M
microphones in forming a wide-band acoustic BF. Based on a linear
propagation model, each microphone records a noise corrupted ver-
sion of the target signal (x) given by ym(t) = dm(t)∗x(t)+nm(t)
where nm and dm denote local additive noise and the acoustic trans-
fer function (ATF) from the target source to microphone m respec-
tively. We assume that these ATFs are known and that the nodes are
synchronised by a global clock.

Let k be a time index of overlapping windowed sections of au-
dio. If the maximum delay introduced by the ATFs is less than the
windowing length, then the STFTs of the microphone signals can be
approximated by Ym(k) = Dm(k)U(k) +Nm(k).

For such a system, consider the optimal estimation of U(k) via
a standard LCMV BF with an additional regularisation term to con-
trol the energy of the BF weight vector w. As noted in [4, 8, 9],
this regularisation term improves the robustness of the BF to errors
in the source location such as those which occur when these are es-
timated rather than known. Let α scale the regularisation term and
thus control its importance relative to the LCMV objective. For each
frequency bin, the optimisation criterion of this BF is given by

min
w

1

2
wHRw +

α

2
||w||2

s.t. DHw = s. (1)

Here, R ∈ CM×M is the signal covariance matrix, D ∈ CM×P
denotes the set of frequency domain ATFs from P target sources
and s ∈ CP denotes the desired response in the direction of these
sources.

In practice, R is estimated via an unbiased sample covariance
matrix

R̂ =
1

L

L∑
l=1

Y(l)Y
H
(l) , (2)

whereL is the number of samples used in this estimation process and
each Y(l) denotes the microphone signals in the frequency domain
in section k − l + 1. We also assume that the WSN used can be
represented via an undirected graph G with vertex set V and edge set
E, denoting the sets of nodes and communication channels between
nodes respectively.

By substituting (2) into (1) and splitting the objective into node-
based variables (denoted by a subscript), we can rewrite (1) as

min
wi ∀i∈V

L∑
l=1

(
1

2L
|
∑
i∈V

Y Hi(l)wi|2
)

+
∑
i∈V

(α
2
||wi||2

)
s.t.

∑
i∈V

DH
i wi = s, (3)

where wi ∈ Cmi , Yi(l) ∈ Cmi , Di ∈ Cp×mi and mi denote the
weightings, windowed signals, ATFs and number of microphones
at node i respectively. To create a separable objective function we
then introduce a set of additional variables x̂i(l) ∀i ∈ V, l = 1, ..., L
subject to the constraint that∑

i∈V

x̂i(l) = N
∑
j∈V

Y Hj(l)wj (4)

We can therefore construct an alternative optimisation problem to (3)
which is given by

min
wi,x̂i(l)

∑
i∈V

(
L∑
l=1

(
|x̂i(l)|2

2LN

)
+
α

2
||wi||2

)
s.t.

∑
i∈V

DH
i wi = s

NY H(l)w =
∑
i∈V

x̂i(l) ∀l = 1, ..., L. (5)

Proposition 1. Problems (3) and (5) are equivalent.

Proof. Consider the modified Lagrangian (L) of (5) given by

L(w, x̂, ν, µ) =
∑
i∈V

(
L∑
l=1

(
|x̂i(l)|2

2LN
−
ν∗(l)
2

(
NY Hi(l)wi − x̂i(l)

)
−
ν(l)
2

(
NY T

i(l)w
∗
i − x̂∗i(l)

))
− µH

2

(
DH
i wi −

s

N

)
−µ

T

2

(
DT
i w
∗
i −

s∗

N

)
+
α

2
||wi||2

)
, (6)

with dual variables ν(l) ∀l = 1, ..., L and µ. This modified La-
grangian ensures that (6) is a real valued function [7]. We are in-
terested in finding the values of x̂i(l) corresponding to the stationary
points of (6). However, as (6) is not an analytic function of x̂i(l), its
derivative is undefined. As demonstrated in [12, 18], the stationary
points of (6) can alternatively be found by treating x̂i(l) and x̂∗i(l)
as independent variables. The stationary points then occur at the in-
tersecting zeros of the partial derivatives ∂L

