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ABSTRACT

The concept of muscle synergies has proven to be an effective

method for representing patterns of muscle activation. The number

of degrees of freedom to be controlled are reduced while also pro-

viding a flexible platform for producing detailed movements using

synergies as building blocks. It has previously been shown that

small components of movement are crucial to producing precise and

coordinated movement. Methods which focus on the variance of

the data make it possible to overlook these small components in the

synergy extraction process. However, algorithms which address the

inherent complexity in the neuromuscular system are lacking. To

that end we propose a new nonnegative matrix factorization algo-

rithm which employs a cross fuzzy entropy similarity measure, thus,

extracting muscle synergies which preserve the complexity of the

recorded muscular data. The performance of the proposed algorithm

is illustrated on representative EMG data.

Index Terms— Matrix Factorization, NMF, Fuzzy Entropy,

Muscle Synergies, EMG

1. INTRODUCTION

The human body is capable of great dexterity and coordination, giv-

ing it the capability to produce a wide array of precise detailed move-

ments but, as such, it is a highly complicated and also redundant

system [1]. With such large numbers of degrees of freedom, how the

central nervous system implements a control strategy is of interest

in numerous different fields, from robotics to rehabilitation [2]. The

concept of synergies, that is, common patterns of muscle activations

which can be reused and serve as building blocks to produce detailed

movements, has been gaining traction in recent years [3, 4, 5]. Syn-

ergies provide an approach which reduces the number of degrees of

freedom to be controlled individually whilst providing the flexibility

and adaptability to produce a wide range of motions.

Effective assessment of muscle synergies requires an accurate

method for extracting the synergies. The standard approach to mus-

cle synergy extraction is to use a nonnegative matrix factorization

(NMF). That is, given a data matrix Y ∈ R
X×N and positive inte-

ger K < min {X,N} find nonnegative matrices W ∈ R
X×K and

H ∈ R
K×N

min
W,H

D
(

Y
∥

∥WH
)

subject to W ≥ 0, H ≥ 0, (1)
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where D
(

Y
∥

∥WH
)

is an appropriately selected measure of good-

ness of fit [6], with the most common NMF algorithms being the

alternating least squares (ALS) and the multiplicative Lee-Seung al-

gorithms [7]. The consideration of the choice of algorithm used to

extract muscle synergies has been limited to only a relatively small

number of studies. For instance, the authors in [3] have compared

different factorization algorithms including NMF, principal compo-

nent analysis (PCA) and independent component analysis (ICA), and

NMF algorithms based on signal dependent noise have been devel-

oped in [8] and [9].

While many of the approaches to identifying muscle synergies

perform well in terms of producing a general factorization of the

data, they do not always consider the full problem [10]. The suc-

cess of the factorization is often based on assessing the variance

accounted for (VAF) of the extracted synergies. However, success

should be based not only on finding a representation which can, to a

large extent, fit the data but it is also crucial to consider the task being

performed. The reconstructed data should be capable of producing

movement which could complete the required task [2, 11].

Of particular interest is the ability to produce not just movement

in terms of the broad strokes but also the fine, precise movement

which produces detailed coordinated actions. Our previous work

has shown that improvements in coordination of finger movement

are represented in the small components of the synergistic move-

ment [12]. Therefore, if we want to successfully extract muscle ac-

tivity which represents not only to the majority of the movement but

also the subtle differences which account for better coordination we

need to consider alternative measures as VAF may not be sufficient.

When it comes to the classification and assessment of changes

in muscle activity recorded via surface electromyography (EMG),

entropy is a commonly used tool [13, 14, 15], with measures based

on approximate entropy (ApEn) [16] being a popular choice. ApEn

provides a family of statistics to allow estimation of the rate of in-

formation generation in a time series, with sample entropy (Sam-

pEn) [17] being a modification of ApEn aimed at reducing the bias

inherent in the calculation of ApEn. However, both ApEn and Sam-

pEn rely on an absolute decision boundary to determine whether

two vectors are similar or not. In many systems, particularly bio-

logical systems which display a wide range of variability, such an

absolute classification is not always realistic and the algorithm be-

comes sensitive to the choice of this decision boundary. In contrast

fuzzy entropy (FuzzyEn) [18] employs a continuous fuzzy decision

boundary to give a relative degree of similarity, resulting in a more

consistent measure of entropy which is less sensitive to parameter

selection [19]. Furthermore, FuzzyEn has been shown to be an ef-
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fective measure of EMG data [18, 20].

