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ABSTRACT
Reverberation is well-known to have a detrimental impact on many
localization methods for audio sources. We address this problem by
imposing a model for the early reflections as well as a model for the
audio source itself. Using these models, we propose two iterative
localization methods that estimate the direction-of-arrival (DOA) of
both the direct path of the audio source and the early reflections. In
these methods, the contribution of the early reflections is essentially
subtracted from the signal observations before localization of the di-
rect path component, which may reduce the estimation bias. Our
simulation results show that we can estimate the DOA of the desired
signal more accurately with this procedure compared to state-of-the-
art estimator in both synthetic and real data experiments with rever-
beration.

Index Terms— Audio localization, DOA estimation, reverbera-
tion, nonlinear least squares, maximum likelihood

1. INTRODUCTION

One of the key topics within microphone array signal processing
is the estimation of the direction-of-arrival (DOA) of an acoustic
source in relation to an array of microphones, sometimes briefly re-
ferred to as the localization problem. This is not without reason
since numerous applications rely on such information. Extracting
information about the whereabouts of an acoustic source can be use-
ful in itself for surveillance systems, but the source location is also
extremely important if the problem is to separate the source from
undesired noise and interference which is a typical scenario in, e.g.,
hands-free telephony and hearing aids. Due to its importance, the lo-
calization problem is therefore a well-established research problem
and an enormous body of scientific contributions have dealt with it.

Many existing localization methods developed for, e.g., radar
and wireless communication applications assume that the source to
be localized is narrowband [1–5], which simplifies the localization
problem significantly. This is, however, a poor assumption when
dealing with localization of audio sources using microphone arrays,
as these are well known to carry information over a wide range of
frequencies. Essentially, the localization problem has to be tackled
in a different way because of this, and this has resulted in a number
of different approaches for localization of such broadband sources.
A popular approach, and a direct extension of the narrowband lo-
calization problem, is to transform the microphone recordings to the
frequency domain. This enables processing of the recordings in sub-
bands, where the aforementioned narrowband methods can be ap-
plied [6–8]. After estimation of the location in each subband, these
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estimates are combined to achieve a location estimate of the broad-
band source. Another popular procedure is to conduct the localiza-
tion in two stages. First, the time differences-of-arrival (TDOAs) of
the desired source between all possible microphone pairs in the mi-
crophone array are estimated [9, 10] after which they are mapped to
a location estimate [11, 12]. This approach is computationally effi-
cient, but is mainly targeted towards single-source scenarios. A more
recent approach is to exploit a model, e.g., the harmonic model, for
the desired source when estimating the location [13–15], which can
lead to a higher estimation accuracy in anechoic and mildly rever-
berant environments [14, 15]. Common for many of these methods
is that they do not explicitly take reverberation into account. Re-
verberation, however, is present in nearly all situations where the
localization of audio source is to be estimated. Moreover, it is well
known to have a detrimental impact on the performance of localiza-
tion methods, and thus puts strong limitations on the better part of
these. A few of these methods have been claimed to be relatively
robust against reverberation, such as the SRP-PHAT method [9, 16],
despite the fact that they have not been explicitly derived to tackle
this problem.

In this paper, we seek to take a step closer to the solution to lo-
calization of broadband, audio sources in reverberant environments.
We do this by modeling the reverberation, taking the short-term pe-
riodic nature of audio sources into account, and deriving localization
methods based on these observations. More specifically, we exploit
a model for the so-called early reflections to subtract the contribu-
tion from these when estimating the location of the desired source
to decrease the estimation bias. This is achieved by adopting a simi-
lar estimation procedure to the RELAX method originally proposed
in [17]. The proposed approach, although not considered herein,
may also be useful for room geometry estimation where the loca-
tions of the reflections are needed [18].

In the remaining sections of the paper, we introduce the above-
mentioned models and the estimation problem (Section 2), derive
DOA estimators based on these models (Section 3), provide experi-
mental results (Section 4), and discuss our findings (Section 5).

2. MODEL AND PROBLEM DESCRIPTION

We consider the scenario where the sound field of an acoustic source
is sampled by a microphone array in a room. In this particular sce-
nario, the discrete time recording at time instance n obtained by mi-
crophone k of the microphone array can be modeled as

yk(n) = (s′ ∗ gk)(n) + v′k(n) (1)

= sk(n) + v′k(n) (2)

where ∗ is the discrete time convolution operator, s′(n) is the clean
source signal of interest, sk(n) = (s′ ∗ gk)(n) is the desired signal
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including reverberation, gk(n) is the room impulse response from
the desired source to microphone k, v′k(n) is additive noise, which
could be interfering sources or sensor noise, and all the signals are
real valued. In this paper, we focus on the problem of robust DOA
estimation in reverberant environments, while assuming the noise,
v′k(n), to be white Gaussian. If we have K microphones and record
N samples for each microphone, we can model all observations as

y =
[
yT1 yT2 · · · yTK

]T
= s+ v′, (3)

with yk = [yk(0) · · · yk(N − 1)]T , and s and v′ are defined simi-
lar to y but contain instead the desired signal including reverberation
and the additive noise respectively. To facilitate the estimation of the
DOA of the clean desired signal with respect to the array of micro-
phones, we further specify the model in two ways: 1) we introduce
a model for the clean desired signal, and 2) we assume a certain
microphone array structure.

