
EPILEPTIFORM SPIKE DETECTION VIA CONVOLUTIONAL 
NEURAL NETWORKS

Alexander Rosenberg Johansena,b, Jing Jinb, Tomasz Maszczykb, Justin Dauwelsb, Sydney 
S. Cashc, and M. Brandon Westoverc

aTechnical University of Denmark, DTU Compute, Lyngby, Denmark

bNanyang Technological University, School of Electrical and Electronic Engineering, Singapore

cMassachusetts General Hospital Neurology Department, and Harvard Medical School, USA

Abstract

The EEG of epileptic patients often contains sharp waveforms called “spikes”, occurring between 

seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a 

convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an 

automated fashion. The CNN has a convolutional architecture with filters of various sizes applied 

to the input layer, leaky ReLUs as activation functions, and a sigmoid output layer. Balanced mini-

batches were applied to handle the imbalance in the data set. Leave-one-patient-out cross-

validation was carried out to test the CNN and benchmark models on EEG data of five epilepsy 

patients. We achieved 0.947 AUC for the CNN, while the best performing benchmark model, 

Support Vector Machines with Gaussian kernel, achieved an AUC of 0.912.
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1. INTRODUCTION

Epilepsy refers to a group of chronic brain disorders characterized by recurrent seizures, 

affecting approximately 65 million people worldwide [1]. Electroencephalography (EEG) is 

the primary diagnostic test for epilepsy, which provides a continuous measure of cortical 

function with excellent temporal resolution. Significant efforts are spent on interpreting EEG 

data for clinical purposes. In current clinical practice, visual inspection and manual 

annotation are still the gold standard for interpreting EEG, which is tedious and ultimately 

subjective. In addition, experienced electroencephalographers are in short supply [2]. As a 

result, a great need exists for automated systems for EEG interpretation.

The finding of primary importance for the diagnosis for epilepsy is the presence of interictal 

discharges, also known as “spikes” and “sharp waves”, hereafter referred to collectively 

simply as “spike(s)”. Automated spike detection would enable wider availability of EEG 

diagnostics and more rapid referral to qualified physicians who can provide further medical 

investigation and interventions. However, spikes are difficult to detect in a consistent manner 

due to the large variability of spike waveforms between patients among other factors [3]. 
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Great attempts have been made to detect spikes by general classifications such as mimetic, 

linear predictive, and template based methods [4]. Many recent spike detection algorithms 

combine multiple methodologies, such as local context [5, 6, 7], morphology [8, 6, 7, 9, 10, 

11], field of spike [8, 7, 12, 11, 13], artifact rejection [8, 6, 7], and temporal and spatial 

contexts [8, 13, 14]. Unfortunately, none of them are universally accepted or tested on a 

significantly large dataset of patients and spikes. To date, no algorithmic approach has 

overcome these challenges to yield expert-level detection of spikes [3].

In this study, we analyze the scalp EEG recordings of five patients diagnosed with epilepsy. 

Suspected interictal epileptiform spikes were cross-annotated by two neurologists. We 

applied convolutional neural networks (CNNs) to learn the discriminative features of spikes. 

CNNs are statistical models incorporating prior knowledge about the discriminative features 

of spikes. CNNs are commonly applied for finding local pixel dependencies [15]. 

Furthermore, CNNs have been proven successful in surpassing human accuracy in image 

recognition tasks [16], time-series tasks for text analysis [17] and biological sequences [18]. 

In addition, CNNs possess much fewer connections compared to a fully-connected neural 

network, due to the sparsity and the parameter sharing across the filters. Nevertheless, the 

computational complexity remains a key challenge to implementing CNNs. To address this 

issue, we utilize Graphical Processing Units (GPUs) and high performance libraries for 

modeling CNNs.

We benchmarked the CNN approach with several standard classification methods. Leave-

one-patient-out cross-validation was conducted to generate the receiver operating 

characteristic (ROC) curve for each model, with the average area-under-the-curve (AUC) as 

the benchmark criterion. We achieved 0.947 AUC for the CNN, while the best performing 

benchmark model, Support Vector Machines with Gaussian kernel, achieved an AUC of 

0.912.

This paper is organized as follows. In Section 2, we provide information on the EEG data 

considered in this study. We also elaborate on the design of the CNN model. In Section 3, 

we provide results for the CNN approach and four standard classifiers. In Section 4, we offer 

concluding remarks and ideas for future research.