As entropy measures have proven effective in characterizing

EMG data, and any reconstructed data from a factorization of such

EMG data must produce muscle activations capable of replicating

the desired movement. It is therefore a natural extension to include

an entropy measure into the muscle synergy extraction. Entropy

rates have previously been used in blind source separation [21, 22],

and for NMF correntropy [23] has been shown to provide an accu-

rate similarity measure [24, 25, 26]. We therefore propose to include

a FuzzyEn based measure into the update of the NMF algorithm.

The rest of this paper is organised as follows, in Section 2 we

first introduce the cross FuzzyEn (C-FuzzyEn) [27] measure and

then derive the update of a gradient descent NMF algorithm using

a C-FuzzyEn similarity measure. In Section 3 we then test the al-

gorithm for muscle synergy extraction on EMG data and compare

the algorithm performance with that of the standard alternating least

squares algorithm. Finally, Section 4 concludes the paper.

2. FUZZY ENTROPY NMF

One of the keys to successful NMF is the selection of the distance

measure between the data matrix, Y , and the decomposed matri-

ces, W and H . Standard measures such as the l2 norm distance or

the Kullback-Leibler divergence are linear similarity measures and

may not be appropriate in situations where the data contains nonlin-

earities or are extremely noisy. With that in mind, and in order to

preserve the complexity of the data, our algorithm employs the C-

FuzzyEn between Y and W ·H as a similarity measure between the

data and the decomposition. The measure is first applied row-wise

between Y and W · H in order to update W , followed by column-

wise for the update of H . Such an approach ensures both the in-

dividual muscle activity and the interaction between the muscles is

represented as accurately as possible by the decomposition.

2.1. Cross Fuzzy Entropy

FuzzyEn was introduced to overcome limitations of ApEn and Sam-

pEn due to their reliance on the use of the Heaviside function. As

discussed previously both algorithms employ an absolute boundary

in their determination of whether two vectors are similar or not. In

contrast FuzzyEn employs an exponential function to give a con-

tinuous degree of similarity between vectors based on their close-

ness [18]. As a natural extension of FuzzyEn, C-FuzzyEn has been

introduced in order to assess the degree of similarity between two

different signals using fuzzy entropy [27, 28]. The C-FuzzyEn of

two time series of N points,
{

u(i) : 1 ≤ i ≤ N
}

(2)
{

v(j) : 1 ≤ j ≤ N
}

, (3)

is estimated from the N −m vectors of length m,

xm(i) =
{

u(i+ k) : 0 ≤ k ≤ m− 1
}

− u(i) (4)

ym(j) =
{

v(j + k) : 0 ≤ k ≤ m− 1
}

− v(j), (5)

where the mean values of the vectors, u(i) and v(j), are removed

to eliminate any baseline and allow comparison of their similarity

based only on their shape rather than absolute position. The dis-

tances between any pair of vectors is given in terms of the infinity

norm, that is the maximum absolute difference between their scalar

components

dmi,j =
∥

∥xm(i)− ym(j)
∥

∥

∞
. (6)

Their degree of similarity can then be defined in terms of a fuzzy

function of this distance. In this case the exponential function

exp−(·)p/r, where p defines the gradient of the boundary and r the

width of the boundary, such that

Dm
i,j(p, r) = exp

(

−

(

dmi,j
)p

r

)

. (7)

The overall similarity function for vectors of length m, φm, then

becomes

φm(p, r) =
1

N −m

N−m
∑

i=1

(

1

N −m

N−m
∑

j=1

Dm
ij

)