∂x̂i(l)
and ∂L

∂x̂∗
i(l)

such that

(x̂i(l))
∗ = x̂∗i(l). Therefore, at optimality, we find that

∂L
∂x̂i(l)

=
(x̂i(l))

∗

2LN
+
ν∗(l)
2

= 0

∂L
∂x̂∗i(l)

=
x̂i(l)
2LN

+
ν(l)
2

= 0. (7)

Given (4) and (7) it can be shown that x̂i(l) = Y H(l)w ∀i ∈ V
and thus, by inspection, (3) and (5) are equivalent. �

2.2. An equivalent distributed dual problem

As (6) has a separable structure it can be converted to the dual do-
main to obtain a fully distributed optimisation problem. For the sake
of simplicity, we first rewrite (6) as

L(y, λ) =
∑
i∈V

(
1

2
||zi||2Ai

− λH

2

(
BHi zi + C

)
−λ

T

2

(
BTi z

∗
i + C∗

))
. (8)

where

zi = [x̂i(1), x̂i(2), ..., x̂i(L), wi(1), wi(2), ..., wi(mi)]
T

λ = [ν(1), ν(2), ..., ν(L), µ]
T

Ai = diag
(
[
1

LN
,

1

LN
, ...,

1

LN
,α, α, ..., α]T

)
Bi =

[
−IL×L 0L×P

NYi(1) · · · NYi(L) Di

]
C = [0, 0, ..., 0,

sT

N
]T . (9)
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The stationary points and thus dual of (8) can then be found in the
same manner as (7) via the use of complex partial derivatives. These
stationary points can be shown to occur when

zi = A−1
i Biλ. (10)

The dual problem can be found by substituting (10) into (8) giving

min
λ

1

2
λH
(∑
i∈V

BHi A
−1
i Bi

)
λ−

∑
i∈V

(
λHC + λTC∗

)
2

. (11)

Finally, by introducing a set of local variables λi ∀i ∈ V and impos-
ing that, at consensus, λi = λj ∀(i, j) ∈ E, we obtain a distributed
form of (3) given by

min
λi ∀i∈V

∑
i∈V

(
1

2
λHi B

H
i A
−1
i Biλi −

(
λHi C + λTi C

∗)
2

)
s.t. λi − λj = 0 ∀(i, j) ∈ E. (12)

Through the combination of (10) and (12), we can calculate the op-
timal beamformer output x̂i(1) and local weight vector wi at each
node in a fully distributed manner.

2.3. Implementing DMV in acyclic WSNs

Equations (11) and (12) can be used to define a number of different
implementations of DMV for various network topologies. Firstly,
we consider the more restrictive and less practical case of DMV op-
erating in an acyclic network to allow for comparison with other state
of the art algorithms.

In this context we note that to solve (11) we only need to calcu-
late the matrix

∑
i∈V B

H
i A
−1
i Bi as the vector C is already known

at each node. This can be achieved by aggregating data via the max-
sum algorithm [20] where each node i generates messages mij ∈
C(L+P )×(L+P ), for their set of neighboursN (i) = {j|(i, j) ∈ E},
given by

mij = BHi A
−1
i Bi +

∑
k∈N (i),k 6=j

mki. (13)

Here, each message is a positive definite matrix with (L+P )2

2
+ L+P

2
unique variables. Thus as the max-sum algorithm converges in 2N−
1 −K transmissions for an acyclic network [15], where K denotes
the number of leaf nodes, this provides a tight bound on the amount
of data which needs to be transmitted to reach consensus.