Regarding the signal model, we assume that the clean desired
signal is periodic which implies that the harmonic model can be as-
sumed, i.e.,

s′(n) =

L∑
l=−L,l6=0

αle
jlω0n, (4)

where α−l = α∗l is the complex amplitude of the l’th harmonic, ω0

is the fundamental frequency, and L is the number of harmonics. It
is important to note that this has the widely used broadband model
for DOA estimation as a special case if we chose ω0 = 2π/N and
L = N [19], and the used model is therefore less restrictive than
it might seem at first glance. Regarding the array structure, we as-
sume a uniform linear array (ULA) as a proof-of-concept, but the
methods developed in the following could just as well be derived or
generalized to other array structures. With the ULA structure and an
assumption of the desired source being in the far-field, we know that
the r’th source impinging on the array is received at microphone k
with a delay of

τr,k = k
d sin θr
c

= kηr, (5)

relative to microphone 1. Here, d is the spacing between to adjacent
microphones of the array, θr is the DOA of the r’th source with re-
spect to the ULA, and c is the sound propagation speed. We then
further assume that the desired signal including reverberation can be
modeled as a sum of harmonic signals constituting the early reflec-
tions, and a noise component v, constituting both the late reverber-
ation and the sensor noise. In this case, we can rewrite the model in
(3) as

y =

R∑
r=1

H(ηr)αr + v, (6)

with H(ηr) = [ZT (ZD2(ηr))
T · · · (ZDK(ηr))

T ]T , and

Z =
[
z1 · · · zL z∗1 · · · z∗L

]
, (7)

zl =
[
1 ejlω0 · · · ej(N−1)lω0

]T
, (8)

Dk(ηr) = diag
([
dTk (ηr) dHk (ηr)

])
, (9)

dk(ηr) =
[
e−jω0kηr · · · e−jLω0kηr

]T
, (10)

and diag(·) is the operator creating a diagonal matrix from a vector.
The problem at hand is then to estimate the DOA of the harmonic
signal corresponding to r = 1, which corresponds to the direct path
component.

3. DOA ESTIMATION WITH REVERBERATION

To accurately estimate the DOA of the clean desired signal, we con-
sider the estimation of the DOAs of all the R reflections in (6) as
opposed to many state-of-the-art DOA estimators that do not take
reverberation into account. The goal of this procedure is to reduce
the bias incurred by the early reflections when estimating the DOA
of the direct path component. In this paper, we solve this estimation
problem by using a nonlinear least squares (NLS) estimator, which
equals the maximum likelihood estimator when the noise v is white
Gaussian. That is, our estimator of the DOAs of the R reflections
can be written as

{η̂, α̂} = arg min
{η,α}

‖y −H(η)α‖22, (11)

where ( ·̂ ) denotes an estimate of a parameter, η = [η1 · · · ηR]T ,
and

H(η) =
[
H(η1) · · · H(ηR)

]
, (12)

α =
[
αT1 · · · αTR

]T
. (13)

We simplify this estimator by solving for the amplitudes, α, which
leads to

η̂ = argmin
η
‖P⊥Hy‖22, (14)

where

P⊥A = I−A(AHA)−1AH , (15)

and I is the identity matrix. While this estimator should have optimal
performance in terms of estimation variance when the noise is white
Gaussian, it is extremely time consuming to implement in practice
as it is both nonconvex and multidimensional.

To alleviate the computational complexity issue, we propose to
implement the estimator similar to the RELAX procedure proposed
in [17] and since used in, e.g., [20, 21]. To facilitate the estimation
procedure, we introduce the modified observed signal vector

yr = y −
R∑

q=1,s6=r

H(η̂q)α̂q, (16)

where the estimates {η̂q, α̂q}Rq=1,q 6=r are assumed to be given. This
suggests that we can estimate the ηr and αr using simpler estima-
tors, i.e.,

α̂r = (HH(ηr)H(ηr))
−1HHyr, (17)

η̂r = argmin
ηr
‖P⊥H(ηr)yr‖

2
2. (18)

That is, with these estimators we can obtain disjoint estimates of the
DOAs of the R reflections. This leads to the RELAX version of the
estimator in (14), which is implemented in the following steps:

Step (1): Assume R = 1. Estimate η1 and α1 from y1 = y as
described above.