, (8)

and in the same vein the similarity function of vectors of length m+1
is given by

φm+1(p, r) =
1

N −m

N−m
∑

i=1

(

1

N −m

N−m
∑

j=1

Dm+1
ij

)

. (9)

The C-FuzzyEn of the two time series can be expressed in terms of

the ratio of the negative log of the conditional probability φm+1/φm

which for a finite time series is equivalent to

C-FuzzyEn(m, p, r,N) = lnφm(p, r)− lnφm+1(p, r). (10)

For simplicity the terms C-FuzzyEn(m, p, r,N), φm(p, r) and

φm+1(p, r) will be referred to as C-FuzzyEn, φm and φm+1 in the

following derivation.

2.2. Proposed NMF Update

First we define the measure of goodness of fit D (Y ‖WH) in the

NMF algorithm (1) in terms of the C-FuzzyEn (10) of the elements

of Y and W · H . Then using a gradient descent rule, where the

gradient of the cost function is taken row-wise with respect to the

individual elements of W , and column-wise with respect to the ele-

ments of H , we have the updates

[W ]x,k ←Wx,k − ηW∇[W ]x,k

(

D
(

Y
∥

∥WH
)

)

, (11)

[H]k,n ←Hk,n − ηH∇[H]k,n

(

D
(

Y
∥

∥WH
)

)

, (12)

where ηW and ηH are the respective learning rates. For simplicity,

we will consider the cost function in terms of its constituent parts,

lnφm and lnφm+1, and take the gradient of each separately.

For the row-wise measure of C-FuzzyEn we substitute

y
m
x (i) =

{

[Y ]x,i, ..., [Y ]x,i+m−1

}

− [Y ]mx,i, (13)

wh
m
x (j) =

{

[WH]x,j , ..., [WH]x,j+m−1

}

− [WH]mx,j , (14)

into the distance measure (6). Then taking the gradient of lnφm
x with

respect to the components of W gives

∇[W ]x,k
lnφm

x =
1

φm
x

N−m
∑

i=1

N−m
∑

j=1

(

p

r
Dm

i,j

(

dmi,j

)p−1

·
(

[H]k,j+cm − [H]mk,j

)

sgn
(

y
m
x (i)(cm)−wh

m
x (i)(cm)

)

)

,

(15)

where cm ∈ [0,m− 1] such that the cm
th

elements of ym
x (i) and

whm
x (j), that is ym

x (i)(cm) and whm
x (j)(cm) respectively, are the
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elements which correspond to the maximum absolute difference be-

tween the vectors

∣

∣

∣
y
m
x (i)(cm)−wh

m
x (j)(cm)

∣

∣

∣
=
∥

∥

∥
y
m
x (i)−wh

m
x (j)

∥

∥

∥

∞

. (16)

In the same manner if we consider the column-wise measure of

C-FuzzyEn, calculating the distance measure between the vectors

y
m
n (i) =

{

[Y ]i,n, ..., [Y ]i+m−1,n

}

− [Y ]mi,n, (17)

and

wh
m
n (j) =

{

[WH]j,n, ..., [WH]j+m−1,n

}

− [WH]mj,n, (18)

taking the gradient of lnφm with respect to the components of H
results in

∇[H]k,n
lnφm

n =
1

φm
n

X−m
∑

i=1

X−m
∑

j=1

(

p

r
Dm

i,j

(

dmi,j

)p−1

·
(

[W ]j+cm,k − [W ]mj,k

)

sgn
(

y
m
x (i)(cm)−wh

m
x (i)(cm)

)

)

.