In the presence of a dynamic noise field, where the DMV algo-
rithm needs to be solved for each windowed section of audio, we
can reduce the total data transmitted per message. This is due to
the structure of each BHi A

−1
i Bi matrix and in particular, the reuse

of L − 1 sections of audio between successive DMV problems. As
such, only L+ P new variables need to be transmitted per message
for stationary sources. The inclusion of dynamic source locations
requires a further P (L − 1) + P2

2
+ P

2
variables to be transmitted

per message.
By reusing the repeated matrix entries, the transmission costs of

the block-updated acyclic DMV implementation (for each frequency
bin) are given by

(L+ P ) (2N − 1−K) Static(
L(1 + P ) +

P 2

2
+
P

2

)
(2N − 1−K) Non-static (14)

2.4. Implementing DMV in WSNs containing cyclic paths

Generally speaking, practical WSNs will contain cyclic paths which
do not allow us to exploit the efficient data aggregation techniques
used in subsection 2.3. These cycles are particularly common in ad-
hoc or self configuring systems which are often used in real world
applications.

For cyclic WSNs, (12) has been formulated to be directly solv-
able via a range of iterative distributed signal processing techniques
including the alternating direction method of multipliers (ADMM
[2]) and the primal dual method of multipliers (PDMM, formally
BiADMM [23]). Therefore, we can construct a cyclic implementa-
tion of DMV using PDMM by introducing a set of dual-dual vari-
ables γij ∀(i, j) ∈ E and adopting a simplified updating scheme,
as described in [23]. These edge related variables reflect the com-
munication channels between nodes where data is only able to be
transmitted between neighbouring pairs, (i, j) ∈ E, in the form of
“primal” (λ(t)

i ) and “dual” (γ(t)
ij ) estimates. For the sake of brevity,

the primal and dual updates, which need to be solved per iteration,
are included below without derivation.

λ
(t+1)
i =

BHi A−1
i Bi +

∑
j∈N (i)

Rpij

−1

C +
∑

j∈N (i)

(
i− j
|i− j|γ

(t)
ji +Rpijλ

(t)
j

)
γ
(t+1)
ij =γ

(t)
ji −

i− j
|i− j|Rpij

(
λ
(t+1)
i − λ(t)

j

)
. (15)

Here t is used to index the iterations of the algorithm whilst each
Rpij = Rpji � 0 is a unique penalty term for the edge (i, j) ∈ E.
When operated in an asynchronous fashion, a single node is activated
for each t which updates as per (15). This node then transmits its
λ
(t+1)
i ∈ CL+P and γ(t+1)

ij ∈ CL+P estimates to its neighbouring
nodes. If a variable should not be updated in either step it simply
retains its previous value e.g. λ(t+1)

j = λ
(t)
j . This process, which is

run for each frequency bin and section of audio, continues until the
network reaches consensus at which point the algorithm terminates.

3. DMV PERFORMANCE IN DIFFERENT NETWORK
TOPOLOGIES

We now demonstrate the characteristics of (13) and (15) in comput-
ing the DMV response. Subsection 3.1 focuses on the iterative con-
vergence of DMV using PDMM while subsection 3.2 compares the
performance of acyclic DMV with other state of the art algorithms,
in particular distributed LCMV (DLCMV) [1] and distributed GSC
(DGSC) [11].

3.1. DMV in graphs containing cyclic paths

As nodes will often be equipped with finite battery supplies, power
consumption, which is largely contributed to by the transmission of
data, is a primary consideration of WSN based systems. Thus, al-
though DMV computes an optimal BF response we are interested in
how quickly it converges to the optimal solution. In the case of (15),
this rate of convergence is highly dependent on the selection of the
penalty terms Rpij for which, at this time, an optimal choice is un-
known. Therefore, for the sake of demonstration, a random instance
of this algorithm was simulated for a network of 5 nodes for various
topologies with Rpij = 1

N
(Bi +Bj)

HA−1
i (Bi +Bj) ∀(i, j) ∈ E.
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We have found that this particular choice often improves conver-
gence rate over other options such as scaled identity matrices. The
results of this simulation are included below in Figure 1.