2. METHODS

2.1. Epileptiform EEG

We analyzed the scalp EEG recordings of five patients with known epilepsy. Each EEG data 

lasts 30 minutes recorded from 19 standard 10-20 scalp electrodes. The sampling rate is 

128Hz. A high-pass filter at 1Hz was applied to remove the baseline drifts. A notch filter 

centered at 60Hz was applied to remove the power line interference. The common average 

referencing montage was applied to remove the common EKG artifacts.

As shown in Fig. 1a, interictal epileptiform spikes are morphologically defined events with 

an outstanding sharp peak distinguishable from the background fluctuations (see Fig.1b). 

Spikes were cross-annotated independently by two neurologists, and extracted with a fixed 

duration of 0.5 s. In order to reduce the computational load, we randomly sampled 1,500 
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spikes and 150,000 background waveforms from each subject. Leave-one-patient-out cross-

validation was conducted to evaluate the CNN model. Moreover, 10% of the training data 

was further extracted under stratified sampling for validation, in order to tune the CNN 

model.

2.2. Convolutional Neural Networks

The problem of spike detection is typically ill-posed, i.e., there are many models which fit 

the training patients or spikes well but do not generalize well. In other words, there is often 

not sufficient training data to allow accurate estimation of class probabilities throughout the 

input space. Convolutional neural networks (CNNs) [19] are suitable for such scenario, since 

they incorporate constraints and can achieve some degree of shift and deformation 

invariance. The architecture of a CNN (see Fig. 2) typically contains multiple layers: 

convolutional layers, dense layers, and an output layer. We applied the backpropagation 

algorithm to train the CNN. In this way, we can extract both low-level and high-level 

features from the input layer.

2.2.1. Activation function—In computational networks, the activation function defines 

the output of a layer given an input or a set of inputs. Nonlinear activation functions are 

commonly used in neural networks to improve the learning capacity and system robustness 

for nontrivial problems. Let us denote the output of layer ℓ as hℓ (with h0 the input layer), 

Θℓ+1 as the weight matrix of layer ℓ+1, and zℓ+1 as the linear combination of the weighted 

input to each neuron. The output of layer ℓ+1 is computed as follows:

(1)

The activation function is denoted by a(z). The most commonly used nonlinear activation 

functions in neural networks are the Logistic Sigmoid a(z) = 1/(1 + e−z) and the Hyperbolic 

Tangent a(z) = (ez – e−z)/(ez + e−z). Non-saturating activation functions such as the Rectifier 

Linear Unit (ReLU) with a(z) = max(0, z) have become more popular for their non-

vanishing gradients and computational efficiency [15]. However, the ReLU also suffers from 

“dead” gradients, i.e. from large gradients that may deactivate the neurons, and further 

disable the network. In order to avoid such problems, we applied the Leaky ReLU [16] as 

our activation function in CNN, which is defined as:

(2)

with α = 0.1. “Leaky” refers to the additional slope when a(z) < 0.

2.2.2. The convolutional architecture—In 1D Convolutional architectures, the 

processing steps of (1) are modified as follows:
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(3)

where the input  represents a co-located vector of length k in c channels and i 

refers to the specific co-located vector. The weight matrix  corresponds to a 

spatial weight filter with kc connections, in the dth output channel, between the input layer 

and each neuron in the output layer. As a result, convolutional layers are configurable to 

their filter size k and number of filters d [15], leading to many possible configurations of the 

CNN architecture.

Multiple convolutional layers can help to reduce the parameter space, and to model non-

linear mappings [20]. Moreover, combining different filter sizes can improve the overall 

performance [18]. Therefore, in this paper, we did not only test a single convolutional layer, 

but also stacked different convolutional layers on top of each other, and tested convolutional 

layers with different filter sizes. Based on our results, the implementation of multiple 

convolutional layers with different filter sizes provided the best validation performance, and 

thus was used to build the final CNN model.

2.2.3. The final CNN model—As depicted in Fig. 2, the CNN model contains five layers. 

The first three layers are convolutional layers with different filter sizes. The fourth layer is a 

fully-connected layer, which feeds into a fifth binary logistic layer (for normalization 

purpose) to make final decisions on whether an input waveform is a spike or not. During the 

training process, the CNN network is optimized by minimizing the binomial cross-entropy 

on the basis of the probability output from the neural network as:

(4)

where f(x) is the prediction of the neural network given x.