(19)

Following the same approach to calculate the gradients with respect

to both W and H for lnφm+1 gives the gradient of the C-FuzzyEn

cost function with respect to the components of W as

∇[W ]x,k
= ∇Wx,k

lnφm
x −∇Wx,k

lnφm+1
x

=
1

φm
x

N−m
∑

i=1

N−m
∑

j=1

(

p

r
Dm

i,j

(

dmi,j

)p−1(

[H]k,j+cm − [H]mk,j

)

· sgn
(

y
m
x (i)(cm)−wh

m
x (i)(cm)

)

)

−
1

φm+1
x

·

N−m
∑

i=1

N−m
∑

j=1

(

p

r
Dm+1

i,j

(

dm+1
i,j

)p−1(

[H]k,j+cm+1 − [H]m+1
k,j

)

· sgn
(

y
m+1
x (i)(cm+1)−wh

m+1
x (i)(cm+1)

)

)

, (20)

and with respect to the components of H as

∇[H]k,n
= ∇Hk,n

lnφm
n −∇Wx,k

lnφm+1
n

=
1

φm
n

X−m
∑

i=1

X−m
∑

j=1

(

p

r
Dm

i,j

(

dmi,j

)p−1(

[W ]j+cm,k − [W ]mj,k

)

· sgn
(

y
m
n (i)(cm)−wh

m
n (i)(cm)

)

)

−
1

φm+1
n

·

X−m
∑

i=1

X−m
∑

j=1

(

p

r
Dm+1

i,j

(

dm+1
i,j

)p−1
(

[W ]j+cm+1,n − [W ]m+1
j,k

)

· sgn
(

y
m+1
n (i)(cm+1)−wh

m+1
n (i)(cm+1)

)

)

. (21)

Substituting (20) and (21) into (11) and (12) respectively gives us the

NMF update with a C-FuzzyEn based cost function distance mea-

sure.

Table 1. Muscles recorded on each channel and location over muscle

for muscles with multiple recordings - upper indicating closer to the

body (origin) and lower closer to the hand (insertion).

Channel Muscle Location

1 Extensor digitorum upper

2 Anconeus

3 Flexor carpi ulnaris

4 Pronator teres lower

5 Flexor carpi radialis upper

6 Flexor carpi radialis lower

7 Palmaris longus

8 Pronator teres upper

9 Extensor carpi ulnaris

10 Extensor digitorum lower

11 Extensor carpi radialis brevis

12 Extensor carpi radialis longus

13 Abductor pollicis brevis

14 Abductor digiti minimi

15 Biceps brachii upper

16 Biceps brachii lower

3. ALGORITHM PERFORMANCE

3.1. EMG Data

The EMG data has previously been described in [29, 30], in brief

the data was recorded from 5 healthy right-handed subjects, all of

whom gave informed consent prior to the experiment. The EMG

data was acquired using a g.USBamp (Guger Technologies, Graz,

Austria) amplifier. The data was sampled at 4.8kHz and before anal-

ysis was bandpass filtered between 10-200Hz, rectified and down-

sampled by a factor of 10. Surface electrodes were placed over 12

different muscles located in the upper arm, forearm and hand of the

subjects, with 4 of the larger muscles having electrodes placed over

2 different locations giving a total of 16 channels (listed in Table 1)

with a reference electrode placed on the subjects earlobe. The exper-

imental procedure involved the subject performing a series of simple

hand and wrist movements. For the purposes of illustrating the per-

formance of our algorithm the trials representing movement related

to grasping a cylindrical object were selected. For each subject the

grasping movement was repeated 3 times which were manually di-

vided into separate trials giving a total of 15 trials analysed.

3.2. Algorithm Performance

The C-FuzzyEn has three parameters which need to be set. The pa-

rameter, m, is the length of the vectors to be compared, a larger value

of m may result in a more detailed representation of the dynamics

but also requires either large quantities of data - which can be diffi-

cult to obtain for biological datasets, or a wider decision boundary

which will consequently lead to a loss in information. An appropri-

ate choice of vector length for short biological datasets is a value of

m = 2. The parameters p and r relate to the gradient and width, re-

spectively, of the exponential function determining the fuzzy bound-

ary. Too large and we risk information loss, and too small and the

influence of noise is increased. Typically for p small integer values

greater than 1 are used [19], in this case p = 2. For experimental

data it can be beneficial to set the value of r as a function of the stan-

dard deviation of the data, thus, allowing comparison of data with

different amplitudes [17]. In this case as we consider the updates of

W and H in terms of the rows and columns of Y , for the updates
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Table 2. Comparison of the average AIC for the proposed FuzzyEn NMF and the ALS NMF across a range of number of synergies.