Step (2): Assume R = 2. Estimate η2 and α2 from y2 computed
using (16) and the parameter estimates obtained in Step (1).
Then, re-estimate η1 and α1 from y1 computed using the
newly obtained estimates of η2 and α2. Proceed by iterating
between these two substeps until “practical convergence”.
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Step (3): Assume R = 3. Estimate η3 and α3 from y3 computed
using {η̂q, α̂}2q=1 from Step (2). Then, re-estimate η1 and α1

from y1 computed using {η̂q, α̂}q=2,3. Also, re-estimate η2
and α2 from y2 computed using {η̂q, α̂}q=1,3. Proceed by
iterating between these three substeps until “practical conver-
gence”.

Remaining steps: Continue similarly to the previous steps until R
is equal to the number of early reflections.

To check for convergence, we can compute the cost function in iter-
ation i of each step as

J(i) = ‖y −H(η̂)α̂‖22. (19)

If the change in the cost function between two consecutive iterations
is smaller than a threshold value, i.e., |J(i) − J(i − 1)| < ε, we
proceed to the next step, or terminate the estimation procedure if all
reflections have been estimated. We refer to this algorithm as the
relaxed NLS estimator (RNLS).

We also propose an alternative estimation procedure for the es-
timation of the DOAs of the early reflections. If the clean desired
signal is stationary, which is a reasonable assumption for short time
frames of audio sources, the early reflections are just an attenuated
and delayed version of the direct path component. This is not ex-
plicitly taken into account in the estimation problem in (11) and,
eventually, this may influence on the convergence speed of the RE-
LAX based estimation procedure. We therefore set up the following
model based on the aforementioned observations:

y =

R∑
r=1

γrH(ηr)Trα+ v, (20)

where γr is the attenuation of reflection r in relation to the direct
path component (i.e., γ1 = 1),

Tr = diag
([
tTr tHr

])
, (21)

tr =
[
ejω0ξr · · · ejLω0ξr

]T
, (22)

α is the harmonic amplitudes of the direct path component, and ξr
is the delay of reflection r in relation to the direct path component
(i.e., ξ1 = 0). The NLS estimator of the DOAs of the reflections
based on this signal model is given by

{η̂, ξ̂, γ̂, α̂} = arg min
{η,ξ,γ,α}

‖y −
R∑
r=1

γrH(ηr)Trα‖22. (23)

This estimation problem is obviously more complex than the estima-
tor in (11), since 1) it has a higher dimensionality, and 2) we can not
easily simplify the estimator because the closed-form estimates of
γr , for r = 1, . . . , R, and α will depend on each other. To simplify
the estimator, we therefore again adopt the RELAX procedure. For
this implementation, we have the following modified signal model

yr = y −
R∑

q=1,q 6=r

γ̂qH(η̂q)α̂. (24)

Exploiting this formulation, we obtain a closed-form estimate of α
when r = 1 as

α̂ = [HH(η1)H(η1)]
−1HH(η1)y1, (25)

Table 1. RMSEs of η1 estimated from real speech using the NLS,
RNLS, RNLS-S, and SRP-PHAT methods.

NLS RNLS RNLS-S SRP-PHAT

3.8 · 10−5 3.6 · 10−5 3.6 · 10−5 5.4 · 10−5

while, for r = 2, . . . , R, the optimal estimate of γr is given by

γ̂r =
Re{α̂HTH

r HH(ηr)yr}
α̂HTH

r HH(ηr)H(ηr)Trα̂
. (26)

Moreover, the DOA of the direct path component are estimated as

η̂1 = argmin
η1
‖P⊥H(η1)y1‖22, (27)

while the DOAs and delays of the early reflections are estimated
jointly as

{η̂r, ξ̂r} = arg min
ηr,ξr

‖yr − γ̂rH(ηr)Trα̂‖22 (28)

for r = 2, . . . , R. This alternative estimation procedure is then im-
plemented by using the above estimators in an iterative algorithm
following the same steps as the RNLS method. We refer to this algo-
rithm as the RNLS estimator with structured amplitudes (RNLS-S).
Note that γ̂r might be negative although this has no physical mean-
ing. To avoid this, a non-negative least squares method can be used
for estimation of γr [22], but this is not considered herein. In con-
clusion, we note that both proposed methods are identical forR = 1,
in which case they therefore resemble the NLS estimator proposed
in [14].