After being activated by inputs, the convolutional layers are merged and passes the inputs to 

the neurons of the next fully-connected layer. The output of the fully-connected layer is then 

passed to the logistic output function. The leaky ReLU nonlinear activation function is 

applied after each convolutional layer as well as the fully-connected layer. The three 

convolutional layers in the CNN model contains one-dimensional filter of size 3, 5 and 7 

respectively, and a stride of 1 with 8 filters each. The fully-connected layer has 150 hidden 

neurons. In order to avoid overfitting, we are using dropouts [21] with p = 0.5 on the fully-

connected layer.

The data is extremely skewed (or “imbalanced”), since there are vastly more background 

waveforms than spikes. Therefore, the CNN may mostly model the background waveforms, 

instead of the spikes. This problem is addressed by training the CNN by means of balanced 

mini-batches.
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Our CNN model is relatively small in size (220k parameters) compared to conventional 

CNN models for image processing [15]. Due to the small dataset used in this study, we 

limited the number of parameters in the CNN model to avoid overfitting while keeping the 

model simple. For future work, data augmentation [15], such as shifting the spikes by a few 

data points, may alleviate the problem of overfitting by generating synthetic data.

2.2.4. Details of learning—Our CNN model was trained with stochastic gradient descent 

using a batch-size of 4096 (2048 spikes and 2048 background waveforms). The update rule 

for the weight matrix Θ involves the Nesterov momentum [22] as follows:

(5)

with ε > 0 the learning rate, μ ∈ [0, 1] the momentum co-efficient, and Δf(Θt + μvt) the 

gradient. In this study, the learning rate ε was set by grid searching from 10−3 to 10−5, where 

2 10−4 gave the best convergence in the training data. The momentum applied was set to μ = 

0.9 and not optimized further on.

The CNN network was trained for a maximum of 50 epochs. The training was stopped when 

the validation error and training error diverged from one another. Leave-one-patient-out 

crosstesting was carried out to test the CNN model. The training was performed on a Tesla 

K40 GPU. We applied the Python built Theano library [23, 24] to compile to CUDA (a GPU 

interpretable language). We made use of the Lasagne library [25] to build and configure our 

CNN model.

3. RESULTS

We carried out a benchmark experiment to compare CNN against a variety of classifiers 

such as Suppport Vector Machines (SVM) with Gaussian kernel [26], Random Forest (RF) 

[27], k-Nearest Neighbor (KNN) [28], and C4.5 Decision Tree (DT) [29]. The receiver 

operating characteristic (ROC) curve was computed for each model, and the area under the 

ROC curve (AUC) was calculated as benchmark criterion. The larger the AUC, the better the 

performance. The AUC values are listed in Table 1.

Our numerical results show that the CNN achieves the largest AUC of 0.947, which 

outperforms the other four classifiers. As illustrated in Fig. 3, the ROC curves show that the 

CNN has favorable specificity and sensitivity compared to the other classifiers. However, 

due to the small dataset of only 5 patients, AUC scores varied a lot among different patients. 

Investigation with a much larger dataset is necessary to further explore the capabilities of 

CNNs in detecting epileptiform spikes from EEG signals.

4. CONCLUSION

In this paper, we develop a CNN model for detecting spikes in the EEG of epileptic patients. 

Our numerical results for a small pool of 5 patients show that the CNN performs better than 

four standard classifiers. The CNN model was relatively small compared to previous 
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contributions in the field of convolutional neural networks, since we limited the number of 

parameters in order to avoid overfitting. In future work, we will consider datasets of 

hundreds of epilepsy patients, and will train larger CNN models. Large-scale CNN models 

may yield even better detection results.
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Fig. 1. 
Illustration of (a) an interictal epileptiform spike, and (b) a background waveform.
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Fig. 2. 
The architecture of a the CNN model applied.
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Fig. 3. 
ROC curves for various statistical models.
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Table 1

AUC for the CNN model and standard classifiers.

Models AUC

CNN 0.947

SVM 0.912

RF 0.883

KNN 0.835

DT 0.817
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