Algorithm
Number of Synergies

×103 3 4 5 6 7 8 9 10 11 12 13 14 15

ALS 9.397 12.528 15.659 18.790 21.992 25.053 28.184 31.316 34.448 37.579 40.711 43.848 46.977

FuzzyEn 9.390 12.521 15.652 18.783 21.915 25.045 28.177 31.308 34.439 37.570 40.702 43.831 46.963

Channel Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) First Synergy

Channel Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(b) Second Synergy

Channel Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(c) Third Synergy

Fig. 1. Sample extracted synergies for k=3, blue bars - FuzzyEn NMF, yellow bars - ALS NMF.

of W , r = 0.2 ∗ σYx and for the updates of H , r = 0.2 ∗ σYn .

The learning rates of the NMF were determined empirically with

ηW = 0.8 and ηH = 0.1.

The performance of the proposed algorithm was compared

against a standard alternating least squares (ALS) NMF algorithm.

To compare how well the decomposition from each algorithm fit the

data, the Akaike Information Criteria (AIC) [31] was used

AIC(θ) = −2L+ 2np, (22)

where L is the maximum log-likelihood and np is the number of in-

dependent parameters in the model. As the true number of synergies

is unknown we compared both algorithms across a range of differ-

ent numbers of bases, k. The AIC was determined for the lowest

residual error between the extraction and the original data for each

value of k for both algorithms. The average of the AIC across all tri-

als for both algorithms, with the number of synergies ranging from

3 to 15, are shown in Table 2. These results indicate that, across

all synergies, the proposed algorithm outperforms the standard ALS

algorithm giving a better representation of the data in terms of the

AIC.

In relation to muscle synergy extraction, the basis vectors con-

tained within each column of the matrix W represent the synergy

coefficients illustrating how much each muscle contributes to the

synergy. The matrix H represents the time-varying coefficients of

each basis across all the samples. To further compare the perfor-

mance of the two algorithms we consider differences/similarities in

the synergy coefficients contained within the W matrices extracted

via each algorithm. Figure 1 provides a representative illustration

of the synergies extracted for k = 3 for a single trial. Importantly,

although there was only a small improvement in the AIC of the pro-

posed algorithm over the ALS, as can be seen, there was a noticeable

difference in the synergies extracted. The two different algorithms

provide a significantly different representation of how the muscles

contributed to the synergies. With the ALS NMF having a much

more even spread of the contributions across all of the muscles.

Whereas, the FuzzyEn NMF considered three muscles in particular

- extensor digitorum (upper), abductor policis brevis and abductor

digiti minimi - to have larger fixed contributions to the synergies.

These muscles correspond to the extension of the 4 long fingers, ab-

duction/extension of the thumb and abduction/extension of the lit-

tle finger, all muscles which would contribute to a grasping action.

This highlights that there are significant differences between the al-

gorithms despite the relatively modest increase in performance and

that the FuzzyEn NMF may provide a significant decomposition for

muscle synergy extraction.

4. CONCLUSIONS

We have presented a new NMF algorithm which incorporates C-

FuzzyEn as the similarity measure in the update of the algorithm.

The use of C-FuzzyEn allows us to decompose matrices whilst also

preserving the complexity of our data. The preservation of this un-

derlying dynamic structure is important when considering data for

which standard measures of the variability within the data are insuf-

ficient. In particular we believe this to be the case for EMG data

where small variability in the data contributes significantly to the

quality and coordination of movements. We have highlighted the

performance of the algorithm in comparison to a standard NMF al-

gorithm for a representative EMG data set. The results illustrate that

even small improvements in performance can significantly change

the representation of the data. While we have shown the applicabil-

ity of this algorithm for the factorization of EMG data sets, making it

ideally suited to the extraction of muscle synergies, we also believe

the algorithm could find application in other areas where the data

under consideration contains small but significant fluctuations.
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