4. EXPERIMENTAL RESULTS

We evaluated the proposed methods on both synthetic and real data.
In the evaluation on synthetic data, we investigated the performance
of the proposed estimators versus the number of microphones, num-
ber of assumed reflections, and the reverberation time. The synthetic
data, sampled at 8 kHz, was assumed to be a harmonic signal with
six, unit amplitude, harmonics, each having a uniformly distributed
random phase and the fundamental frequency was 255.2 Hz. The
fundamental frequency as well as the number of harmonics were
assumed to be known to simplify this evaluation, however, we also
include the estimation of these in the evaluation on real data. The sig-
nal was then synthesized spatially using a RIR generator [23]. The
spatially synthesized signal was generated by using a ULA struc-
ture parallel to the x-axis of a room with dimensions 8 × 6 × 4 m
and it was centered around [3.5, 1, 1] m. Furthermore, the micro-
phone spacing in the ULA was 5 cm. The other options in the
generator was set as follows: the microphone types were omnidi-
rectional, the sound speed was 343 m/s, and high-pass filtering was
used. Moreover, white Gaussian noise was added to each channel
at an SNR of 40 dB to represent sensor noise. With this setup, we
then applied the proposed methods on blocks of N = 200 samples
from each microphone. In both proposed methods, a tolerance of
ε = 10−3 was used. However, the maximum number of iterations
for each reflection was set to 20 to speed up the processing time. A
uniform search grid for the estimation of the ηr’s of size 200 was
used in the interval [−ηmax; ηmax] where ηmax = d/c. Moreover, the
search grid for the delays ξr in the RNLS-S method was uniform, of
size 100, and defined over the interval [0; 2π/ω0]. The simulation
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Fig. 1. Plot of the RMSE of the η1 estimates obtained using the NLS,
RNLS, and RNLS-S methods in different scenarios.

was repeated for different angles of the desired source, i.e., for the
angles −80◦,−75◦, . . . , 80◦, while the source-to-array-center dis-
tance was 2.5 m and the source had the same z-coordinate as the ar-
ray. The root mean squared error (RMSE) of the estimates of η1 were
then measured over these different angles. In the first evaluation,
the T60 and the assumed number of early reflections were 0.3 s and
3, respectively, while the number of microphones was varied (Fig.
1a). The proposed methods outperforms the NLS estimator [14],
which do not take reverberation into account, for all different num-
bers of microphones. Interestingly, the RNLS method yields the best
performance in all cases. Second, the number of microphones was
fixed to four, while the number of assumed early reflections was var-
ied (Fig. 1b). Again, the proposed methods outperforms the NLS
method, and, generally, higher R’s seems to provide better perfor-
mance. Finally, the numbers of microphone and assumed reflections
were set to four and three, respectively, for different reverberation
times (Fig. 1c). For reverberation times smaller than or equal to
0.6 s, the RNLS method outperforms the NLS methods, whereas the
RNLS-S needs reverberation times below 0.5 s to outperform NLS.

The proposed methods were also evaluated on real, single-
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Fig. 2. Absolute errors of the NLS, RNLS, RNLS-S, and SRP-PHAT
methods when applied on a real, female speech signal.

channel data that were spatially synthesized. This was a four sec-
onds long, female speech signal. The signal was single-channel
and, therefore, synthesized spatially using the aforementioned RIR
generator. In this evaluation, the ULA was centered around [3.5,
1.5, 1] m, while the source was moving from [1, 4, 1.7] m to [7 4
1.7] m over the duration of the sentence. The pitch and the number
of harmonics were estimated from the first microphone using the
NLS estimator in [24]. Besides this, the number of assumed reflec-
tions was 4, the number of microphones was 4, and the reverberation
time was 0.3 s, while the remaining setup parameters were identical
to the previous evaluations. The proposed estimators as well as the
popular SRP-PHAT method were applied on the generated data (Fig.
2). The SRP-PHAT method was implemented by applying an FFT
of length 256, and by integrating over frequencies in the interval
[100;4000] Hz. The NLS based methods, including the proposed,
all seem to provide better η1 estimates than the SRP-PHAT method
in general. We also measured the RMSEs of the estimated η1’s over
time (Tab. 1). These support our findings from the synthetic data
evaluation that the proposed methods yield better performance than
the NLS method.

5. DISCUSSION

In this paper, we considered the topic of DOA estimation of audio
and speech sources in the presence of reverberation. Most existing
DOA estimators do not explicitly take into account the reverbera-
tion [6–8, 11–14], and are thus negatively influenced by it. A few
estimators have been reported to be relatively robust against rever-
beration though [9, 16]. In this paper, we imposed a model for the
early reflections as well as for the audio source. Based on these mod-
els, we then proposed two iterative DOA estimation methods that
estimate the DOAs of both the direct path component and the early
reflections. By doing this, the early reflections are subtracted from
the signal observations before estimating the DOA of the direct path
component, which should decrease the estimation bias. Our experi-
mental results confirm that the proposed methods can indeed outper-
form state-of-the-art methods for DOA estimation of audio sources
in scenarios with reverberation. While not considered herein, the
proposed methods may also be used in room geometry estimation,
where the DOAs of the early reflections are also of interest [18].
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