Average Number of Iterations Per Node
0 50 100 150 200 250 300

R
e
s
id

u
a
l

10
-12

10
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10
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10
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10
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10
-2

10
0

Fully Connected
Sparse
Chain

Fig. 1: The convergence of PDMM based DMV for a fully connected
network, a random sparse network and a chain network

The impact of the differing network topologies in Figure 1 on
the conversion of DMV highlights one of the major challenges of
these cyclic methods: it is difficult to bound the transmission costs
of distributed algorithms for arbitrary networks. However, such lim-
itations also effect other existing BFs [6, 22] which, unlike DMV, do
not achieve a statistically optimal response. Additionally, as DMV is
not dependent on a particular solver, should improved or finite con-
vergence acyclic solvers be developed in the future then these can be
utilised to develop new BF implementations without further modifi-
cation of the base algorithm.

3.2. A comparison between acyclic DMV and the state of the art

We now compare the bounded transmission costs (Tx) of acyclic
DMV with other state of the art algorithms, namely DGSC and DL-
CMV. Additionally, the performance of a centralised implementation
based on a simple data aggregation method was considered. The
costs of these algorithms, under the assumption of stationary source
positions, are included in Table 1.

Table 1: Transmission costs of different distributed BFs operated
with a per-block updating scheme in an acyclic network.

Algorithm Tx per frequency bin

DMV (L+ P )(2N − 1−K)

DLCMV [1] (L+ P )(2N − 1−K)

DGSC [11] (1 + P )(2N − 1−K)

Centralised M(N − 1)

As per Table 1, DLCMV and DMV require the same number of
transmissions to update their BFs with both providing an improve-
ment over the centralised implementation in large networks. This
stems from the fact that for dynamic noise environments, 2(L +
P ) < M due to the de-correlation of audio sections with time which
limits the practical size of L. In contrast, as DGSC uses an LMS up-
dating scheme, rather than constructing a covariance matrix, it again

reduces data transmission per block. However, this reduction comes
at the cost of a decrease in the rate of adaptation of DGSC to changes
in the noise field. As such, in practical applications DGSC requires
a more frequent updating scheme to improve its ability to track noise
correlation, increasing the total power it consumes [10].

The iterative nature of DLCMV also effects its rate of adapta-
tion, particularly in the case of its tree-shaped variant where the
degrees of freedom of the local BFs are greatly reduced [1]. This
results in slower convergence to the optimal BF even in the case of
static noise fields. Additionally, as only one node updates per audio
section in DLCMV, increasing the number of nodes in the network
decreases the algorithms ability to adapt to changing noise fields
[10]. To demonstrate this, we consider the case of a linear array with
mi = 1∀i ∈ V targeting a single speaker positioned perpendicular
to the array. A moving noise source approaches and passes to one
side of the array in a perpendicular direction at a speed of 5 ms−1,
perhaps simulating someone biking past. For N = 1, ..., 11 the im-
provements in SNR (SNRimp) over that of a single node recording
were simulated for both DMV and DLCMV using a window length
of 512 samples with a 50% overlap and a sampling frequency of
22kHz. The resulting data is included in Figure 2.

Number of Nodes (N)
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R
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DMV

Fig. 2: A comparison of SNRimp of DLCMV and DMV for varying
network size.

As expected, due to the iterative nature of DLCMV, the gain in
SNRimp for an increasing number of nodes is reduced in contrast to
that of DMV by as much as 12 dB forN = 11. For real WSNs in dy-
namic noise fields, this reduction highlights a main benefit of DMV.
By exactly solving the robust LCMV problem at each step, whilst re-
maining competitive in the total transmission power required, DMV
can achieve better rejection of correlated noise with the same rate of
adaptation as the centralised solution.

4. CONCLUSIONS

In this paper we have presented a new method for computing a sta-
tistically optimal BF in distributed WSNs. The proposed DMV al-
gorithm can be utilised in both cyclic and acyclic networks, with
finite convergence and bounded performance guarantees in the lat-
ter. In quickly varying noise fields, where per-block calculation of
the BF output is required, the acyclic DMV algorithm requires simi-
lar transmission costs to DLCMV while being truly optimal in each
block. Furthermore, the ability of DMV to be applied in cyclic net-
works facilitates the use of optimal acoustic beamforming in WSNs
regardless of the topology, a point not previously possible. This cur-
rently makes DMV the only optimal distributed BF able to be used
in both cyclic and acyclic networks.
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